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Abstract

In this paper we have studied pseudo-slant submanifolds of a Generalised
almost contact metric structure manifold and established integrability condi-
tions of distributions and some interesting results on this submanifold.
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1. Introduction

The geometry of slant submanifolds was initiated by B. Y. Chen. He de-
fined slant immersions in the complex geometry as a natural generalization of
both holomorphic and totally real immersions [4]. A. Lotta introduced the no-
tion of slant immersions of a Riemannian manifold into an almost contact metric
manifold [5]. In [2], J. L. Cabererizo et. all studied and characterised slant sub-
manifolds of K-contact and Sasakian manifolds with several examples. Recently
Khan and Khan studied Pseudo-slant submanifolds of a Sasakian manifold [5].

The purpose of this paper is to study pseudo-slant submanifolds of Gener-
alised almost contact metric structure manifold. In section 3 we defined slant
immersions and slant distributions on Generalised almost contact metric struc-
ture manifold and Hyperbolic Hermite manifold and proved some character-
isation theorem. In section 4 we defined pseudo-slant submanifolds of these
manifolds and established a relation between them. We also worked out inte-
grability conditions of distributions on pseudo-slant submanifolds of Generalised
almost contact metric structure manifold.
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2. Preliminaries

First we define a Generalised almost contact metric structure manifold.

Definition (2.1) [8]. An odd dimensional Riemannian manifold (M, g) is said
to be a Generalised almost contact metric structure manifold if, there exits a
tensor φ of the type (1, 1) and a global vector field ξ and a 1-form η satisfying
the following equations:

φ2X = a2X + η(X)ξ (1)

η(φX) = 0 (2)

η(ξ) = −a2 (3)

φ(ξ) = 0 (4)

η(X) = g(X, ξ) (5)

g(φX, φY ) = −a2g(X,Y )− η(X)η(Y ), (6)

where X, Y ∈ T M , a be a complex number and g be the metric of M .

From above definition it is clear that almost contact metric manifold is a
particular case of a Generalised almost contact metric structure manifold for
a2 = −1.

If ′Φ is a 2-form defined on M as
′Φ(X, Y ) = g(φX, Y ),

then ′Φ is alternating i.e.
′Φ(Y,X) = −′Φ(X, Y )

or
g(φX, Y ) = −g(φY, X). (7)

Now let M be a submanifold immersed in M and we denote by the same symbol
g the induced metric on M . let TM be the Lie algebra of the vector fields in
M and T⊥M denote the set of all vector fields normal to M . Then, the Gauss
and Weingarten equations are given by

∇XY = ∇XY + h(X,Y ) (8)

∇XV = −AV X +∇⊥XV, (9)

for all X, Y ∈ TM , V ∈ T⊥M .
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Where ∇, ∇ are respectively the Levi-Civita connexions on M and M and ∇⊥
is induced connexion in normal bundle of M i.e. T⊥M , h is symmetric bilinear
vector valued function called second fundamental form and AV is the shape
operator associated with V . The second fundamental form h and the shape
operator A are related by

g(AV X,Y ) = g(h(X,Y ), V ). (10)

For anyX ∈ TM , we write,

φX = TX + NX, (11)

where TX is the tangential component of φX and NX is the normal component
of φX. Similarly for any V in T⊥M , we write

φV = tV + nV, (12)

where tV (resp. nV ) denotes the tangential (resp. normal) component of φV .

The submanifold M is said to be an invariant submanifold if N is identically
zero i.e. φX = TX for any X ∈ TM . On the other hand the submanifold M is
called anti-invariant submanifold in T is identically zero i.e. φX = NX.

The covariant derivatives of T and N are defined as

(∇XT )Y = ∇X(TY )− T (∇XY ) (13)

and

(∇XN)Y = ∇⊥X(NY )−N(∇XY ). (14)

The distribution spanned by the structure vector ? is denoted by < ξ >.

3. Slant distributions and slant immersions

Let M be a Riemannian manifold, isometrically immersed in a Generalised
almost contact metric structure manifold (M,φ, g, a, η, ξ). Suppose that the
structure vector ξ is tangent to M . if we denote by D the orthogonal distribution
to ξ in TM . Then

TM = D⊕ < ξ > .

For each nonzero vector X tangent to M at x, such that X is not proportional
to ξx, we denote by θ(X) the angle between φX and TxM . Since φ(ξ) = 0, thus
θ(X) is the angle between φX and Dx.
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Definition (3.1) : M is said to be slant if the angle θ(X) is constant, i.e.
which is independent of the choice of x ∈ M and X ∈ TM− < ξx >. The angle
θ of a slant immersion is called the slant angle of the immersion.

From this definition, it is evident that invariant and anti-invariant immer-
sions slant immersions with slant angle θ = 0 and θ = π/2 respectively. A slant
immersion, which is neither invariant nor anti-invariant, is called proper slant
immersion.

A useful characterization of slant submanifolds in Generalised almost con-
tact metric structure manifold is given by the following theorem.

Theorem (3.1) : Let M be a submanifold isometrically immersed in a Gen-
eralised almost contact metric structure manifold (M, φ, g, a, η, ξ) such that
ξ ∈ TM , then M is slant if and only if there exists a constant λ ∈ [0, 1] such
that

T 2 = a2λI + λη ⊗ ξ. (15)

Furthermore, in this case, if θ is slant angle of M , then λ = cos2θ.

Proof : Let X,Y ∈ TM , then for any slant submanifold, we have

g(TX, TY ) = cos2θ.g(φX, φY )
⇔ g(TX, TY ) = cos2θ.[−a2g(X,Y )− η(X)η(Y )] from (6)
⇔ −g(T 2X,Y ) = −cos2θ.[a2g(X, Y ) + η(X)η(Y )] Θ g(TX, Y ) = −g(X,TY )
⇔ g(T 2X, Y ) = cos2θ.[a2g(X,Y ) + η(X)η(Y )] ∀ Y ∈ TM

⇔ T 2X = cos2θ.[a2X + η(X)ξ] ∀ X ∈ TM

⇔ T 2 = cos2θ.[a2I + η ⊗ ξ]
⇔ T 2 = a2λI + λη ⊗ ξ

where λ = cos2θ, θ is the slant angle.

Hence the theorem.

Now we define slant distributions.

Definition (3.2) : A differentiable distribution ν on M is said to be a slant
distribution if for each x ∈ M and each nonzero vector X ∈ νx, the angle θν(X)
between φX and the vector space νx is constant, i.e. which is independent of
the choice ofx ∈ M and X ∈ νx. In this case the constant angle θν is called the
slant angle of the distribution ν.
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Thus we see that if a submanifold is slant, then there exists a slant distribution
on M .

The following theorem provides a useful characterization for the existence of
a slant distribution on a Generalised almost contact metric structure manifold.

Theorem (3.2) : Let ν be a distribution on M , orthogonal to ξ. Then ν is
slant if and only if there exists a constant λ ∈ [0, 1] such that (PT )2X = a2λX,
for any X ∈ ν.

Furthermore, in this case, if θ is slant angle of M , then λ = cos2θ.

Proof : The proof is straightforward and may be obtained from theorem (3.1).

Now we define slant distributions on a submanifold of Hyperbolic Hermite
manifold.

Definition (3.2) : Given a submanifold S, isometrically immersed in a Hy-
perbolic Hermite manifold (S, J, g1), a differentiable distribution D on S is said
to be a slant distribution if for any nonzero vector X ∈ Dx, x ∈ S, the angle
between JX and the vector space Dx is constant, i.e. which is independent of
the choice of x ∈ S and X ∈ Dx. In this case the constant angle is called the
slant angle of the distribution D (compare with the definition (3.2)).

4. Pseudo-slant submanifolds of Generalised almost contact metric
structure manifold

We first define pseudo-slant submanifolds of Hyperbolic Hermite manifold.

Definition (4.1) : A submanifold S of a Hyperbolic Hermite manifold (S, J, g1)
is called a pseudo-slant submanifold, if there exists on S, two differentiable
orthogonal distributions D1 and D2 such that TM = D1 ⊕ D2, where D1 is
totally real distribution i.e. JD1 ⊂ T⊥S and D2 is slant distribution with slant
angle θ 6= π/2, in particular if dim D1 = 0 and θ ∈ (0, π/2), then S is proper
slant submanifold of (S, J, g1).

In the following paragraph we show that there is a relationship between
slant submanifold of Generalised almost contact metric structure manifold and
pseudo-slant submanifolds of Hyperbolic Hermite manifold.

Let (M,φ, g, a, η, ξ) be a Generalised almost contact metric structure man-
ifold. Then we consider the manifold M × R. We denote by

(
X, f d

dt

)
a vector
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field on M × R, where X is tangent to M , t is the coordinate of R and f is a
differentiable function on M ×R.

If we define a tensor J of type (1, 1) on M ×R defined by

J

(
X, f

d

dt

)
=

1
a

(
φX − fξ, η(X)

d

dt

)
(16)

Then we have, J2
(
X, f d

dt

)
= 1

aJ
(
φX − fξ, η(X) d

dt

)
from (16)

= 1
a . 1a

(
φ(φX − fξ)− η(X)ξ, η(φX − fξ) d

dt

)
= 1

a2

(
φ2X − fφξ − η(X)ξ, (η(φX)− fη(ξ)) d

dt

)
= 1

a2

(
a2X, (a2f) d

dt

)
, from (1), (2), (3) and (4)

=
(
X, f d

dt

)

i.e.

J2

(
X, f

d

dt

)
=

(
X, f

d

dt

)
. (17)

Now we define the metric g1 on M ×R as

g1

[(
X, f

d

dt

)
,

(
Y, h

d

dt

)]
= g(X, Y ) + fh. (18)

Then we obtain

g1

[
J
(
X, f

d

dt

)
, J

(
Y, h

d

dt

)]
= g1

[1
a

(
φX − fξ, η(X)

d

dt

)
,
1
a

(
φY − hξ, η(Y )

d

dt

)]
,

by (16)

= 1
a2 g1

[(
φX − fξ, η(X) d

dt

)
,
(
φY − hξ, η(Y ) d

dt

)]
= 1

a2 [g (φX − fξ, φY − hξ) + η(X)η(Y )] by (18)
= 1

a2 [g(φX, φY )− g(φX, hξ)− g(fξ, φY ) + g(fξ, hξ) + η(X)η(Y )]
= 1

a2

[−a2g(X, Y )− η(X)η(Y )− a2fh + η(X)η(Y )
]
,

by (3), (4), (5), (6) and (7)
= − [g(X, Y ) + fh]
= −g1

[(
X, f d

dt

)
,
(
Y, h d

dt

)]
, by (18)

Therefore we have

g1

[
J

(
X, f

d

dt

)
, J

(
Y, h

d

dt

)]
= −g1

[(
X, f

d

dt

)
,

(
Y, h

d

dt

)]
, (19)

from (17) and (19), we see that (M×R, J, g1) is a Hyperbolic Hermite structure
manifold.
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Now we state the following theorem, which provides a method to obtain a
pseudo- slant submanifold of M ×R from slant submanifold of M .

Theorem (4.1) : Let M be a non anti-invariant slant submanifold of a Gen-
eralised almost contact metric structure manifold M with slant distribution D

and ξ is orthogonal to M . then M ×R is a pseudo-slant submanifold of the Hy-
perbolic Hermite manifold M × R with totally real distribution D1 =

{
(0. d

dt)
}

and slant distribution D2 = {(X, 0)|X ∈ D}.
Proof : Since we have,

g1

[
(X, 0) ,

(
0,

d

dt

)]
= g(X, 0) + 0 = 0.

and
(
X, f d

dt

)
= (X, 0) + f

(
0, d

dt

)
, ∀ (

X, f d
dt

) ∈ T (M ×R),

therefore T (M ×R) = D1 ⊕D2 is an orthogonal direct decomposition.

Also J
(
0, d

dt

)
= 1

a(−ξ, 0) ⊂ T⊥(M ×R) from (16)

... D1 is totally real distribution. It is easy to see that D2 is slant distribution
with slant angle θ (which is slant angle of D) in the sense of Papaghuic [9].

To introduce pseudo-slant submanifold of a Generalised almost contact met-
ric structure manifold; first we define bislant submanifolds of a Generalised al-
most contact metric structure manifold.

Definition (4.2) : M is said to be a bislant submanifold of a Generalised almost
contact metric structure manifold M if there exists two orthogonal distributions
D1 and D2 such that

(i) TM admits the orthogonal direct decomposition TM = D1⊕D2⊕ < ξ >

(ii) The distribution D1 is slant with angle θ1

(iii) The distribution D2 is slant with angle θ2.

Now we define pseudo-slant submanifold of a Generalised almost contact
metric structure manifold as a particular case of bislant submanifold.

Definition (4.3) : M is said to be a pseudo-slant submanifold of a Generalised
almost contact metric structure manifold M if there exists two orthogonal dis-
tributions D1 and D2, such that
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(i) TM admits the orthogonal direct decomposition TM = D1 ⊕ D2⊕ <

ξ >

(ii) The distribution D1 is anti-invariant i.e. φD1 ⊂ T⊥M

(iii) The distribution D2 is slant with angle θ 6= π/2.

If we denote by di, the dimension of Di, for i = 1, 2, then we find the
following cases

(a) If d2 = 0, then M is an anti-invariant submanifold.

(b) If d1 = 0 and θ = 0, then M is an invariant submanifold.

(c) If d1 = 0 and θ 6= 0, then M is a proper slant submanifold with slant
angle θ.

(d) If d1 6= 0 and θ = 0, then M is a semi invariant submanifold.

Let M be a pseudo-slant submanifold of a Generalised almost contact met-
ric structure manifold M . Then, for any X ∈ TM , we write

X = P1X + P2X + η(X)ξ (20)

where Pi denotes the projection map on the distribution Di, i = 1, 2.

Now operating on both sides of the equ. (20), we obtain

φX = NP1X + TP2X + NP2X, (21)

because
φP1X = NP1X, TP1X = 0. (22)

It is easy to see that

TX = TP2X NX = NP1X + NP2X (23)

and
TP2X ∈ D2. (24)

Since D2 is slant distribution, by theorem (3.2)

T 2X = a2cos2θX, ∀X ∈ D2. (25)

Now we have the following theorem.



Pseudo-Slant Submanifolds of a Generalised Almost Contact Metric Structure Manifold 65

Theorem (4.2) : Let M be a submanifold of a Generalised almost contact
metric structure manifold M , such that ξ ∈ TM . Then M is a pseudo-slant
submanifold is and only if there exists a constant λ ∈ (0, 1], such that

(i) D = {X ∈ TM |T 2X = a2λX} is a distribution on M .

(ii) For any X ∈ TM , orthogonal to D, TX = 0.

Furthermore, in this case, λ = cos2θ where θ denotes the slant angle of D.

Proof : Putting λ = cos2θ, it is obvious that for any X ∈ D, T 2X = a2cos2θX
therefore D = D2 from equ. (25).

Thus D is a distribution on M .

Also for any X ∈ TM , orthogonal to D, we have

φX ∈ T⊥M and φξ = 0, i.e. TX = 0.

Hence the condition is necessary.

Conversely, consider the orthogonal direct decomposition TM = D ⊕ D⊥⊕ <

ξ >, then by (i) and theorem (3.2), we find D is a slant distribution. From (ii)
it is evident that D⊥ is an anti-invariant distribution.

Therefore M is a pseudo-slant submanifold, hence the theorem.

In the following paragraph, we discuss on the integrability conditions of the
distributions involved in a pseudo-slant submanifolds of M .

If µ be the invariant subspace of T⊥M , then in case of pseudo-slant sub-
manifold, consider the direct decomposition of T⊥M as

T⊥M = µ⊕ND1 ⊕ND2 (26)

Since D1 and D2 are orthogonal, therefore g(Z,X) = 0. ∀X ∈ D1, Z ∈ D2

This implies that g(NZ, NX) = g(φZ, φX) = 0 Qg(TZ, NX) = 0.

Therefore (26) gives orthogonal direct decomposition of T⊥M .

First, we prove some important lemmas.

Lemma (4.1) : AφXY = AφY X, if and only if

g((∇zφ)X, Y ) = 0, ∀X, Y ∈ D1, Z ∈ TM.



66 Jaya Upreti and S. K. Chanyal

Proof : Let X,Y ∈ D1 and Z ∈ TM , then

g(AφY X, Z) = g(h(X, Z), φY )

= g(h(Z, X), φY ) = g(∇ZX −∇ZX,φY ) = g(∇ZX,φY ) = −g(φ(∇ZX), Y )

= − g(∇Z(φX)− (∇Zφ)X,Y ) = −g(−AφXZ +∇⊥ZφX, Y ) + g((∇Zφ)X, Y )

= g(AφXZ, Y ) + g((∇Zφ)X, Y ) = g(AφXY, Z) + g((∇Zφ)X,Y ) (27)

By (27), we have the lemma.

Lemma (4.2) : [X, ξ] ∈ D1 if and only if

g((∇Xφ)ξ, Z) = g((∇ξφ)X, Z, ∀X ∈ D1, Z ∈ D2.

Proof : For any X ∈ D1 and Z ∈ D2, we have

g([X, ξ], TZ) = g(∇Xξ −∇ξX,TZ)

= g(∇Xξ −∇ξX,φZ) = −g(φ(∇Xξ −∇ξX), Z) using equ. (8)

= g((∇Xφ)ξ +∇ξ(φX)− (∇ξφ)X,Z) = g((∇Xφ)ξ − (∇ξφ)X,Z).

Hence the lemma is followed by last equation.

Lemma (4.3) : For any X, Y ∈ D1 ⊕D2, [X, Y ] ∈ D1 ⊕D2, if and only if

g(φY, (∇Xφ)ξ) = g(φX, (∇Y φ)ξ).

Proof : We have for any X,Y ∈ D1 ⊕D2,

g([X,Y ], ξ) = g(∇XY −∇Y X, ξ). (28)

Now
g(Y, ξ) = 0 ⇒ g(∇XY, ξ) = −g(Y,∇Xξ) (29)

and g(φY, φZ) = − a2g(Y, Z) ∀Z ∈ TM .

Replacing Z by ∇Xξ in the last equ., we obtain

g(Y,∇Xξ) = − 1
a2

g(φY, φ(∇Xξ))

=
1
a2

g(φY, (∇Xφ)ξ), (30)

making the use of (29) and (30) in (28), we obtain

g([X,Y ], ξ) =
1
a2

[g(φX, (∇Y φ)ξ)− g(φY, (∇Xφ)ξ)],
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but [X,Y ] ∈ D1 ⊕D2, if and only if g([X,Y ], ξ) = 0.

Hence the lemma follows from last equation.

For any X, Y ∈ D1 and Z ∈ TM , we have

g([X, Y ], TP2Z) = −g(φ[X, Y ], P2Z) = −g(φ(∇XY −∇Y X), P2Z)

= −g(∇X(φY )− (∇Xφ)Y −∇Y (φX) + (∇Y φ)X,P2Z)

= −g(−AφY X +∇⊥X(φY ) + AφXY −∇⊥Y (φX)− (∇Xφ)Y + (∇Y φ)X, P2Z),

using (27)

= g((∇Xφ)Y − (∇Y φ)X,P2Z) + g(∇P2Zφ)X,Y ), (31)

Since, [X, Y ] ∈ D1 if and only if g([X, Y ], TP2Z) = 0.

Thus, the required integrability conditions are obtained from (31) and lemma
(4.1).

Similarly, for the distribution D1⊕ < ξ >, the integrability conditions are
obtained from (31) and lemma (4.2).

Now, for any X, Y ∈ D2 and Z ∈ D1, we have

g(φ[X,Y ], φZ) = − a2g([X,Y ], Z)

⇒ a2g([X,Y ], Z) = −g(φ[X, Y ], NZ) = −g(∇X(φY )−∇Y (φX)− (∇Xφ)Y

+(∇Y φ)X, NZ)

= g(h(Y, TX)−h(X, TY )+∇⊥Y NX−∇⊥XNY +(∇Xφ)Y −(∇Y φ)X,NZ). (32)

Therefore, the integrability of the slant distribution D2 is obtained from
lemma (4.3), and the fact that ND1 and ND2 are orthogonal in the equ. (32).

In similar manner we easily find the integrability conditions for the distri-
bution D2⊕ < ξ >.
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