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Abstract

Tachibana (1967), Singh (1971) studied and defined the Bochner curvature
tensor and Kaehlerian spaces with recurrent Bochner curvature tensor. Further
, Negi and Rawat (1994), (1997) studied some bi-recurrence and bi-symmetric
properties in a Kaehlerian space and Kaehlerian spaces with recurrent and sym-
metric Bochner curvature tensor.

In the present paper, we have studied Kaehlerian recurrent and symmetric
spaces of second order by taking different curvature tensor and relations between
them. Also several theorems have been established therein.

1. Introduction

Let X2n be a 2n−dimensional almost-complex space and its almost-complex
structure, then by definition, we have

F s
j F i

s = δi
j . (1.1)

An almost-complex space with a positive definite Riemannian metric gji

satisfying
grsF

r
j F s

i = gji (1.2)

is called an almost-Hermitian space. From (1.2) it follows that Fji = griF
r
j is

skew-symmetric.

If an almost-Hermitian space satisfies

∇jFih +∇iFhj +∇hFji = 0, (1.3)

where ∇j denotes the operator of covariant derivative with respect to the sym-
metric Riemannian connection, then it is called an almost-Kaehlerian space and
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if it satisfies
∇jFih +∇iFjh = 0 (1.4)

Then it is called a K−space. In an almost-Hermitian space, if

∇jFih = 0. (1.5)

Then it is called a Kaehlerian space or briefly a Kn space.

The Riemannian curvature tensor which are denoted by Rh
ijk is given by

(Weatherburn 1938)

Rh
ijk = ∂i

{
h

jk

}
− ∂j

{
h

ik

}
+

{
h

ip

}{
p

jk

}
−

{
h

jp

}{
p

ik

}
(1.6)

The Ricci-tensor and scalar curvature are respectively given by

Rij = Ra
aij and R = Rijg

ij .

If we define a tensor Sij by
Sij = F a

i Raj , (1.7)

Then, we have
Sij = −Sji, (1.8)

and
F a

i Saj = −Sia F a
j . (1.9)

The holomorphically projective curvature tensor and the H-Concircular curva-
ture tensor are respectively given by

P h
ijk = Rh

ijk +
1

(n + 2)
(Rikδ

h
j −Rjkδ

h
i + SikF

h
j − SjkF

h
i + 2F h

k Sij) (1.10)

and

Ch
ijk = Rh

ijk +
R

n(n + 2)
(gikδ

h
j − gjkδ

h
i + FikF

h
j − FjkF

h
i + 2FijF

h
k ) (1.11)

The equation (1.10), in view of (1.11) may be expressed as

P h
ijk = Ch

ijk +
1

n(n + 2)
(Rikδ

h
j −Rjkδ

h
i + SikF

h
j − SjkF

h
i + 2SijF

h
k )−

− R

(n + 2)
(gikδ

h
j − gjkδ

h
i + FikF

h
j − FjkF

h
i + 2FijF

h
k ) (1.12)

If we put

Lij = Rij − R

n
gij (1.13)

and
Mij = F a

i Saj = Sij − R

n
Fij , (1.14)
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Then (1.12) reduces to the form

P h
ijk = Ch

ijk +
R

n(n + 2)
(Likδ

h
j − Ljkδ

h
i + MikF

h
j −MjkF

h
i + 2MijF

h
k ). (1.15)

Now, we have the following :

2. Kaehlerian Recurrent Space of Second Order

Definition (2.1) : A Kaehler space Kn satisfying the relation

∇b∇a Rh
ijk = λab Rh

ijk, (2.1)

For some non- zero tensor λab, will be called a Kaehlerian recurrent space of
second order and is called Ricci-recurrent (or, semi-recurrent) space of second
order, if it satisfies

∇b∇a Rij = λab Rij , (2.2)

Multiplying the above equation by gij , we have

∇b∇a R = λab R, (2.3)

Remark (2.1) : From (2.1) and (2.2), it follows that every Kaehlerian recurrent
space of second order is Ricci-recurrent space of second order but the converse
is not necessarily true.

Definition (2.2) :A Kaehler space Kn satisfying the condition

∇b∇a P h
ijk = λab P h

ijk, (2.4)

For some non-zero tensor λab, will be called a Kaehlerian H−Projective
recurrent space of second order or, briefly a Kn − P space.

Definition (2.3) : A Kaehler space Kn satisfying the relation

∇b∇a Ch
ijk = λab Ch

ijk, (2.5)

For some non-zero tensor λab, will be called a Kaehlerian H−Concircular
recurrent space of second order or, briefly a Kn − C space.

Theorem (2.1) : Every Kaehlerian recurrent space of second order is Kn −C

space.
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Proof : Differentiating (1.11) covariantly with respect to xa, again differentiate
the result thus obtained covariantly with respect to xb, we have

∇b∇a Ch
ijk = ∇b∇a Rh

ijk +
∇b∇aR

n(n + 2)
(gikδ

h
j − gjkδ

h
i + FikF

h
j − FjkF

h
i + 2FijF

h
k )

(2.6)

Multiplying (1.11) by λab, then subtracting from (2.6), we obtain

∇b∇a Ch
ijk − λabC

h
ijk = ∇b∇a Rh

ijk − λabR
h
ijk +

(∇b∇aR− λabR)
n(n + 2)

(gikδ
h
j − gjkδ

h
i

+FikF
h
j − FjkF

h
i + 2FijF

h
k ) (2.7)

Now, let the space be Kaehlerian recurrent space of second order, then equation
(2.7) with the help of equations (2.1) and (2.3) becomes

∇b∇a Ch
ijk − λabC

h
ijk = 0,

Or,

∇b∇a Ch
ijk = λabC

h
ijk,

Which shows that the space is Kn − C space.

Similarly, in view of equations (1.10),(2.1),(2.2) and (1.7), we have the
following :

Theorem (2.2) :Every Kaehlerian recurrent space of second order is Kn − P

space.

Theorem (2.3) : The necessary and sufficient condition for a Kn−C space to
be a Kn − P space is that

(∇b∇a Lik − λabLik)δh
j − (∇b∇a Ljk − λabLjk)δh

i + (∇b∇a Mik − λabMik)F h
j

−(∇b∇a Mjk − λabMjk)F h
i + 2(∇b∇a Mij − λabMij)F h

k = 0. (2.8)

Proof : Suppose Kn − C space is a Kn − P space.

Differentiating (1.15) covariantly w.r.t. xa, again differentiate the result thus
obtained covariantly w.r.t. xb, we have

∇b∇a P h
ijk = ∇b∇a Ch

ijk +
1

(n + 2)
(∇b∇a Likδ

h
j −∇b∇a Ljkδ

h
i +∇b∇a MikF

h
j

−∇b∇a MjkF
h
i + 2∇b∇a MijF

h
k ) (2.9)
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Transvecting (1.15) by λab and subtracting from the above equation (2.9), we
have

∇b∇a P h
ijk − λabP

h
ijk = ∇b∇a Ch

ijk − λabC
h
ijk +

1
(n + 2)

[(∇b∇a Lik − λabLik)δh
j

−(∇b∇a Ljk − λabLjk)δh
i + (∇b∇a Mik − λabMik)F h

j

− (∇b∇a Mjk − λabMjk)F h
i + 2(∇b∇a Mij − λabMij)F h

k ] (2.10)

Since a Kn − C space is a Kn − P space, then equation (2.10), in view of (2.4)
and (2.5) reduces to (2.8).

Conversely, if Kn − C space satisfies the condition (2.8), then (2.10) in view of
(2.5) reduces to

∇b∇a P h
ijk − λabP

h
ijk = 0,

which shows that the space is Kn − P space.

This completes the proof.

Theorem (2.4) : If in a Kaehler space satisfying any two of the following
properties :

(i) the space is Kaehlerian Ricci- recurrent space of second order,

(ii) the space is Kaehlerian Projective recurrent space of second order,

(iii) the space is H-Concircular recurrent space of second order , then it must
also satisfies third.

Proof : Differentiating (1.12) covariantly w.r.t. xa, again differentiate the result
thus obtained covariantly w.r.t. xb, we have

∇b∇a P h
ijk = ∇b∇a Ch

ijk +
1

(n + 2)
(∇b∇a Rikδ

h
j −∇b∇a Rjkδ

h
i +∇b∇a SikF

h
j

−∇b∇a SjkF
h
i + 2∇b∇a SijF

h
k −

∇b∇aR

n(n + 2)
(gikδ

h
j − gjkδ

h
i

+FikF
h
j − FjkF

h
i + 2FijF

h
k ), (2.11)

Multiplying (1.12) by λab and subtracting the result from (2.11), we have

Kaehlerian Ricci-recurrent space of second order, Kaehlerian Projective recur-
rent space of second order and Kaehlerian H−Concircular recurrent space of
second order are respectively characterized by the equations (2.2), (2.4) and
(2.5).
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The statement of the above theorem follows in view of equations (2.2), (2.4),
(2.5) and (2.12).

3. Kaehlerian Symmetric Space of Second Order

Definition (3.1) : A Kaehler space Kn satisfying the condition

∇b∇a Rh
ijk = 0, or equivalently ∇b∇a Rijkl = 0, (3.1)

Will be called Kaehlerian symmetric space of second order and is called Kaehlerian
Ricci-symmetric or (semi-symmetric) space of second order, if it satisfies

∇b∇a Rij = 0, (3.2)

Multiplying the above equation by gij , we have

∇b∇a R = 0, (3.3)

Remark (3.1) :From (3.1) and (3.2), it follows that every Kaehlerian symmetric
space of second order is Kaehlerian Ricci-symmetric space of second order , but
the converse is not necessarily true.

Definition (3.2) : A Kaehler space Kn satisfying the condition

∇b∇a P h
ijk = 0, or equivalently ∇b∇a Pijkl = 0, (3.4)

will be called a Kaehlerian H−Projective symmetric space of second order or,
briefly a ∗Kn − P space.

Definition (3.3) : A Kaehler space Kn satisfying the condition

∇b∇a Ch
ijk = 0, or equivalently ∇b∇a Cijkl = 0, (3.5)

will be called a Kaehlerian H−Concircular symmetric space of second order or,
briefly ∗Kn − C space.

Theorem (3.1) : The necessary and sufficient condition for a ∗Kn − C space
to be a ∗Kn − P space is that

∇b∇a Likδ
h
j −∇b∇a Ljkδ

h
i +∇b∇a MikF

h
j −∇b∇a MjkF

h
i + 2∇b∇a MijF

h
k = 0.

(3.6)

Proof : From equations (1.5), (2.9) and (3.5), we have

∇b∇a P h
ijk =

1
(n + 2)

(∇b∇a Likδ
h
j −∇b∇a Ljkδ

h
i +∇b∇a MikF

h
j −∇b∇a MjkF

h
i

+2∇b∇a MijF
h
k = 0. (3.7)
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Since ∗Kn − C space is a ∗Kn − P space, hence equation (3.7) reduces to the
form

∇b∇a Likδ
h
j −∇b∇a Ljkδ

h
i +∇b∇a MikF

h
j −∇b∇a MjkF

h
i + 2∇b∇a MijF

h
k = 0.

(3.8)

Conversely, if a ∗Kn−C space satisfies equation (3.6), then (3.7) reduces to the
form

∇b∇a P h
ijk = 0

which shows that the space is ∗Kn − P space.

Theorem (3.2) :A necessary and sufficient condition for a H−Concircular
symmetric space of second order to be Kaehlerian-Ricci symmetric space of
second order is that

∇b∇a Rh
ijk + λab[Ch

ijk −Rh
ijk −

R

n(n + 2)
(gikδ

h
j − gjkδ

h
i + FikF

h
j

−FjkF
h
i + 2FijF

h
k )] = 0 (3.9)

Proof : If the space is a H−Concircular symmetric space of second order, then
equation (2.7) in view of (3.5) reduces to the form

∇b∇a Rh
ijk − λabR

h
ijk + λabC

h
ijk +

(∇b∇aR− λabR)
n(n + 2)

[gikδ
h
j − gjkδ

h
i + FikF

h
j

−FjkF
h
i + 2FijF

h
k )] = 0 (3.10)

Now, if the space is Kaehlerian- Ricci symmetric space of second order then
(3.2) is satisfied and equation (3.10), in view of (3.2) reduces to (3.9).

Conversely, if H−Concircular symmetric space of second order satisfies the con-
dition (3.9), then equation (2.7) gives

∇b∇aR

n(n + 2)
[gikδ

h
j − gjkδ

h
i + FikF

h
j − FjkF

h
i + 2FijF

h
k )] = 0

which gives ∇b∇aR = 0

∇b∇ag
ijRij = 0 since R = Rijg

ij

Or ∇b∇aRij = 0 since gij 6= 0

which shows that the space is Kaehlerian Ricci-symmetric space of second order.
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