Vol. 6 No.1 (2012), pp.203-217 https://doi.org/10.56424/jts.v6i01.10448

A Semi-Symmetric Metric ξ -Connection in an LP-Sasakian Manifold

B. Prasad and Subhash Chandra Singh

Department of Mathematics
S. M. M. T.(P.G.)College, Ballia-277001, U.P., India
e-mail: bp_kushwaha@sify.com
(Received: 23 May, 2011)

(Dedicated to Prof. K. S. Amur on his 80th birth year)

Abstract

Yano (1970) investiated a semi-symmetric metric connections in a Riemannian manifold and since then many authors studied this connection. Further Mishra and Pandey (1978) defined a semi-symmetric metric ξ -connection in almost contact manifold and obtained various geometrical properties. Following Mishra and Pandey (1978) we define semi-symmetric metric ξ -connection in Lorentzian Para-Sasakian manifold and study some propeties of curvature tensors.

Keywords and Phrases : LP-Sasakian manifold, Einstein manifold, Ricci tensor, psuedo \widetilde{W}_2 curvature tensor, psuedo projective curvature tensor \widetilde{P} and Group manifold.

2000 AMS Subject Classification: 53B15, 53C25.

1. Introduction

A differential manifold M^n of dimension n is called Lorentzian Para-Sasakian (LP-Sasakian) manifold if it admits a (1, 1)-tensor field ϕ , a covariant vector field ξ , a covariant vector field η and a Lorentzian matric g satisfy

$$\eta(\xi) = -1 \tag{1.1}$$

$$\phi^2(X) = X + \eta(X)\xi\tag{1.2}$$

$$g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y) \tag{1.3}$$

$$g(X,\xi) = \eta(X) \tag{1.4}$$

$$\nabla_X \xi = \phi X \tag{1.5}$$

and

$$(\nabla_X \phi)Y = g(X, Y)\xi + \eta(Y)X + 2\eta(X)\eta(Y)\xi, \tag{1.6}$$

for arbitrary vector fields X and Y, where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian matric g. (Matsumoto, 1989).

It can be easly seen that in LP-Sasakian manifold, the following relations hold:

(a)
$$\phi \xi = 0$$
, (b) $\eta(\phi X) = 0$ (1.7)

$$\operatorname{rank} \phi = n - 1. \tag{1.8}$$

Further on such an LP-Sasakian manifold with (ϕ, ξ, η, g) structure, the following relation hold (Matsumoto and Mihai, 1988)

$$R(X, Y, Z, \xi) = \eta(R(X, Y, Z)) = g(Y, Z)\eta(X) - g(X, Z)\eta(Y), \quad (1.9)$$

$$R(\xi, X, Y) = g(X, Y)\xi - \eta(Y)X, \tag{1.10}$$

$$R(\xi, X, \xi) = X + \eta(X), \tag{1.11}$$

$$R(X,Y,\xi) = \eta(Y)X - \eta(X)Y, \tag{1.12}$$

$$Ric(X,\xi) = (n-1)\eta(X), \tag{1.13}$$

$$Ric(\phi X, \phi Y) = Ric(X, Y) - (n-1)\eta(X)\eta(Y), \tag{1.14}$$

for any vector fields X, Y, Z where R(X,Y,Z) and Ric(X,Y) are curvature tensor and Ricci tensor respectively with respect to Riemannian connection ∇ and

$$R(X, Y, Z, W) = g(R(X, Y, Z), W).$$
 (1.15)

Let us put

$$F(X,Y) = g(\phi X, Y). \tag{1.16}$$

Then the tensor field F(X,Y) is symmetric (0, 2)-tensor field and it can be easily seen that

$$F(X,Y) = F(Y,X) = F(\phi X, \phi Y),$$

$$g(\phi X, Y) = g(\phi Y, X), \tag{1.17}$$

 $F(X,Y) = (\nabla_X \eta) Y. \tag{1.18}$

An LP-Sasakian manifold M^n is said to be an η -Einstein manifold (Yano and Kon, 1984) if its Ricci tensor Ric(X,Y) is of the form

$$Ric(X,Y) = ag(X,Y) + b\eta(X)\eta(Y), \tag{1.19}$$

where a and b are scalars.

An LP-Sasakian manifold M^n is called an Einstein manifold (Sinha, 1982) if its Ricci tensor Ric(X,Y) is of the form

$$Ric(X,Y) = \lambda g(X,Y),$$
 (1.20)

where λ is in general a function on M^n .

The equation (1.20) can also be written as

$$Ric(X,Y) = -\frac{r}{n}g(X,Y), \qquad (1.21)$$

where r is the scalar curvature.

The pseudo \widetilde{W}_2 curvature tensor on an LP-Sasakian manifold M^n (n > 2) of type (1,3) with respect to the Riemannian connection ∇ is given by (Prasad and Mourya, 2004)

$$\widetilde{W}_{2}(X,Y,Z) = aR(X,Y,Z) + b[g(Y,Z)QX - g(X,Z)QY] - \frac{r}{n} \left(\frac{a}{n-1} + b\right) [g(Y,Z)X - g(X,Z)Y],$$
(1.22)

where a and b are constant such that $a, b \neq 0$, is the scalar curvature and Q is the (1,1) Ricci tensor with respect to the Riemannian connection ∇ given by

$$g(QX,Y) = Ric(X,Y). \tag{1.23}$$

If a = 1 and $b = -\frac{1}{n-1}$ then (1.22) takes the form

$$\widetilde{W}_2(X, Y, Z) = R(X, Y, Z) - \frac{1}{n-1} [g(Y, Z)QX - g(X, Z)QY]$$

= $W_2(X, Y, Z)$

where W_2 is the curvature tensor (Pohhasiyal and Mishra, 1970) with respect to the Riemmannian connection. Hence the W_2 -curvature rensor is a particular case of the tensor \widetilde{W}_2 .

For this reason \widetilde{W}_2 is a called a pseudo \widetilde{W}_2 -curvature tensor.

Then from (1.22), we get

$$\widetilde{W}_{2}(X, Y, Z, W) = a'R(X, Y, Z, W) + b[g(Y, Z)Ric(X, W) - g(X, Z)Ric(Y, W)] - \frac{r}{n} \left(\frac{a}{n-1} + b\right)$$

$$[g(Y, Z)g(X, W) - g(X, Z)g(Y, W)]$$
(1.24)

where

$$\widetilde{W}_{2}(X, Y, Z, W) = g(\widetilde{W}_{2}(X, Y, Z), W).$$
 (1.25)

Further \widetilde{W}_2 satisfies following algebraic properties:

$$\widetilde{W}_{2}(X, Y, Z, W) + \widetilde{W}_{2}(Y, X, Z, W) = 0,$$
 (1.26)

$$\widetilde{W}_{2}(X, Y, Z, W) + \widetilde{W}_{2}(Y, Z, X, W) + \widetilde{W}_{2}(Z, X, Y, W) = 0.$$
 (1.27)

Also an LP-Sasakian manifold M^n will be called pseudo \widetilde{W}_2 flat if $\widetilde{W}_2{=}0$.

The pseudo projective curvature tensor \widetilde{P} of an LP-Sasakian manifold M^n (n>2) of type (1,3) with respect to the Riemannian connection ∇ is given by (Prasad, 2000)

$$\widetilde{P}(X,Y,Z) = aR(X,Y,Z) + b[Ric(Y,Z)X - Ric(X,Z)Y]$$

$$-\frac{r}{n}\left(\frac{a}{n-1} + b\right)[g(Y,Z)X - g(X,Z)Y]$$
(1.28)

where a and b are constant such that $a, b \neq 0$.

If a = 1 and $b = -\frac{1}{n-1}$ then (1.28) takes the form

$$\widetilde{P}(X,Y,Z) = R(X,Y,Z) - \frac{1}{n-1} [Ric(Y,Z)X - Ric(X,Z)Y]$$

$$= P(X,Y,Z), \tag{1.29}$$

where P(X,Y,Z) is the projective curvature tensor (Chaki, 1987) with respect to Riemannian connection. Hence the projective curvature tensor P is a prticular case of \widetilde{P} . For this reasion \widetilde{P} is called pseudo projective curvature tensor.

Furthure satisfies following algebraic properties:

$$\widetilde{P}(X,Y,Z) + \widetilde{P}(Y,X,Z) = 0, \tag{1.30}$$

and

$$\widetilde{P}(X,Y,Z) + \widetilde{P}(Y,Z,X) + \widetilde{P}(Z,X,Y) = 0. \tag{1.31}$$

Also LP-Sasakian manifold M^n will be called pseudo projectively flat if $\widetilde{P}=0.$

2. ξ -connection in an LP-Sasakian manifold M^n

Let $\overline{\nabla}$ be an affine connection. Then from (1.4), we get

$$g(\overline{\nabla}_X \xi, Y) = (\overline{\nabla}_X \eta) Y \tag{2.1}$$

Theorem 2.1. If $\overline{\nabla}$ is a linear connection in an LP-Sasakian manifold M_n then $\overline{\nabla}_X \xi = 0$ if and only if $(\overline{\nabla}_X \eta) Y = 0$.

Proof. Since Y is a arbitrary vector field, from (2.1) it follows that

$$\overline{\nabla}_X \xi = 0, \tag{2.2}$$

if and only if

$$(\overline{\nabla}_X \eta) Y = 0. \tag{2.3}$$

Theorem 2.2. If $\overline{\nabla}$ is a linear connection in an LP-Sasakian manifold M_n then $\overline{\nabla}_X \xi = 0$ if and only if

$$(\nabla_X \eta) Y + \eta(\nabla_X Y) - \eta(\overline{\nabla}_X Y) = 0. \tag{2.4}$$

Proof. From theorem (2.1) and $(\overline{\nabla}_X \eta)Y = (\nabla_X \eta)Y + \eta(\nabla_X Y) - \eta(\overline{\nabla}_X Y)$, theorem (2.2) follows.

Remark. From theorem (2.2) we conclude that if a linear connection $\overline{\nabla}$ in an LP-Sasakian manifold M^n satisfies $\overline{\nabla}_X \xi = 0$, then M^n admits only those linear connection which satisfies (2.4). Hence we have the following definition.

Definition 2.1. A linear connection $\overline{\nabla}$ in an LP-Sasakian manifold M^n is called a ξ -Connection if it satisfies

$$\overline{\nabla}_X \xi = 0, \tag{2.5}$$

and

$$(\nabla_X \eta) Y + \eta(\nabla_X Y) - \eta(\overline{\nabla}_X Y) = 0.$$
 (2.6)

3. A semi-symmetric metric ξ -connection in an LP-Sasakian manifold M^n

A linear connection $\overline{\nabla}$ in an LP-Sasakian manifold M^n , is called a semi-symmetric metric connection if its torsion tensor \overline{T} is of the form

$$\overline{T}(X,Y) = \eta(Y)X - \eta(X)Y. \tag{3.1}$$

Further if $\overline{\nabla}$ also satisfies

$$(\overline{\nabla}_X)g(Y,Z) = 0, (3.2)$$

then $\overline{\nabla}$ is called a semi-symmetric connection (Yano, 1970). Let

$$\overline{\nabla}_X Y = \nabla_X Y + H(X, Y). \tag{3.3}$$

Then it can be seen (Yano, 1970)

$$H(X,Y) = \eta(Y)X - g(X,Y)\xi, \tag{3.4}$$

and

$$\overline{\nabla}_X Y = \nabla_X Y + \eta(Y) X - g(X, Y) \xi, \tag{3.5}$$

Theorem 3.1. In an LP-Sasakian manifold M^n , the semi-symmetric metric connection $\overline{\nabla}$ given by (3.5) is a semi-symmetric metric ξ -connection if and only if

$$\phi X = X + \eta(X)\xi. \tag{3.6}$$

Proof. Let (3.6) be satisfied. From (1.1), (1.4), (1.5), (3.5) and (3.6), we have

$$\overline{\nabla}_X \xi = \overline{\nabla}_X \xi + \eta(\xi) X - g(X, \xi) \xi$$

$$= \phi X - 1.X - \eta(X) \xi$$

$$= X + \eta(X) \xi - X - \eta(X) \xi$$

$$= 0.$$

From (1.1), (1.4), (1.17), (1.18), (2.6), (3.5) and (3.6), we have

$$(\nabla_X \eta)Y + \eta(\nabla_X Y) - \eta(\overline{\nabla}_X Y) = F(X, Y) + \eta(\nabla_X Y + \eta(Y)X - g(X, Y)\xi)$$
$$= g(\phi X, Y) + \eta(\nabla_X Y) - \eta(\nabla_X Y) - \eta(Y)\eta X$$
$$- g(X, Y)\eta(\xi)$$
$$= 0.$$

Hence $\overline{\nabla}$ is a semi-symmetric metric ξ -connection conversely let $\overline{\nabla}$ be ξ -connection, then (2.5) and (2.6) will be satisfied.

From (1.1), (1.4), (1.5), (2.5) and (3.5), we have

$$\phi X - X - \eta(X)\xi = 0,$$

which gives

$$\phi X = X + \eta(X)\xi$$

4. Curvature tensor of semi-symmetric metric ξ -connection in LP-Sasakian manifold

Let \overline{R} be curvature tensor of $\overline{\nabla}$. Then

$$\overline{R}(X,Y,Z) = \overline{\nabla}_X \overline{\nabla}_Y Z - \overline{\nabla}_Y \overline{\nabla}_X Z - \overline{\nabla}_{[X,Y]} Z. \tag{4.1}$$

From (1.4),(1.17) and (3.6), we have

$$(\nabla_X \eta) Y = F(X, Y) = g(\phi X, Y) = g(X + \eta(X)\xi, Y)$$

= $g(X, Y) + \eta(X)\eta(Y)$ (4.2)

In consequences of (1.1), (1.4), (1.5), (1.18), (3.5), (3.6), (4.1) and (4.2), we have

$$\overline{R}(X,Y,Z) = R(X,Y,Z) + g(X,Z)Y - g(Y,Z)X. \tag{4.3}$$

where

$$R(X,Y,Z) = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z. \tag{4.4}$$

is the curvature tensor with respect to ∇ .

Contracting (4.3) with respect to X, we get

$$\overline{R}(Y,Z) = Ric(Y,Z) - (n-1)g(Y,Z). \tag{4.5}$$

Contracting (4.5), we get

$$\overline{r} = r - n(n-1). \tag{4.6}$$

where $\overline{R}ic(Y,Z)$ and \overline{r} are Ricci tensor and scalar curvature tensor with respect to $\overline{\nabla}$.

Let

$$\overline{R}(X,Y,Z,W) = g(R(X,Y,Z),W). \tag{4.7}$$

Then from (4.3) and (4.7), we have

$$\overline{R}(X,Y,Z,W) = \overline{R}(X,Y,Z,W) + g(X,Z)g(Y,W) - g(Y,Z)g(X,W).$$

$$(4.8)$$

Theorem 4.1. In an LP-Sasakian manifold with semi-symmetric metric ξ -connection, we have

(a)
$${}'\overline{R}(X, Y, Z, \xi) = 0,$$

(b)
$$'\overline{R}(T, Y, Z, \xi) = 0,$$

(c)
$$\overline{R}(X, Y, \xi) = 0,$$
 (4.9)

(d)
$${}'\overline{R}(\xi, X, \xi) = 0,$$

(e)
$$'\overline{R}ic(X,\xi) = 0.$$

Proof. In consequences of equation (1.4), (1.9), (1.10), (1.11), (1.12), (1.13), (4.3), (4.5), (4.8), equation (4.9) follow.

Theorem 4.2. If in LP-Sasakian manifold M^n , the curvature tensor with respect to the semi-symmetric metric ξ -connection, vanishes, then

(a)
$$R(X, Y, \xi) = X - \eta(X)Y$$
,

(b)
$$\phi(R(X,Y,\xi)) = \eta(Y)\phi X - \eta(X)\phi Y,$$
(4.10)

(c)
$$\eta(R(X, Y, \xi)) = 0$$
,

(d)
$$\eta(R(\xi, Y, Z) + F(Y, Z) = 0.$$

Proof. Let $\overline{R}(X,Y,Z) = 0$, then from (4.3), we get

$$R(X, Y, Z) = g(Y, Z)X - g(X, Z)Y.$$
 (4.11)

From (4.11) we get

$$R(X, Y, \xi) = \eta(Y)X - \eta(X)Y,$$

which proves (a).

Proof of (b) and (c) follow from (a).

From (4.11), we get

$$R(\xi, Y, Z) = g(Y, Z)\xi - \eta(Z)Y,$$

or

$$\eta(R(\xi, Y, Z)) = -g(Y, Z) - \eta(Z)\eta(Y),$$

which in view of (4.2) gives (d).

Theorem 4.3. For an LP-Saakian manifold M^n with respect to the semi-symmetric metric ξ -connection, we have

- (a) $'\overline{R}(X,Y,Z,W) + '\overline{R}(Y,X,Z,W) = 0,$
- (b) ${}'\overline{R}(X,Y,Z,W) + {}'\overline{R}(Y,X,Z,W) + {}'\overline{R}(Z,X,Y,W) = 0,$

(c)
$${}'\overline{R}(X,Y,Z,W) + {}'\overline{R}(X,Y,W,Z) = 0,$$
 (4.12)

(d)
$${}'\overline{R}(X, Y, Z, W) - {}'\overline{R}(Z, W, X, Y) = 0,$$

(e)
$$(\overline{\nabla}_X \overline{R})(Y,Z) + (\overline{\nabla}_Y \overline{R})(Z,X) + (\overline{\nabla}_Z \overline{R})(X,Y) = 2\eta(X)\overline{R}(Y,Z) + 2\eta(Y)\overline{R}(Z,X) + 2\eta(Z)\overline{R}(X,Y).$$

Proof. Proof of (a), (b), (c) and (d) follow from (4.8) and Bianchi first identity.

Bianchi second identity for a linear connection is given by (Sinha, 1982)

$$(\overline{\nabla}_X \overline{R})(Y,Z) + (\overline{\nabla}_Y \overline{R})(Z,X) + (\overline{\nabla}_Z \overline{R})(X,Y) = - \overline{R}(\overline{T}(X,Y),Z) - \overline{R}(\overline{T}(Y,Z),X) - \overline{R}(\overline{T}(Z,X),Y).$$

Using (3.1) and (4.12a) in above expression, we get

$$(\overline{\nabla}_X \overline{R})(Y,Z) + (\overline{\nabla}_Y \overline{R})(Z,X) + (\overline{\nabla}_Z \overline{R})(X,Y) = -\overline{R}(\eta(Y)X - \eta(X)Y,Z)$$
$$-\overline{R}(\eta(X)Z - \eta(Z)X,Y) - \overline{R}(\eta(Z)Y - \eta(Y)Z,X)$$
$$= 2\eta(X)\overline{R}(Y,Z) + 2\eta(Y)\overline{R}(Z,X) + 2\eta(Z)\overline{R}(X,Y).$$

which gives (4.12)e.

Theorem 4.4. If in LP-Sasakian manifold the curvature tensor of semi-symmetric metric ξ -connection vanish, then it has a constant curvature +1.

Proof. If $\overline{R}(X,Y,Z) = 0$, then (4.3) gives

$$R(X, Y, Z) = g(Y, Z)X - g(X, Z)Y$$

which proves the statement.

Theorem 4.5. Let M^n be an LP-Sasakian manifold with semi-symmetric metric ξ -connection. If Ricci tensor with respect to semi-symmetric metric ξ -connection vanish, then the manifold becomes an η -Einstein manifold with associated constants a = n - 1 and b = 0.

Proof. If $\overline{R}ic(Y,Z)=0$, then from (4.5), we get

$$Ric(Y, Z) = (n-1)g(Y, Z),$$

which is of the form (1.19) with associated constants a=n-1 and b=0. Hence the theorem.

Theorem 4.6. Let M^n be an LP-Sasakian manifold with semi-symmetric metric ξ -connection. Then the manifold is an Einstein manifold with respect to semi-symmetric metric ξ connection, if and only if it is an Einstein manifold with respect to Riemannian connection.

Proof. From (4.6), we get

$$n - 1 = \frac{r - \overline{r}}{n} \tag{4.13}$$

Again from (4.5) and (4.13), we get

$$\overline{Ric}(Y,Z) = Ric(Y,Z) - \frac{(r-\overline{r})}{n}g(Y,Z), \tag{4.14}$$

Hence from (1.21) and (4.14), theorem follows.

5. The Pseudo $\stackrel{*}{W}_2$ -Curvature Tensor of LP-Sasakian manifold with semi-symmetric metric ξ -connection

Let the Pseudo $\stackrel{*}{W}_2$ -curvature tensor with respect semi-symmetric metric ξ -connection, then $\stackrel{*}{W}_2$ is given by

$$'\widetilde{W}_{2}(X,Y,Z,W) = a'\overline{R}(X,Y,Z,W) + b[g(Y,Z)\overline{R}ic(X,W) - g(X,Z)\overline{R}ic(Y,W)] - \frac{\overline{r}}{n}\left(\frac{a}{n-1} + b\right)$$

$$[g(Y,Z)g(X,W) - g(X,Z)g(Y,W)]$$

$$(5.1)$$

where

$$W_{2}^{*}(X,Y,Z,W) = g(W_{2}^{*}(X,Y,Z),W).$$
 (5.2)

Theorem 5.1. If M^n be an LP-Sasakian manifold admitting a semi-symmetric metric ξ -connection, then Pseudo \widetilde{W}_2 -curvature tensor with respect semi-symmetric metric ξ -connection is equal to the Pseudo \widetilde{W}_2 -curvature tensor with respect to the Riemannian connection. That is

$$\widetilde{W}_{2}(X, Y, Z, W) = \overset{*}{W}_{2}(X, Y, Z, W)$$

Proof. From (1.24), (4.5), (4.6), (4.8) and (5.2), we get

$$\widetilde{W}_{2}(X, Y, Z, W) = \overset{*}{W}_{2}(X, Y, Z, W)$$

Theorem 5.2. If M^n be an LP-Sasakian manifold with vanishing Ricci tensor with respect to semi-symmetric metric ξ -connection, then M^n is $\overset{*}{W}_2$ flat if and only if curvature tensor with respect to semi-symmetric metric ξ -connection vanishes.

Proof. If

$$\overline{R}ic(Y,Z) = 0, (5.3)$$

then

$$\overline{r} = 0. (5.4)$$

From (4.5), (4.6), (5.3) and (5.4), we get

$$Ric(Y,Z) = (n-1)g(Y,Z), \tag{5.5}$$

and

$$r = n(n-1). (5.6)$$

From (1.25),(4.8),(5.5) and (5.6), we get

$$'W_{2}(X,Y,Z,W) = aR(X,Y,Z,W) + b(n-1)[g(Y,Z)g(X,W) - g(X,Z)g(Y,W)] - \frac{n(n-1)}{n} \left(\frac{a}{n-1} + b\right)$$

$$\times [g(Y,Z)g(X,W) - g(X,Z)g(Y,W)]$$

$$= a'\overline{R}(X,Y,Z,W).$$
(5.7)

Hence the theorem follows from (5.7).

Theorem 5.3. If M^n be an LP-Sasakian manifold with vanishing curvature tensor with respect to semi-symmetric metric ξ -connection, then M^n is W_2 flat.

Proof. If

$$\overline{R}(X,Y,Z) = 0, (5.8)$$

then

$$\overline{R}ic(Y,Z) = 0, (5.9)$$

and

$$\bar{r} = 0. (5.10)$$

From (4.5), (4.6), (4.8), (5.8), (5.9) and (5.10), we get

$$Ric(Y,Z) = (n-1)g(Y,Z),$$
 (5.11)

$$r = n(n-1) \tag{5.12}$$

$$R(X, Y, Z, W) = g(Y, Z)g(X, W) - g(X, Z)g(Y, W)$$
 (5.13)

From (1.24), (5.11), (5.12) and (5.13), we get

$$'W_2(X,Y,Z,W) = a[g(Y,Z)g(X,W) - g(X,Z)g(Y,W)] + b(n-1)[g(Y,Z)$$

$$\times g(X,W) - g(X,Z)g(Y,W)] - \frac{n(n-1)}{n} \left(\frac{a}{n-1} + b\right)$$

$$\times [g(Y,Z)g(X,W) - g(X,Z)g(Y,W)]$$

$$= 0.$$

which proves the theorem.

Theorem 5.4. The pseudo W_2 curvature tensor with respect to semi-symmetric metric ξ -connection satisfies following algebraic properties:

$$W_{2}^{'}(X,Y,Z,W) + W_{2}^{'}(Y,X,Z,W) = 0.$$
 (5.14)

and

$$W_{2}^{*}(X,Y,Z,W) + W_{2}^{*}(Y,X,Z,W) + W_{2}^{*}(Z,X,Y,W) = 0.$$
 (5.15)

Proof. Proof follows from (1.26),(1.27) and theorem (5.1).

6. Pseudo projective curvature tensor $\stackrel{*}{P}$ of an LP-Sasakian manifold with respect to semi-symmetric metric ξ -connection

Theorem 6.1. If M^n is an LP-Sasakian manifold admitting a semi-symmetric metric ξ -connection then pseudo projective curvature tensor with respect to semi-symmetric metric ξ -connection $\stackrel{*}{P}$ is equal to pseudo projective curvature with respect to Riemannian connection \widetilde{P} .

Proof. Let $\stackrel{*}{P}$ be pseudo projective curvature tensor of an LP-Sasakian manifold with respect to semi-symmetric metric ξ -connection, then $\stackrel{*}{P}$ is given by

$$\stackrel{*}{P}(X,Y,Z) = a\overline{R}(X,Y,Z) + b[\overline{R}ic(Y,Z)X - \overline{R}ic(X,Z)Y]
- \frac{\overline{r}}{n} \left(\frac{a}{n-1} + b\right) [g(Y,Z)X - g(X,Z)Y].$$
(6.1)

From (1.28), (4.3), (4.5), (4.6) and (6.1), we get

$$\stackrel{*}{P}(X,Y,Z) = a[R(X,Y,Z) + g(X,Z)Y - g(Y,Z)X]
+ b[\{Ric(Y,Z) - (n-1)g(Y,Z)\}X
- \{Ric(X,Z) - (n-1)g(X,Z)\}Y] - \frac{r - n(n-1)}{n}
\times \left(\frac{a}{n-1} + b\right)[g(Y,Z)X) - g(X,Z)Y]
= \widetilde{P}(X,Y,Z),$$
(6.2)

which proves the theorem.

Theorem 6.2. If M^n be an LP-Sasakian manifold with vanishing Ricci curvature tensor with respect to semi-symmetric metric ξ -connection, then M^n is pseudo projectively flat if and only if curvature tensor with respect to semi-symmetric metric ξ -connection vanishing.

Proof. If

$$\overline{R}ic(Y,Z) = 0 \tag{6.3}$$

then

$$\overline{r} = 0. ag{6.4}$$

From (4.5), (4.6), (6.3) and (6.4), we get

$$Ric(Y,Z) = (n-1)g(Y,Z), \tag{6.5}$$

and

$$r = n(n-1). (6.6)$$

From (1.28), (4.3), (6.5) and (6.6), we get

$$\stackrel{*}{P}(X,Y,Z) = aR(X,Y,Z) + b(n-1)[g(Y,Z)X - g(X,Z)Y]
- \frac{n(n-1)}{n} \left(\frac{a}{n-1} + b\right) [g(Y,Z)X - g(X,Z)Y]$$
(6.7)

From (6.7) theorem follows.

Theorem 6.3. If M^n be an LP-Sasakian manifold with vanishing curvature tensor with respect to semi-symmetric metric ξ -connection, then M^n is pseudo projectively flat.

Proof. If

$$\overline{R}(X,Y,Z) = 0, (6.8)$$

then

$$\overline{R}ic(Y,Z) = 0, (6.9)$$

and

$$\overline{r} = 0. \tag{6.10}$$

From (4.3), (4.5), (4.6), (5.8), (6.9) and (6.10), we get

$$R(X, Y, Z) = g(Y, Z)X - g(X, Z)Y,$$
 (6.11)

$$Ric(Y, Z) = (n-1)g(Y, Z),$$
 (6.12)

$$r = n(n-1) \tag{6.13}$$

From (1.28), (6.11), (6.12) and (6.13), we get

$$\widetilde{P}(X,Y,Z) = a[g(Y,Z)X - g(X,Z)Y] + b(n-1)[g(Y,Z)X - g(X,Z)Y]$$
$$-\frac{n(n-1)}{n} \left(\frac{a}{n-1} + b\right) [g(Y,Z)X - g(X,Z)Y]$$
$$= 0$$

which proves the theorem.

Theorem 6.4. The pseudo projective curvature tensor tensor $\stackrel{*}{P}$ with respect to semi-symmetric metric ξ -connection satisfy following algebraic:

$$\stackrel{*}{P}(X,Y,Z) + \stackrel{*}{P}(Y,X,Z) = 0,$$
(6.14)

and

$$\stackrel{*}{P}(X,Y,Z) + \stackrel{*}{P}(Y,X,Z) + \stackrel{*}{P}(Z,X,Y) = 0.$$
(6.15)

7. Group Manifold of LP-Sasakian manifold with respect to semi-symmetric matric ξ -connection

Theorem 7.1. An LP-Sasakian manifold M^n is a group manifold with respect to semi-symmetric metric ξ -connection if and only if curvature tensor with respect to semi-symmetric metric ξ -connection vanishes.

Proof. An LP-Sasakian manifold M^n is a group manifold with respect to semi-symmetric metric ξ -connection if (Agashe and Chafle, 1992)

$$\overline{R}(X,Y,Z) = 0, (7.1)$$

and

$$(\overline{\nabla}_X \overline{T})(Y, Z) = 0. \tag{7.2}$$

From (2.6) and (3.1), we get

$$(\overline{\nabla}_X \overline{T})(Y, Z) = \overline{\nabla}_X (\overline{T}(Y, Z)) - \overline{T}(\overline{\nabla}_X Y, Z) - \overline{T}(Y, \overline{\nabla}_X Z)$$

$$= \overline{\nabla}_X (\eta(Y)Z - \eta(Z)Y) - \overline{T}(\overline{\nabla}_X Y, Z) - \overline{T}(Y, \overline{\nabla}_X Z)$$

$$= ((\overline{\nabla}_X \eta)Y)Z - ((\overline{\nabla}_X \eta)Z)Y$$

$$= 0.$$
(7.3)

Therefore, it follows that manifold M^n will be a group manifold if and only if

$$\overline{R}(X,Y,Z) = 0. (7.4)$$

which proves the theorem.

Theorem 7.2. An LP-Sasakian manifold M^n is a group manifold with respect to semi-symmetric metric ξ -connection if and only if

$$R(X, Y, Z) = g(Y, Z)X - g(X, Z)Y.$$
 (7.5)

Proof. Proof follows from (4.3) and (7.4)

Theorem 7.3. An LP-Sasakian manifold M^n is a group manifold with respect to semi-symmetric metric ξ -connection, then M^n is pseudo projectively flat.

Proof. Proof follows from theorem (6.3) and theorem (7.1).

References

- [1] Agashe, N. S. and Chafle, M. R.: A semi-symmetric metric non-metric connection a Riemannian manifold, Indian J. pure appl. math., 23(6)(1992), 399-409.
- [2] Chaki, M. C.: Text book of tensor calculus, Calcutta Publishers (1987).
- [3] Matsumoto, K.: On Lorentzian Para-Contact manifold, Bull. of Yama-gata University, Nat. Sci, 12(2)(1989), 151-156
- [4] Matsumoto, K. and Mihai, I.: On a certain transformation in Lorentzian para-contact manifold, Tensor N.S., 47(2)(1988), 189-197.
- [5] Mishra, R. S. and Pandey, S. N.: Semi-symmetric metric connection in an almost contact manifold, indian J. pure appl. math., 9, No.6 (1978), 570-580.
- [6] MIshra, R. S. and Pokhariyal, G. P.: The curvature tensor and their relativistic significance I, Yakhohane math. J, 18 (1970), 105-108.

- [7] Prasad, B. and Maurya, A. : A Pseudo W_2 -curvature tensor on a Riemannian manifold, J. pure Math., 21 (2004), 81-84.
- [8] Prasad, B.: A Pseudo projective curvature tensor on a Riemannian manifold, Bull. Cal. Math. Soc., 94(3)(2002), 163-166.
- [9] Sinha, B. B. : An introduction to modern differential geometry, Kalyani Publication (1982).
- [10] Yano, K. and Kon. M.: Sturctures on manifold, Word scientific (1984).
- [11] Yano, K.: ON semi-symmetric metric connection Revue Rovmain de math, pure it Appl., 15 (1970), 1579-1586.