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Abstract

In this paper, the study of an invariant submanifold of Lorentzian α-

sasakian manifold is carried out and it is shown that, it is also Lorentzian

α-sasakian. Further we prove that, if the second fundamental form of an in-

variant submanifold of Lorentzian α-sasakian manifold is recurrent, 2-recurrent

and generalized 2-recurrent then the submanifold is totally geodesic and also

an invariant submanifold of Lorentzian α-sasakian manifold with parallel third

fundamental form is again totally geodesic. It is proved that pseudoparallel

and 2-pseudoparallel invariant submanifolds of Lorentzian α-sasakian manifolds

is also totally geodesic. Further, we also show that this property of totally

geodesic holds true if C̃ · σ = L1Q(g, σ) and C̃ · ∇̃σ = L1Q(g, ∇̃σ).
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1. Introduction

The study of invariant submanifolds of different contact manifolds is car-

ried out by M. Kon and B.Y. Chen ([7], [14]) from 1970 onwards. Further, it is

carried out by H. Endo, D. Chinea, D. Chinea and P.S. Prestelo, B. Ravi and

C.S. Bagewadi, K. Yano and M. Kon ([8], [9], [12], [18], [21]) during eighties

and nineties. From 2000 onwards there are many papers by C.E. Hretcanu and

M. Crasmareasu, recently Aysel Turgut Vanli and Ramazan Sari, S. Sular and

C. Ozgur, C. Murathan etal, C. Ozgur and C. Murathan ([5], [13], [15], [16],

https://doi.org/10.56424/jts.v6i01.10465
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[20]) also studied invariant submanifolds of LP-sasakian manifolds. These au-

thors Ahmet Yildiz and Cengizhan Murathan, A.C. Asperti, G.A. Lobos and

F. Mercuri, C. Ozgur, S. Sular and C. Murathan ([2], [4], [17]) have studied

pseudoparallel invariant submanifolds of contact manifolds. In this paper, we

extend the study to invariant submanifolds of Lorentzian α-sasakian. Further,

the study of invariant submanifolds of Lorentzian α-sasakian satisfying the con-

ditions C̃ · σ = L1Q(g, σ) and C̃ · ∇̃σ = L1Q(g, ∇̃σ), where C̃ is concircular

curvature tensor.

The paper is organized as follows: In section 2, we have given a necessary in-

formation about submanifolds. In section 3, some definitions and notions about

Lorentzian α-sasakian manifolds and their invariant submanifolds are given. In

section 4, deals with an invariant submanifold of Lorentzian α-sasakian mani-

fold whose second fundamental form σ is recurrent, 2-recurrent and generalized

2-recurrent and shown that these type of submanifolds are totally geodesic.

Also proved that an invariant submanifold of a Lorentzian α-sasakian mani-

fold with parallel third fundamental form is again totally geodesic. In section

5, pseudoparallel and 2-pseudoparallel invariant submanifolds of Lorentzian α-

sasakian manifolds and shown that these type of submanifolds are totally geo-

desic. In the last section, we have proved that if C̃(X,Y ) · σ = L1Q(g, σ) and

C̃(X,Y ) · ∇̃σ = L1Q(g, ∇̃σ) then M is totally geodesic.

2. Basic Concepts

The covariant differential of the pth order, p ≥ 1 of a (0, k)-tensor field T ,

k ≥ 1 denoted by ∇pT , defined on a Riemannian manifold (M, g) with the Levi-

Civita connection ∇. The tensor T is said to be recurrent [19], if the following

condition holds on M :

(∇T )(X1, ..., Xk;X)T (Y1, ..., Yk) = (∇T )(Y1, ..., Yk;X)T (X1, ..., Xk) (2.1)

respectively.

(∇2T )(X1, ..., Xk;X,Y )T (Y1, ..., Yk) = (∇2T )(Y1, ..., Yk;X,Y )T (X1, ..., Xk),

whereX,Y,X1, Y1, ..., Xk, Yk ∈ TM . From (2.1) it follows that at a point x ∈M ,

if the tensor T is non-zero then there exists a unique 1-form ϕ respectively, a

(0, 2)-tensor ψ, defined on a neighborhood U of x such that

∇T = T ⊗ ϕ, ϕ = d(log ∥T∥) (2.2)

respectively.

∇2T = T ⊗ ψ, (2.3)
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holds on U , where ∥T∥ denotes the norm of T and ∥T∥2 = g(T, T ). The tensor

T is said to be generalized 2-recurrent if

((∇2T )(X1, ..., Xk;X,Y )− (∇T ⊗ ϕ)(X1, ..., Xk;X,Y ))T (Y1, ..., Yk)

= ((∇2T )(Y1, ..., Yk;X,Y )− (∇T ⊗ ϕ)(Y1, ..., Yk;X,Y ))T (X1, ..., Xk),

holds on M , where ϕ is a 1-form on M . From this it follows that at a point

x ∈ M if the tensor T is non-zero then there exists a unique (0, 2)-tensor ψ,

defined on a neighborhood U of x, such that

∇2T = ∇T ⊗ ϕ+ T ⊗ ψ, (2.4)

holds on U .

Let f : (M, g) → (M̃, g̃) be an isometric immersion from an n-dimensional

Riemannian manifold (M, g) into (n + d)-dimensional Riemannian manifold

(M̃, g̃), n ≥ 2, d ≥ 1. We denote by ∇ and ∇̃ the Levi-Civita connection

of Mn and M̃n+d respectively. Then the formulas of Gauss and Weingarten are

given by

∇̃XY = ∇XY + σ(X,Y ), (2.5)

∇̃XN = −ANX +∇⊥
XN, (2.6)

for any tangent vector fields X,Y and the normal vector field N onM , where σ,

A and ∇⊥ are the second fundamental form, the shape operator and the normal

connection respectively. If the second fundamental form σ is identically zero

then the manifold is said to be totally geodesic. The second fundamental form

σ and AN are related by

g̃(σ(X,Y ), N) = g(ANX,Y ),

for tangent vector fields X,Y . The first and second covariant derivatives of the

second fundamental form σ are given by

(∇̃Xσ)(Y, Z) = ∇⊥
X(σ(Y, Z))− σ(∇XY,Z)− σ(Y,∇XZ) (2.7)

(∇̃2σ)(Z,W,X, Y ) =(∇̃X∇̃Y σ)(Z,W ),

=∇⊥
X((∇̃Y σ)(Z,W ))− (∇̃Y σ)(∇XZ,W )

− (∇̃Xσ)(Z,∇YW )− (∇̃∇XY σ)(Z,W )

(2.8)

respectively, where ∇̃ is called the vander Waerden-Bortolotti connection of M

[7]. If ∇̃σ = 0, then M is said to have parallel second fundamental form [7] and
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if ∇̃σ = 0, then f is called parallel [11]. We next define endomorphisms R(X,Y )

and X ∧B Y of χ(M) by

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

(X ∧B Y )Z = B(Y, Z)X −B(X,Z)Y (2.9)

respectively. where X,Y, Z ∈ χ(M) and B is a symmetric (0, 2)-tensor.

Now, for a (0, k)-tensor field T , k ≥ 1 and a (0, 2) -tensor field B on (M, g),

we define the tensor Q(B, T ) by

Q(B, T )(X1, ..., Xk;X,Y ) = − (T (X ∧B Y )X1, ..., Xk)

− · · · − T (X1, ..., Xk−1, (X ∧B Y )Xk).
(2.10)

Putting into the above formula T = σ, ∇̃σ and B = g, we obtain the tensor

Q(g, σ) and Q(g, ∇̃σ).

Definition 2.1. An immersion is said to be semiparallel if

R̃(X,Y ) · σ = (∇̃X∇̃Y − ∇̃Y ∇̃X − ∇̃[X,Y ])σ = 0, (2.11)

holds for all vector fields X,Y tangent to M [10], where R̃ denotes the cur-

vature tensor of the connection ∇̃. An immersion is said to be 2-semiparallel

if R̃(X,Y ).∇̃σ = 0 holds for all vector fields X,Y tangent to M . Further an

immersion is said to be pseudoparallel and 2-pseudoparallel [2], if

R̃ · σ = L1Q(g, σ), (2.12)

R̃ · ∇̃σ = L1Q(g, ∇̃σ). (2.13)

If Q(g, σ) = 0, Q(g, ∇̃σ) = 0 and it reduces to (2.11), ie., the definition of

semiparallel.

From the Gauss and Weingarten formulas, we obtain

(R̃(X,Y )Z)T = R(X,Y )Z +Aσ(X,Z)
Y −Aσ(Y,Z)

X. (2.14)

By (2.11), we have

(R̃(X,Y ) · σ)(U, V ) = R⊥(X,Y )σ(U, V )− σ(R(X,Y )U, V )− σ(U,R(X,Y )V ),

(2.15)

for all vector fields X,Y, U and V tangent to M , where

R⊥(X,Y ) = [∇⊥
X ,∇⊥

Y ]−∇⊥
[X,Y ]. (2.16)
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Similarly, we have

(R̃(X,Y ) · ∇̃σ)(U, V,W ) =R⊥(X,Y )(∇̃σ)(U, V,W )− (∇̃σ)(R(X,Y )U, V,W )

− (∇̃σ)(U,R(X,Y )V,W )− (∇̃σ)(U, V,R(X,Y )W ),

(2.17)

for all vector fields X,Y, U, V,W tangent to M , where (∇̃σ)(U, V,W ) = (∇̃Uσ)

(V,W ) [3].

3. Lorentzian α-sasakian manifolds and their submanifolds

A differentiable manifold of dimension n = (2m + 1) is called Lorentzian

α-sasakian manifold if it admits a (1, 1)-tensor field ϕ, a contravariant vector

field ξ, a covariant vector field η and a Lorentzian metric g which satisfy

η(ξ) = −1, ϕ(ξ) = 0, η · ϕ = 0, (3.1)

ϕ2 = I + η ⊗ ξ, g(X, ξ) = η(X), (3.2)

g(ϕX, ϕY ) = g(X,Y ) + η(X)η(Y ), (3.3)

for all X,Y ∈ TM .

Also a Lorentzian α-sasakian manifold M satisfies [1]

∇Xξ = αϕX, (3.4)

(∇Xϕ)(Y ) = α {g(X,Y )ξ + η(Y )X} , (3.5)

where ∇ denotes the operator of covariant differentiation with respect to the

Lorentzian metric g.

Further, on a Lorentzian α-sasakian manifold M the following relations

hold [1]:

η(R(X,Y )Z) = α2 {g(Y, Z)η(X)− g(X,Z)η(Y )} , (3.6)

R(ξ,X)Y = α2 {g(X,Y )ξ − η(Y )X} , (3.7)

R(ξ,X)ξ = α2 {η(X)ξ +X} , (3.8)

R(X,Y )ξ = α2 {η(Y )X − η(X)Y } , (3.9)

S(X, ξ) = (n− 1)α2η(X), (3.10)

Qξ = (n− 1)α2ξ, (3.11)

S(ξ, ξ) = −(n− 1)α2, (3.12)

where Q is the Ricci operator, i.e., g(QX,Y ) = S(X,Y ).
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A submanifoldM of a Lorentzian α-sasakian manifold M̃ is called an invari-

ant submanifold of M̃ , if for each x ∈M , ϕ(TxM) ⊂ TxM . As a consequence, ξ

becomes tangent to M . In an invariant submanifold of a Lorentzian α-sasakian

manifold

σ(X, ξ) = 0, (3.13)

for any vector X tangent to M .

Proposition 3.1. LetM be an invariant submanifold of a Lorentzian α-sasakian

manifold M̃ . Then the following equalities holds on M .

∇Xξ = αϕX, (3.14)

R(X,Y )ξ = α2 {η(Y )X − η(X)Y } , (3.15)

Qξ = (n− 1)α2ξ, (3.16)

S(X, ξ) = (n− 1)α2η(X), (3.17)

(∇Xϕ)(Y ) = α {g(X,Y )ξ + η(Y )X} , (3.18)

σ(X,ϕY ) = ϕσ(X,Y ), (3.19)

where Q denotes the Ricci operator of M defined by S(X,Y ) = g(QX,Y ).

Proof. Since M is an invariant submanifold of a Lorentzian α-sasakian M̃ .

Then ξ is tangent to M

∇Xξ = αϕX. (3.20)

Using (2.5), we get

αϕX = ∇̃Xξ = ∇Xξ + σ(X, ξ),

which gives us

∇Xξ = αϕX, σ(X, ξ) = 0,

so we get (3.14). Since M̃ is Lorentzian α-sasakian manifold, we get from (3.5),

(∇Xϕ)(Y ) = α {g(X,Y )ξ + η(Y )X} . (3.21)

Then, in view of Gauss formula, we have

(∇̃Xϕ)Y = ∇XϕY + σ(X,ϕY )− ϕ∇XY − ϕσ(X,Y ). (3.22)

Comparing the tangential and normal parts of (3.18) and (3.19), we get

(∇Xϕ)(Y ) = α {g(X,Y )ξ + η(Y )X} and σ(X,ϕY ) = ϕσ(X,Y ).

So we obtain (3.18), (3.19). From (2.14), we have

R̃(X,Y )Z = R⊥(X,Y )ξ +Aσ(X,ξ)Y −Aσ(Y,ξ)X.
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Then using σ(X, ξ) = 0, we find

R̃(X,Y )Z = R(X,Y )ξ.

One can get (3.15). A suitable contraction of (3.15) gives us

S(X, ξ) = (n− 1)α2η(X), Qξ = (n− 1)α2ξ.

So we can state the following theorem.

Theorem 3.2. An invariant submanifold M of a Lorentzian α-sasakian mani-

fold M̃ is a Lorentzian α-sasakian manifold.

4. Recurrent invariant submanifolds of Lorentzian α-sasakian man-

ifolds

We consider invariant submanifold of a Lorentzian α-sasakian when σ is

recurrent, 2-recurrent, generalized 2-recurrent and M has parallel third funda-

mental form and prove the following results.

Theorem 4.3. Let M be an invariant submanifold of a Lorentzian α-sasakian

manifold M̃ . Then σ is recurrent if and only if M is totally geodesic.

Proof. Since σ is recurrent, from (2.2) we get

(∇̃Xσ)(Y, Z) = ϕ(X)σ(Y, Z),

where ϕ is a 1-form on M . Then in view of (2.7) in the above equation can be

written as

∇⊥
Xσ(Y,Z)− σ(∇XY, Z)− σ(Y,∇XZ) = ϕ(X)σ(Y, Z). (4.1)

Taking Z = ξ in (4.1), we have

∇⊥
Xσ(Y, ξ)− σ(∇XY, ξ)− σ(Y,∇Xξ) = ϕ(X)σ(Y, ξ). (4.2)

Making use of relation (3.2), (3.4), (3.13) in (4.2), we get ασ(X,Y ) = 0. Since

α ̸= 0, we have σ(X,Y ) = 0 i.e., M is totally geodesic. The converse statement

is trivial. This completes the proof of the theorem.

Theorem 4.4. Let M be an invariant submanifold of a Lorentzian α-sasakian

manifold M̃ . Then M has parallel third fundamental form if and only if M is

totally geodesic.
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Proof. Suppose that M has parallel third fundamental form. Then we can

write

(∇̃X∇̃Y σ)(Z,W ) = 0.

Replacing W with ξ in the above equation and using (2.8), we have

∇⊥
X((∇̃Y σ)(Z, ξ))− (∇̃Y σ)(∇XZ, ξ)− (∇̃Xσ)(Z,∇Y ξ)− (∇̃∇XY σ)(Z, ξ) = 0.

(4.3)

Taking account of (2.7) in (4.3) and using (3.13) we get

0 = −∇⊥
Xασ(Z, ϕY ) + ασ(∇XZ, ϕY )−∇⊥

Xασ(Z, ϕY ) (4.4)

+ασ(∇XZ, ϕY ) + σ(Z,∇XαϕY ) + ασ(Z, ϕ∇XY ).

Putting Y = ξ in (4.4) and taking account of (3.2), (3.4), (3.13), we get

α2σ(X,Z) = 0. Since α ̸= 0, we have σ(X,Z) = 0 i.e., M is totally geo-

desic. The converse statement is trivial. Hence, the proof of the theorem is

completed.

Corollary 4.1. Let M be an invariant submanifold of a Lorentzian α-sasakian

manifold M̃ . Then σ is 2-recurrent if and only if M is totally geodesic.

Proof. Since σ is 2-recurrent, from (2.3), we have

(∇̃X∇̃Y σ)(Z,W ) = σ(Z,W )ϕ(X,Y ). (4.5)

TakingW = ξ in (4.5) and using the proof of the Theorem 4.4, we get α2σ(X,Z) =

0. ThusM is totally geodesic. The converse statement is trivial. This completes

the proof of the corollary.

Theorem 4.5. Let M be an invariant submanifold of a Lorentzian α-sasakian

manifold M̃ . Then σ is generalized 2-recurrent if and only if M is totally

geodesic.

Proof. Since σ is generalized 2-recurrent, from (2.4), then one can write

(∇̃X∇̃Y σ)(Z,W ) = ψ(X,Y )σ(Z,W ) + ϕ(X)(∇̃Y σ)(Z,W ), (4.6)

where ψ and ϕ are 2-recurrent and 1-form, respectively. Taking W = ξ in (4.6)

and taking account of the equation (3.13), we get

(∇̃X∇̃Y σ)(Z, ξ) = ϕ(X)(∇̃Y σ)(Z, ξ).
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Then making use of (2.7) and (2.8) in above equation and in view of (3.13), we

have

−∇⊥
Xασ(Z, ϕY ) + ασ(∇XZ, ϕY )−∇⊥

Xασ(Z, ϕY ) + ασ(∇XZ, ϕY )

+σ(Z,∇XαϕY ) + ασ(Z, ϕ∇XY ) = −αϕ(X)σ(Z, ϕY ).

Putting Y = ξ in the above equation and using (3.2), (3.4), (3.13), we get

α2σ(X,Z) = 0. Since α ̸= 0, we have σ(X,Z) = 0 i.e., M is totally geodesic.

The converse statement is trivial. Thus our theorem is proved.

5. Pseudoparallel and 2-Pseudoparallel Invariant submanifolds of

Lorentzian α-sasakian manifolds

We consider invariant submanifolds of Lorentzian α-sasakian manifolds sat-

isfying the conditions R̃ · σ = L1Q(g, σ) and R̃ · ∇̃σ = L1Q(g, ∇̃σ).

Theorem 5.6. Let M be an invariant submanifold of a Lorentzian α-sasakian

manifold M̃ . Then the condition R̃ · σ = L1Q(g, σ) and R̃ · ∇̃σ = L1Q(g, ∇̃σ)
hold on M . i.e., M is (i) pseudoparallel, if L1 ̸= α2, (ii) 2-pseudoparallel if and

only if M is totally geodesic.

Proof. (i) Since M is pseudoparallel, i.e., R̃ · σ = L1Q(g, σ). Put X = V = ξ

and using (3.1), (3.13) in (2.10), (2.15), we get

R⊥(ξ, Y )σ(U, ξ)− σ(R(ξ, Y )U, ξ)− σ(U,R(ξ, Y )ξ) = L1σ(U, Y ). (5.1)

Using (3.8) and (3.13) in (5.1), we get (L1−α2)σ(U, Y ) = 0. Since L1 ̸= α2, we

have σ(U, Y ) = 0 i.e., M is totally geodesic. The converse statement is trivial.

(ii) Since M is 2-pseudoparallel, i.e., R̃ · ∇̃σ = L1Q(g, ∇̃σ). Put X = V = ξ and

using (3.1), (3.4), (3.13) in (2.10), (2.17), we get

R⊥(ξ, Y )(∇̃σ)(U, ξ,W )− (∇̃σ)(R(ξ, Y )U, ξ,W )− (∇̃σ)(U,R(ξ, Y )ξ,W )

−(∇̃σ)(U, ξ,R(ξ, Y )W ) = −L1[η(W )
{
∇⊥

ξ σ(Y, U)− σ(∇ξY, U)

−σ(Y,∇ξU)
}
+∇⊥

Wσ(Y, U)− σ(∇WY, U)− σ(Y,∇WU)

−η(Y )
{
∇⊥

ξ σ(W,U)− σ(∇ξW,U)− σ(W,∇ξU)
}

−η(U)
{
∇⊥

ξ σ(Y,W )− σ(∇ξY,W )− σ(Y,∇ξW )
}
]. (5.2)

In view of (2.7), (3.4) and (3.13), we have

(∇̃σ)(U, ξ,W ) = (∇̃Uσ)(ξ,W )

= ∇⊥
Uσ(ξ,W )− σ (∇Uξ,W )− σ (ξ,∇UW ) = −ασ(ϕU,W ). (5.3)
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Also, in view of (2.7), (3.4), (3.7), (3.8) and (3.13), we have the following equal-

ities:

(∇̃σ)(R(ξ, Y )U, ξ,W ) = (∇̃R(ξ,Y )Uσ)(ξ,W ), (5.4)

= ∇⊥
R(ξ,Y )Uσ(ξ,W )− σ(∇R(ξ,Y )Uξ,W )− σ(ξ,∇R(ξ,Y )UW ),

= α3η(U)σ(ϕY,W ),

(∇̃σ)(U,R(ξ, Y )ξ,W ) = (∇̃Uσ)(R(ξ, Y )ξ,W ),

= ∇⊥
Uσ(R(ξ, Y )ξ,W )− σ(∇UR(ξ, Y )ξ,W )− σ(R(ξ, Y )ξ,∇UW ),

= ∇⊥
Uσ

(
α2 {η(Y )ξ + Y } ,W

)
− σ

(
∇Uα

2 {η(Y )ξ + Y } ,W
)

−α2σ(Y,∇UW ) (5.5)

and

(∇̃σ)(U, ξ,R(ξ, Y )W ) = (∇̃Uσ)(ξ,R(ξ, Y )W ), (5.6)

= ∇⊥
Uσ(ξ,R(ξ, Y )W )− σ(∇Uξ,R(ξ, Y )W )− σ(ξ,∇UR(ξ, Y )W ),

= −α3 {σ(ϕU, g(Y,W )ξ)− η(W )σ(ϕU, Y )} .

Substituting (5.3)− (5.6) into (5.2), we obtain

−αR⊥(ξ, Y )σ(ϕU,W )− α3η(U)σ(ϕY,W )−∇⊥
Uσ

(
α2 {η(Y )ξ + Y } ,W

)
+σ

(
∇Uα

2 {η(Y )ξ + Y } ,W
)
+ α2σ(Y,∇UW ) + α3 {σ(ϕU, g(Y,W )ξ)

− η(W )σ(ϕU, Y )} = −L1[η(W )
{
∇⊥

ξ σ(Y, U)− σ(∇ξY,U)− σ(Y,∇ξU)
}

+∇⊥
Wσ(Y, U)− σ(∇WY,U)− σ(Y,∇WU)

−η(Y )
{
∇⊥

ξ σ(W,U)− σ(∇ξW,U)− σ(W,∇ξU)
}

−η(U)
{
∇⊥

ξ σ(Y,W )− σ(∇ξY,W )− σ(Y,∇ξW )
}
]. (5.7)

If W = ξ and using (3.1), (3.4), (3.13) in (5.7), we get 2α3σ(U, Y ) = 0. Since

α ̸= 0, we have σ(U, Y ) = 0 i.e., M is totally geodesic. The converse statement

is trivial. This proves the theorem.

Using Theorems 4.3, 4.4, 4.5, 5.6 and corollary 4.1, we have the following

result

Corollary 5.2. Let M be an invariant submanifold of Lorentzian α-sasakian

manifold M̃ . Then the following statements are equivalent:

(1) σ is recurrent;

(2) σ is 2-recurrent;
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(3) M has parallel third fundamental form;

(4) M is pseudoparallel and L1 ̸= α2;

(5) M is 2-pseudoparallel;

(6) M is totally geodesic.

6. Pseudoparallelism and 2-Pseudoparallelism with respect to con-

circular curvature tensor

We consider invariant submanifold of a Lorentzian α-sasakian manifold sat-

isfying the conditions C̃(X,Y ) ·σ = L1Q(g, σ) and C̃(X,Y ) · ∇̃σ = L1Q(g, ∇̃σ),
where C̃ is concircular curvature tensor.

Definition 6.1. An immersion f : (M, g) → (M̃, g̃) is said to be pseudoparallel

with respect to concircular curvature tensor if C̃(X,Y ) · σ = L1Q(g, σ) and

2-pseudoparallel C̃(X,Y ) · ∇̃σ = L1Q(g, ∇̃σ).

Now study of invariant submanifolds of Lorentzian α-sasakian manifolds

which satisfy the following

C̃(X,Y ) · σ = L1Q(g, σ) and C̃(X,Y ) · ∇̃σ = L1Q(g, ∇̃σ).

Theorem 6.7. Let M be an invariant submanifold of a Lorentzian α-sasakian

manifold M̃ . Prove that M is (i) pseudoparallel and L1 ̸= ( r
n(n−1) − α2), α2 ̸=

r
n(n−1) , (ii) 2-pseudoparallel with respect to concircular curvature tensor if and

only if M is totally geodesic.

Proof. The concircular curvature tensor is given by

C̃(X,Y )Z = R(X,Y )Z −
[

r

n(n− 1)

]
[g(Y, Z)X − g(X,Z)Y ] , (6.1)

where r is the scalar curvature.

Similar to (2.15) and (2.17) the tensors C̃(X,Y ) · σ and C̃(X,Y ) · ∇̃σ are

defined by

(C̃(X,Y ) · σ)(U, V ) = R⊥(X,Y )σ(U, V )− σ(C̃(X,Y )U, V )

−σ(U, C̃(X,Y )V ), (6.2)

(C̃(X,Y ) · ∇̃σ)(U, V,W ) = R⊥(X,Y )(∇̃σ)(U, V,W )− (∇̃σ)(C̃(X,Y )U, V,W )

−(∇̃σ)(U, C̃(X,Y )V,W )− (∇̃σ)(U, V, C̃(X,Y )W ) (6.3)

respectively.
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Putting X = ξ, Y = X, Z = Y and X = ξ, Y = X, Z = ξ in (6.1) and using

(3.7), (3.8), we have

C̃(ξ,X)Y =

[
α2 − r

n(n− 1)

]
{g(X,Y )ξ − η(Y )X} , (6.4)

C̃(ξ,X)ξ =

[
α2 − r

n(n− 1)

]
{η(X)ξ +X} . (6.5)

(i) Since M satisfies the condition C̃(X,Y ) · σ = L1Q(g, σ). Put X = V = ξ

and using (3.1), (3.13) in (2.10) and (6.2), we get

R⊥(ξ, Y )σ(U, ξ)− σ(C̃(ξ, Y )U, ξ)− σ(U, C̃(ξ, Y )ξ) = L1σ(U, Y ). (6.6)

So, using (3.13) the above equation is reduces to

−σ(U, C̃(ξ, Y )ξ) = L1σ(U, Y ).

Making use of (6.5) in above equation, we have

−σ
(
U,

[
α2 − r

n(n− 1)

]
{η(Y )ξ + Y }

)
= L1σ(U, Y ).

In view of (3.13), we obtain [L1 + (α2 − r
n(n−1))]σ(U, Y ) = 0. Suppose L1 ̸=

( r
n(n−1) − α2) then σ(U, Y ) = 0 i.e., M is totally geodesic. The converse state-

ment is trivial.

(ii) Since M satisfies the condition C̃(X,Y ) · ∇̃σ = L1Q(g, ∇̃σ), Put X =

V = ξ and using (3.1), (3.4), (3.13) in (2.10) and (6.3), we get

R⊥(ξ, Y )(∇̃σ)(U, ξ,W )− (∇̃σ)(C̃(ξ, Y )U, ξ,W )− (∇̃σ)(U, C̃(ξ, Y )ξ,W )

−(∇̃σ)(U, ξ, C̃(ξ, Y )W ) = −L1[η(W )
{
∇⊥

ξ σ(Y,U)− σ(∇ξY,U)

−σ(Y,∇ξU)
}
+∇⊥

Wσ(Y,U)− σ(∇WY, U)− σ(Y,∇WU)

−η(Y )
{
∇⊥

ξ σ(W,U)− σ(∇ξW,U)− σ(W,∇ξU)
}

−η(U)
{
∇⊥

ξ σ(Y,W )− σ(∇ξY,W )− σ(Y,∇ξW )
}
]. (6.7)

In view of (2.7), (3.4), (6.4), (6.5) and (3.13), we have the following equalities:
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(∇̃σ)(C̃(ξ, Y )U, ξ,W ) = (∇̃
C̃(ξ,Y )U

σ)(ξ,W ), (6.8)

= ∇⊥
C̃(ξ,Y )U

σ(ξ,W )− σ(∇
C̃(ξ,Y )U

ξ,W )− σ(ξ,∇
C̃(ξ,Y )U

W ),

= α

[
α2 − r

n(n− 1)

]
η(U)σ(ϕY,W ),

(∇̃σ)(U, C̃(ξ, Y )ξ,W ) = (∇̃Uσ)(C̃(ξ, Y )ξ,W ), (6.9)

= ∇⊥
Uσ(C̃(ξ, Y )ξ,W )− σ(∇U C̃(ξ, Y )ξ,W )− σ(C̃(ξ, Y )ξ,∇UW ),

= ∇⊥
Uσ

([
α2 − r

n(n− 1)

]
{η(Y )ξ + Y } ,W

)
− σ

(
∇U

[
α2 − r

n(n− 1)

]
×{η(Y )ξ + Y } ,W

)
−

[
α2 − r

n(n− 1)

]
σ(Y,∇UW )

and

(∇̃σ)(U, ξ, C̃(ξ, Y )W ) = (∇̃Uσ)(ξ, C̃(ξ, Y )W ), (6.10)

= ∇⊥
Uσ(ξ, C̃(ξ, Y )W )− σ(∇Uξ, C̃(ξ, Y )W )− σ(ξ,∇U C̃(ξ, Y )W ),

= −α
[
α2 − r

n(n− 1)

]
{σ(ϕU, g(Y,W )ξ)− η(W )σ(ϕU, Y )} .

Substituting (5.3) and (6.8)− (6.10) into (6.7), we obtain

−αR⊥(ξ, Y )σ(ϕU,W )− α

[
α2 − r

n(n− 1)

]
η(U)σ(ϕY,W )

−∇⊥
Uσ

([
α2 − r

n(n− 1)

]
{η(Y )ξ + Y } ,W

)
+ σ

(
∇U

[
α2 − r

n(n− 1)

]
×{η(Y )ξ + Y } ,W

)
+

[
α2 − r

n(n− 1)

]
σ(Y,∇UW ) + α

[
α2 − r

n(n− 1)

]
×{σ(ϕU, g(Y,W )ξ)− η(W )σ(ϕU, Y )} = −L1[η(W )

{
∇⊥

ξ σ(Y,U)

−σ(∇ξY,U)− σ(Y,∇ξU)
}
+∇⊥

Wσ(Y, U)− σ(∇WY,U)− σ(Y,∇WU)

−η(Y )
{
∇⊥

ξ σ(W,U)− σ(∇ξW,U)− σ(W,∇ξU)
}

−η(U)
{
∇⊥

ξ σ(Y,W )− σ(∇ξY,W )− σ(Y,∇ξW )
}
]. (6.11)

TakingW = ξ and using (3.1), (3.4), (3.13) in (6.11), we get α[α2− r
n(n−1) ]σ(U, Y )

= 0. Suppose [α2 − r
n(n−1) ] ̸= 0 then σ(U, Y ) = 0 i.e., M is totally geodesic.

The converse statement is trivial. Hence the theorem is proved.
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Using corollary 5.2 and Theorem 6.7, we have the following result

Corollary 6.3. Let M be an invariant submanifold of a Lorentzian α-sasakian

manifold M̃ . Then the following statements are equivalent:

(1) σ is recurrent;

(2) σ is 2-recurrent;

(3) M has parallel third fundamental form;

(4) M is pseudoparallel, if L1 ̸= α2;

(5) M is 2-pseudoparallel;

(6) M satisfies the condition C̃(X,Y )·σ = L1Q(g, σ) and L1 ̸= ( r
n(n−1)−α

2),

α2 ̸= r
n(n−1) ;

(7) M satisfies the condition C̃(X,Y ) · ∇̃σ = L1Q(g, ∇̃σ) and α ̸= 0, α2 ̸=
r

n(n−1) ;

(8) M is totally geodesic.
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