Vol. 4 (2010), pp.87-91

https://doi.org/10.56424/jts.v4i01.10420

Einstein-Kaehlerian Recurrent Space of Second Order

K. S. Rawat and Virendra Prasad

Department of Mathematics
H.N.B. Garhwal University Campus, Badshahi Thaul,
Tehri Garhwal-249199, Uttarakhand, India
(Received: January 13, 2009)

Abstract

Walker (1950) and Roter (1964) studied and defined Ruse's spaces of recurrent curvature and second order recurrent spaces respectively.

In the present paper, we have studied and defined Einstein-Kaehlerian recurrent space of second order and several theorems have been established therein.

1. Introduction

An n(=2m) dimensional Kaehlerian space K^n is an even dimensional Riemannian space, with a mixed tensor field F_i^h and with Riemannian metric g_{ij} satisfying the following conditions

$$F_i^h F_j^i = -\delta_j^h, (1.1)$$

$$F_{ij} = -F_{ji}, \ (F_{ij} = F_i^a g_{aj}) \tag{1.2}$$

and

$$F_{i,j}^{h} = 0, (1.3)$$

where the (,) followed by an index denotes the operator of covariant differentiation with respect to the metric tensor g_{ij} of the Riemannian space.

The Riemannian curvature tensor, which we denote by R_{ijk}^h is given by

$$R_{ijk}^{h} = \partial_{i} \left\{ \begin{array}{c} h \\ jk \end{array} \right\} - \partial_{j} \left\{ \begin{array}{c} h \\ ik \end{array} \right\} + \left\{ \begin{array}{c} h \\ ii \end{array} \right\} \left\{ \begin{array}{c} l \\ jk \end{array} \right\} - \left\{ \begin{array}{c} h \\ jl \end{array} \right\} \left\{ \begin{array}{c} l \\ ik \end{array} \right\}$$
 (1.4)

where $\partial_i = \frac{\partial}{\partial x^i}$ and $\{x^i\}$ denote real local coordinates.

The Ricci-tensor and the scalar curvature are respectively given by

$$R_{ij} = R_{aij}^a$$
 and $R = R_{ij}g^{ij}$.

It is well known that these tensors satisfies the following identities

$$R_{ijk,a}^{a} = R_{jk,i} - R_{ik,j}, (1.5)$$

$$R_{.i} = 2R_{i,a}^a \tag{1.6}$$

$$F_i^a R_{aj} = -R_{ia} F_j^a, (1.7)$$

and

$$F_i^a R_a^j = R_i^a F_a^j \tag{1.8}$$

Let R_{hijk} be the components of the Riemannian curvature tensor.

We define a bi-recurrent space as a non-flat Riemannian V_n , the Riemannian Curvature tensor of which satisfies a relation of the form

$$R_{hijk,ab} = \lambda_{ab} R_{hijk} \tag{1.9}$$

where λ_{ab} is a non-zero tensor of the second order called the tensor of recurrence or recurrence tensor.

A Kaehlerian space K^n is said to be Kaehlerian recurrent space of second order if the curvature tensor field satisfy the condition

$$R_{hijk,ab} - \lambda_{ab} R_{hijk} = 0 (1.10)$$

for some non-zero recurrence tensor λ_{ab} .

THe space is said to be Kaehlerian Ricci recurrent space of second order, if it satisfies the condition

$$R_{ij,ab} - \lambda_{ab}R_{ij} = 0 \tag{1.11}$$

Multiplying the above equation by g^{ij} , we get

$$R_{,ab} - \lambda_{ab}R = 0 \tag{1.12}$$

An immediate consequence of (1.9) and Bianchi identity

$$R_{hijk,a} + R_{hika,j} + R_{hiaj,k} = 0$$

gives for a bi-recurrent space

$$\lambda_{ab}R_{hijk} + \lambda_{jb}R_{hika} + \lambda_{kb}R_{hiaj} = 0 {(1.13)}$$

In the case

$$R_{hijk,ab} = 0$$

(1.9) and (1.13) are satisfied for $\lambda_{ij} = 0$ and the space may or may not satisfy (1.13) for some non-zero tensor λ_{ij}

Let us suppose that a Kaehlerian space is an Einstein one, then the Ricci tensor satisfies

$$R_{ij} = \frac{R}{n} g_{ij}, \tag{1.14}$$

at every point of the space.

Theorem 1. If a recurrent space of second order (or bi-recurrent space) be Einstein, then the Ricci-curvature tensor vanishes.

Proof. Considering (1.13), transvecting by $g^{hk}g^{ij}$, we get

$$\lambda_{ab}R - \lambda_{jb}g^{ij}R_{ia} - \lambda_{kb}g^{hk}R_{ha} = 0$$

i.e.

$$\lambda_{ab}R - 2\lambda_{jb}g^{ij}R_{ia} = 0$$

Let a bi-recurrent space be Einstein one. Then making use of (1.14), in (1.15), we obtain

$$\lambda_{ab}R - 2\lambda_{jb}g^{ij}\frac{R}{n}g_{ia} = 0$$

whence

$$(n-2)\lambda_{ab}R=0.$$

Since $\lambda_{ab} \neq 0$ and n > 2, R = 0 which is equivalent in an Einstein space to saying that $R_{ij} = 0$. This completes the proof.

Theorem 2. In an Einstein recurrent space of second order, the scalar $g^{rs}\lambda_{rs}$ vanishes.

Proof. Transvecting (1.13) by g^{hk} and with the aid of $R_{ij} = 0$, we get

$$\lambda_{kb}R_{iaj}^k = 0 (1.16)$$

Transvecting (1.13) again by g^{ab} yields

$$\phi R_{hijk} - \lambda_{jb} g^{ab} R_{akhi} + \lambda_{kb} g^{ab} R_{ajhi} = 0$$
 (1.17)

where we have put the scalar $g^{ab}\lambda_{ab} = \phi$. Simplifying (1.17), we get

$$\phi R_{hijk} = \lambda_{jb} R_{khi}^b - \lambda_{kb} R_{jhi}^b.$$

This, by virtue of (1.16), gives

$$\phi R_{hijk} = 0.$$

Hence, either $\phi = 0$ or $R_{hijk} = 0$. But $R_{hijk} \neq 0$, because the case of flatness contradicts the definition of a recurrent space of second order (or, bi-recurrent space).

Therefore $\phi = 0$, i.e., $g^{ab}\lambda_{ab} = 0$ or, $g^{rs}\lambda_{rs} = 0$.

Which completes the proof of the theorem.

2. Condition for recurrent space of second order to be recurrent

We know the definition of a recurrent space. Evidently, a recurrent space is bi-recurrent or recurrent space of second order, but the converse is not true. It will however be shown in the form of a theorem that under certain conditions a recurrent space of second order (or, bi-recurrent space) becomes recurrent.

Theorem 3. A recurrent space of second order (or, bi-recurrent space) with $\lambda^{rs}\lambda_{rs}=0$, $g^{rs}\lambda_{rs}\neq 0$ is recurrent when and only when the space is Ricci-recurrent.

Proof. If a recurrent space of second order is recurrent, then the space is Ricci-recurrent. Conversely, if $\lambda^{rs}\lambda_{rs} = 0$ and $g^{rs}\lambda_{rs} \neq 0$, then as shown by Roter [2], the curvature tensor of a recurrent space of second order (bi-recurrent space) has the following form

$$R_{hijk} = \frac{2}{R} (R_{hk} R_{ij} - R_{hj} R_{ik}), \tag{2.1}$$

we then consider those recurrent spaces of second order which are Ricci-recurrent having β_l as vector of recurrence.

Equation (2.1) thus yields

$$R_{hijk,a} = \frac{4}{R} \beta_l (R_{hk} R_{ij} - R_{hj} R_{ik}) - \frac{2}{R} \beta_l (R_{hk} R_{ij} - R_{hj} R_{ik}) = \frac{2}{R} \beta_l (R_{hk} R_{ij} - R_{hj} R_{ik})$$
$$= \beta_l R_{hijk}.$$

Therefore, the space is recurrent.

References

- 1. Walker, A. G.: On Ruse's space of recurrent curvature, Proc. Lond. Math. Soc., 52 (1950), 36-64.
- 2. Roter, W.: A note on second order recurrent spaces, Bull. Acad. Polon. SCi. Ser. Math. Astronom. Phy., 12 (1964), 621-626.

- 3. Derdzinski, A. and Roter, W.: Some theorems on conformally symmetric manifolds, Tensor (N. S.), 32 (1978), 11-23.
- 4. Rahman, M. S. : A remark conformally flat spaces, Acta Ciencia Indica, 12m (1986), 122-127.
- 5. Rong, J. : On ${}^2k_n^*$ spaces, Tensor (N. S.), 49 (1990), 117-123.
- 6. Rahman, M. S. : On the symmetry of Ricci-tensor, Bangladesh J. SCi. Res., 8 (1990), 7-12.
- 7. Rawat, K. S. and Dobhal, Girish: On the bi-recurrent Bochner curvature tensor, Jour. of the Tensor Society, 1 (2007), 33-40.
- 8. Rawat, K. S. and Singh, Kunwar: Some bi-recurrence properties in a Kaehlerian space, Jour. PAS, 14 (Mathematical Sciences), (2008), 199-205.