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Abstract

Through dimensional reduction and one-loop quantum correction of scalar
and spinor fields, time-dependent cosmological constant Λeff , effective gravita-
tional constant Geff and fine structure constant are derived in 5-dimensional
Kaluza-Klein model for cosmology. If the internal manifold contracts with time
and stabilizes itself at some later time, one possibility gets fine-structure con-
stant equal to

1
137

, Geff ' GN and Λeff ' 0 .
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1. Introduction

In the context of unification of gravity with other fundamental forces,
Kaluza-Klein theory is important. Basically, in this theory 5-dimensional mani-
fold is considered as M4×S1 where M4 is the 4-dimensional manifold and S1 is
a circle. Our observable universe is 4-dimensional, so it is expected that radius
of S1 is extremely small (undetectable). Hence, it is very natural to think that
if extra manifold was a reality at very high energy scale and is undetectable
now because of nonavailability of energy of required order, it should manifest
itself in some way or the other. Employing the method of heat - Kernel method,
Toms [3] calculated one-loop effective action in 5-dimensional background geom-
etry and obtained induced cosmological constant, gravity and Maxwell’s term
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as manifestation of fifth dimension of the space. But the cosmological constant
obtained by him is very large. The model, considered by him (Toms) contains
static component of metric tensor corresponding to extra space which completely
ignores its dynamical contribution.

This note offers calculation of time-dependent cosmological constant, ef-
fective gravitational constant(time dependent) as well as Maxwell’s terms using
the heat-Kernal method (adapted by Toms) to evaluate one-loop effective action
for scalar fields as well as Dirac spinors. The 5-dimensional cosmological model
proposed here is given by the line-element

ds2 = dt2 − a2(t)[(dx1)2 + (dx2)2 + (dx3)2]− b2(t)(dy − kAµ(x)dxµ)2 (1)

where t is the cosmic time, a(t) is the expanding scale factor for spatially flat
subspace of M4, b(t) is the contracting scale factor for S1, Aµ(µ = 0, 1, 2, 3)
is the four-dimensional electromagnetic field and k is a constant of (mass)−1

dimension to make kAµ(x) dimensionless.

Using horizontal lift basis [4,5] the action in the background geometry given
by (1) is written as

S =− 1
16πG5

∫
d4xdy

√−g5R5 +
∫

d4xdy
√−g5

1
2
[gm′n′(Dm′Φ)∗

(Dn′Φ)− ξR5Φ∗Φ−M2
0 Φ∗Φ] +

1
2

∫
d4xdy

√−g5Ψ̄(irm′
Dm′ −M 1

2
)Ψ

(2)

where G5 = GNL (GN is the Newtonian gravitational constant equal to M−2
p

where Mp is Planck mass, 0 ≤ y ≤ L). 5-dim. Ricci scalar R5 = R4−1
4
k2FµνF

µν

(R4 is 4-dim. Ricci scalar, Fµν = DνAµ −DµAν , Dµ = 5µ + kAµ, D5 = 55

(5µ and 55 are convariant derivatives in curved space). 5-dim. Dirac matrices
γm′

(m′ = 0, 1, 2, 3, 5) in curved space are given as γm′
= hm′

a γ̃a(γ̃0, γ̃1, γ̃2, γ̃3) are
Dirac matrices in 4-dimensional flat space and γ̃5 = γ̃0γ̃1γ̃2γ̃3, hm′

a are defined as
hm′

a h′bη
ab = gm′n′ with ηab = diag(1,−1,−1,−1,−1), ξ is a coupling constant,

Φ is a scalar field with mass Mo, Ψ is the Dirac spinor with mass M 1
2

and g5 is
the determinant of the metric tensor gm′n′ given as

gm′n′ = diag(1,−a2,−a2,−a2,−b2)

in horizontal lift basis. ~ = c = 1 is used as fundamental unit where ~ and c

have their usual meaning.
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2. Gravity

5-dimensional action for gravity given by (2) can be reduced to 4-dimensional
action employing the method of Pollock[6]. In this method, gm′n′ can be con-
formally transformed to g′m′n′ as

gm′n′ = b2(t)g′m′n′ = b2(t)
( ˜̃gµν 0

0 − 1

)
(3)

where ˜̃g is the resulting metric tensor on M4. So, on ignoring term of total
divergence,

Sg = − 1
16πG5

∫
d4xdy

√
−˜̃g

4
b3

[
˜̃R4 − 12b−2( ˜̃5 b)2 − 1

4
b−2k2 ˜̃Fµν

˜̃Fµν

]
(4)

where ˜̃5 is the covariant derivative, ˜̃R4 is Ricci scalar and ˜̃Fµν is electromagnetic
field strength corresponding to ˜̃gµν .

Further conformal transformation is done over ˜̃gµν only as

˜̃gµν = e2vgµν (5)

where v is function of b(t). Now using this conformal transformation and inte-
grating over y,

S(4)
g =− 1

16πGN

∫
d4x

√
−g4(x)b3e2v

[
R4 − 1

4
b−2k2e−2vFµνFµν − 12(v̇)2 − 12(

ḃ

b
)2 − 18v̇(

ḃ

b
)

] (6)

where dot (.) denotes derivative with respect to t(time). Choosing v = −3
2
ln b(t),

one gets 4-dimensional action for gravity as

S(4)
g = − 1

16πGN

∫
d4x

√
−g4(x)

[
R4 − 1

4
k2FµνF

µν − 12(
ḃ

b
)2

]
(7)

constant k was introduced with intention to keep the theory dimensionally cor-
rect. So, without any harm to physics, k may be identified with (16πGN )

1
2 .

3. Scalar fields

The extra manifold is a circle which is not simply-connected, hence any
field on it can be either untwisted(periodic in y) or twisted(anti-periodic in
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y)[7]. Hence, in either case, one may write

Φ(xµ, y) = [Lb(t)]−
1
2

∞∑
n=−∞

Φn(xµ)exp[i(n + α)My] (8)

where M = 2πL−1 (L is circumference of S1) and α = 0
(

1
2

)
for untwisted

(twisted) field.

Substituting Φ(xµ, y) given by (8) in the action for scalar field given by (2) and
integrating over Y

S
(4)
Φ =

1
2

∞∑
n=−∞

∫
d4x

√−g4(x)[gµν(D(n)
µ Φn)∗(D(n)

ν Φn)−

M2
nΦ∗nΦn − ξ(R4 − 1

4
k2FµνF

µν)Φ∗nΦn]

(9)

where
D(n)

µ Φn = 5µΦn + iqnAnΦn, (10a)

M2
n = M2

0 +
(n + α)2

b2
M2 − 3

2
ȧ

a

ḃ

b
− 1

4

(
ḃ

b

)2

− 1
2

d

dt

(
ḃ

b

)
(10b)

and
qn = (n + α)e = (n + α)kM (10c)

Here qn is the charge of the scalar particle in nth mode which is integral (half-
integral) multiple of e (= kM) for untwisted (twisted) field.

Now one loop effective action for Φn is calculated for nth mode and summed up
over all modes to get [3]

Γ(1)
Φ =

i

2

∞∑
n=−∞

ln det∆n (11)

where ∆n is the operator defined as

∆n = gµνD(n)
µ D(n)

ν + M2
n + ξ

(
R4 − 1

4
k2FµνF

µν

)
(12)

Using the kernal kn(s, x, x) for ∆n, (11) can be re-written as

Γ(1)
Φ =

i

2

∞∑
n=−∞

∫
d4x

√−g4

∞∫

0

ds

s
tr kn(s, x, x) (13)
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where

kn(s, x, x) = iµ4−N (4πis)−
N
2 exp(−iM2

ns)
∞∑

k=0

(is)kak(x)

(N is the space-time dimension used as dimensional regulator with N → 4 and
µ is a constant of mass dimension to get dimensionless action). For ∆n given
by (12) [8,9]

a0(x) = 1 (14a)

a1(x) = (
1
6
− ξ)R4 +

1
4
ξk2FµνF

µν (14b)

a2(x) = − 1
12

k2M2(n + α)2 + . . . (14c)

Only relevant terms are mentioned here.

Integrating over s in (13) and using (14)

Γ(1)
Φ =− 1

2(4π)2

∫
d4x

√−g4 [ lim
N→4

d(−N

2
)

∞∑
n=−∞

{(n + α)2M2

b2
+ M̄2(t)

}N
2 +

lim
N→4

√
(1− N

2
)

∞∑
n=−∞

{(n + α)2M2

b2
+ M̄2(t)

}N
2
−1

(
1
6
− ξ)R4+

lim
N→4

{1
4
ξk2

√
(1− N

2
)

∞∑
n=−∞

[
(n + α)2M2

b2
+ M̄2(t)]

N
2
−1−

1
12

√
2− N

2

∞∑
n=−∞

k2M2(n + α)2[
(n + α)2M2

b2
+ M̄2(t)]

N
2
−2}+ . . . ]

(15)

where

M−2(t) = M2
0 −

3
2

ȧ

a

ḃ

b
− 1

4

(
ḃ

b

)2

− 1
2

d

dt

(
ḃ

b

)

Using the formulae (B6) of ref.[10],

∞∑
n=−∞

[(n + c)2 + d2]−λ = π
1
2 d1−2λ

√
(λ− 1

2)
√

λ
+ 4 sinπλfλ(c, d)
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(where Re λ >
1
2

and c and d are real), series in (15), for M̄2(t) > 0 is summed
to yield when α = 0,

Γ(1)
Φ =− 1

2(4π)2

∫
d4x

√−g4[−8π

15
{M̄(t)}5 b

M
+

4πb

3M
{M̄(t)}3×

(
1
6
− ξ)R4 +

k2

4

(
4πξb

3M
{M̄(t)}3 +

M2ς(3)
24π2

)
FµνF

µν + . . . ]
(16)

where ς(p) is the Riemann-zeta function.

When α =
1
2

Γ(1)
Φ =− 1

2(4π)2

∫
d4x

√−g4[−8π

15
{M̄(t)}5 +

4πb

3M
{M̄(t)}3×

(
1
6
− ξ)R4 +

k2

4

(
4πξb

3M
{M̄(t)}3 − M2ς(3)

4π2

)
FµνF

µν + . . . ]
(17)

If N+
0 (N−

0 ) is the number of untwisted (twisted) scalar fields in the theory,

Γ(1)
Φ =− 1

2(4π)2

∫
d4x

√−g4[−8π

15
b

M
{M̄(t)}5(N+

0 + N−
0 )+

4πb

3M
(N+

0 + N−
0 ){M̄(t)}3(

1
6
− ξ)R4+

k2

4

(
4πξb

3M
{M̄(t)}3(N+

0 + N−
0 ) +

M2ς(3)
24π2

(N+
0 − 3

2
N−

0 )
)

FµνF
µν + . . . ]

(18)

4. Dirac spinors

Like scalar fields, Ψ(xµ, y) may also be written as

Ψ(xµ, y) = [Lb(t)]−
1
2

∞∑
n=−∞

Ψn(xµ)exp[i(n + α)My] (19)

Using this anstaz for Ψ(xµ, y) in the action for Ψ(xµ, y) given by (2) and inte-
grating over y,

S
(4)
Ψ =

1
2

∞∑
n=−∞

∫
d4x

√−g4Ψ̄n

[
iγµD(n)

µ − γ̃5(n + α)M
b

−M 1
2

]
Ψn (20)
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Under chiral rotations [11,12], the mass term for Ψn gets the canonical form

Ψ̄n

[
(n + α)2

b2
+ M2

1
2

]
Ψn (21)

Now one-loop correction terms for Ψn can be calculated by repeating the pro-
cedure adopted for scalar fields with

tra0(x) = p (22a)

tra1(x) = − 1
12

pR4 +
pk2

16
FµνF

µν (22b)

tra2(x) = − p

12
k2M2 + (n + α)2FµνF

µν + . . . (22c)

Here also only relevant terms are mentioned, p in (22) is the number of
spinor components which is 4 for Ψn. If number of untwisted (twisted) spinors
are N+

1
2

(N−
1
2

)

Γ(1)
Ψ =− 1

2(4π)2

∫
d4x

√−g4 [−32πb

15M
M5

1
2
(N+

1
2

+ N−
1
2

)+

4πb

9M
M3

1
2

(N+
1
2

+ N−
1
2

)R4 +
k2

4
{−4πb

3M
M3

1
2

(N+
1
2

+ N−
1
2

)−
2M2

3π2
ς(3)(N+

1
2

− 3
2
N−

1
2

)}FµνF
µν + . . .

(23)

5. Effective action for gravity

From (7), (18) and (23), effective action for 4-dimensional gravity is written
as

S(4)eff
g =

∫
d4x

√−g4 [− 1
16πGn

+
b

24πM
{M̄(t)}3(N+

0 + N−
0 )(

1
6
− ξ)+

b

72πM
M3

1
2

(N+
1
2

+ N−
1
2

)R4 +
3

4πGN

(
ḃ

b

)2

+
1

60π
b

M
{M̄(t)}5×

(N+
0 + N−

0 )− b

15πM
M5

1
2

(N+
1
2

+ N−
1
2

)]

(24)

which yields the effective 4-dimensional gravitational constant as

1
16πGeff

=
1

16πGN
+

b

72πM
[3{M̄(t)}3(N+

0 + N−
0 )(

1
6
− ξ) + M3

1
2
(N+

1
2

+ N−
1
2

)]

(25a)
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and effective cosmological constant ∧eff as

∧eff

8πGeff
=

3
4πGN

(
ḃ

b
)2 +

b

60πM
[{M̄(t)}5(N+

0 + N−
0 )− 4M5

1
2

(N+
1
2

+ N−
1
2

)] (25b)

Thus, one finds that Geff and ∧eff are time dependent. Also it is interesting

to see that if ξ >
1
6

and at a particular time t′

1
16πGN

<
b(t′)

72πM
[3{M̄(t)}3(N+

0 + N−
0 )(ξ − 1

6
)−M3

1
2

(N+
1
2

+ N−
1
2

)] (25c)

Geff < 0. It means that under above circumstances, gravity becomes repulsive
contrary to its usually believed nature. Possibility of anti-gravity has also been
discussed by Yoshimura[13] in the context of his finite temperature theory of

higher-dimensional Kaluza-Klein type cosmology. But if ξ ≤ 1
6
, Geff > 0.

Even if ξ >
1
6
, Geff > 0 is possible provided that a particular time t′′

M3
1
2

(N+
1
2

+ N−
1
2

) > 3{M̄(t′′)}3(N+
0 + N−

0 )(ξ − 1
6
)

6. Induced Maxwell’s terms

From (7),(18) and (23), induced Maxwell’s term in the action is given as

S
(4)
F 2 =

1
4

∫
d4x

√−g4
e2

M2
[

b

16πGN
+

4πξb

3M
{M̄(t)}3(N+

0 + N−
0 ) +

M2ς(3)
6π2

×

(N+
0 − 3

2
N−

0 )− 4πb

M
M3

1
2

(N+
1
2

+ N−
1
2

)− 2M2

3π2
ς(3)(N+

1
2

− 3
2
N−

1
2

)FµνF
µν ]

(26)

The normalization condition for Aµ yields [14,15,16]

b(t)

[
M2

p

16π
+

4πξ

3M
{M̄(t)}3(N+

0 + N−
0 )− 4π

M
M3

1
2

(N+
1
2

+ N−
1
2

)

]
+

M2ς(3)
6π2

(N+
0 − 3

2
N−

0 )− 2M2

3π2
ς(3)(N+

1
2

− 3
2
N−

1
2

) =
M2

e2

(27)

If N+
0 = 4N+

1
2

and N−
0 = 4N−

1
2

, (27) gets a more convenient from as

b(t)

[
M2

p

16π
+

16πξ

3M
{M̄(t)}3 − 4π

M
M3

1
2

(N+
1
2

+ N−
1
2

)

]
=

M2

e2
(28)
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It is interesting to see from (27) and (28) that e (gauge coupling constant for
electromagnetic field) is time-dependent. As a result fine structure constant (for
N+

0 = 4N+
1
2

and N−
0 = 4N−

1
2

) is given as

e2

4π
=

M2

4π
[b(t)]−1

[
M2

p

16π
+

16πξ

3M
{M̄(t)}3 − 4π

M
M3

1
2

(N+
1
2

+ N−
1
2

)

]−1

(29)

is time-dependent which shows that when b →∞,
e2

4π
→ 0 and as b → 0,

e2

4π
→

∞. But we know that at low mass scale (large t),
e2

4π
' 1

137
. This well-known

result puts a constraint on b(t) that b(t) should stabilize itself at some time t1,
during the course of evolution of the universe around the value b1 = b(t1) given
by

1
137

=
M2

4π
b−1
1

[
M2

p

16π
+

16πξM3
0

3M
− 4π

M
M3

1
2

(N+
1
2

+ N−
1
2

)

]−1

(30)

In (30), if M0 and M 1
2

are sufficiently small,

b1 ' 548M2

M2
p

(31)

The effective radius of the extra manifold (circle) is Lb(t). If extra manifold is
hidden, at the compactification time tc

Lb(tc) . Lp (32)

Constraint obtained above and the fact that b(t) is a contracting scale factor,
imply that

b(tc) ≥ b1 (33)

Thus, one gets

Lb1 ≤ Lb(tc) . Lp (34)

Now (31) and (34) imply compactification mass M . Mp

548
and b1 . 1.8× 1̄03.

From (25a) and (34), one gets at t = t1

1
16πGeff

. 1
16πGN

+
M−1

p

72π

{
12M3

0 (
1
6
− ξ) + M3

1
2

}
(N+

1
2

+ N−
1
2

) ≈ 1
16πGN

(35)
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(25b) and (34) imply that at t = t1

∧eff

8πGeff
.

M−1
p

15π
(N+

1
2

+ N−
1
2

)(M5
0 −N5

1
2
) (36)

which shows that if M0 ' M 1
2
,∧eff = 0, otherwise also ∧eff ≈ 0.
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