

J. T. S.

Vol. 6 No.1 (2012), pp.189-201
<https://doi.org/10.56424/jts.v6i01.10449>

On Semi-Invariant Submanifolds of Nearly Hyperbolic β -Kenmotsu Manifold

Asha Srivastava and Kamal Bhatia

Department of Mathematics

D.S.B. Campus, Kumaun University, Nainital-263002, India

Email : kamalbhatianainital@gmail.com

(Received: 8 September, 2011)

(Dedicated to Prof. K. S. Amur on his 80th birth year)

Abstract

Semi-invariant submanifold of an almost contact metric manifold were defined and studied by A. Bejancu [1] and later developed by several authors [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14] etc.

The purpose of the present paper is to define and study the semi-invariant submanifold of nearly hyperbolic β -Kenmotsu manifold.

Keywords : Semi-invariant, Hyperbolic, Umbilical, Geodesic, Submanifold.

1. Preliminaries

An n dimensional differential manifold \overline{M} on which there are defined a tensor field F of type (1, 1) a vector field ξ , 1-form u and a Riemannian metric g satisfying for arbitrary vector field X, Y, Z, \dots

$$(a) \quad F^2 = 1 + u \otimes \xi,$$

$$(b) \quad u(\xi) = -1,$$

$$(1.1) \quad (c) \quad u \circ F = 0,$$

$$(d) \quad F(\xi) = 0,$$

$$(1.2) \quad g(FX, FY) = -g(X, Y) - u(X)u(Y)$$

and

$$(1.3) \quad u(X) = g(X, \xi), \text{ for all } X, Y \in TM$$

is called almost hyperbolic contact metric manifold and the structures (F, ξ, u, g) is almost contact hyperbolic metric structure [2].

Definition 1.1. An almost hyperbolic contact metric structure (F, ξ, u, g) on \overline{M} is called a hyperbolic β -Kenmotsu manifold if [4]

$$(1.4) \quad (\overline{\nabla}_X F)Y = \beta(g(FX, Y)\xi - u(Y)FX), \text{ For function } \beta \text{ on } \overline{M}.$$

Then we say that hyperbolic β -Kenmotsu structure is type β . In particular, it is a normal.

Then from (1.1) and (1.4) we can easily obtain

$$(1.5) \quad \overline{\nabla}_X \xi = -\beta(X + u(X)\xi).$$

Thus the structural equation for nearly hyperbolic β -Kenmotsu manifold are given by

$$(1.6) \quad (\overline{\nabla}_Y F)Y + (\overline{\nabla}_Y F)X = -\beta(u(X)FY + u(Y)FX)$$

and the structural equation for nearly hyperbolic Kenmotsu manifold are defined by

$$(1.7) \quad (\overline{\nabla}_X F)Y + (\overline{\nabla}_Y F)X = -u(X)FY - u(Y)FX.$$

2. Semi-invariant submanifold

Let M be a Riemannian manifold isometrically immersed in a β -Kenmotsu manifold \overline{M} such that ξ is tangent to M . We denote by same symbol g the Riemannian metric on M . Denote also by ∇ the Levi Civita connection on M with respect to g and ∇^\perp the linear connection induced by ∇ on the normal bundle $T^\perp M$. Then the equation of Gauss and Weingarten are given respectively by

$$(2.1) \quad \overline{\nabla}_X Y = \nabla_X Y + h(X, Y)$$

and

$$(2.2) \quad \overline{\nabla}_X N = -A_N X + \nabla_X^\perp N,$$

where h and A are both called the second fundamental tensors satisfying

$$(2.3) \quad g(h(X, Y), N) = g(A_N X, Y).$$

Now, if F is a $(1, 1)$ tensor field on \overline{M} , for $X \in TM$ and $N \in T^\perp M$, we have

$$(2.4) \quad \begin{aligned} (\overline{\nabla}_X F)Y &= ((\nabla_X P)Y - A_{QY}X - Bh(X, Y)) \\ &\quad + ((\nabla_X Q)Y + h(X, PY) - Ch(X, Y)) \end{aligned}$$

and

$$(2.5) \quad \begin{aligned} (\overline{\nabla}_X F)N &= ((\nabla_X B)N - A_{CN}X - PA_NX) \\ &\quad + ((\nabla_X C)N + h(X, BN) - QA_NX) \end{aligned}$$

where

$$(2.6) \quad FX = PX + QX \quad (PX \in TM, QX \in T^\perp M)$$

and

$$(2.7) \quad FN = BN + CN \quad (BN \in TM, CN \in T^\perp M).$$

$$\begin{aligned} (2.8) \quad (a) \quad &(\nabla_X P)Y = \nabla_X PY - P\nabla_X Y, \\ (b) \quad &(\nabla_X Q)Y = \nabla_Q^\perp Y - Q\nabla_X Y, \\ (c) \quad &(\nabla_X B)N = \nabla_X BN - B\nabla_X^\perp N, \\ (d) \quad &(\nabla_X C)N = \nabla_X^\perp CN - Q\nabla_X^\perp N. \end{aligned}$$

The submanifold M is said to be totally geodesic in \overline{M} if $h = 0$, minimal in \overline{M} if $H = 0$ and totally umbilical in \overline{M} if

$$h(X, Y) = g(X, Y)H.$$

Applying the distribution D on M , M is called to be D -totally geodesic if $\forall X, Y \in D$, we have $h(X, Y) = 0$. If for every $X, Y \in D$, we have $h(X, Y) = g(X, Y)K$ for same normal vector K , so M is called D -totally umbilical. For two distribution D and S defined on M , M is defined to be (D, S) -mixed totally geodesic if for every $X \in D$ and $Y \in S$, we have $h(X, Y) = 0$.

Now we say that D is S -parallel if for all $X \in D$ and $Y \in D$ we have $\nabla_X Y \in D$. If D is D parallel then it is called autoparallel. D is called X -parallel for some $X \in TM$ if for all $Y \in D$ we have $\nabla_X Y \in D$. D is said to be parallel if for all $X \in TM$ and $Y \in D$, $\nabla_X Y \in D$.

If a distribution D on M is autoparallel, then it is truly integrable, and from a Gauss formula D is totally geodesic in M . Suppose that D is parallel then the orthogonal complementary distribution D^\perp is also parallel, which showing that D is parallel if and only if D^\perp is parallel. Therefore M is locally the product of the leaves of D and D^\perp .

Suppose M be an almost hyperbolic contact metric manifold. $\xi \in TM$ then we write $TM = \{\xi\} \oplus \{\xi\}^\perp$, where $\{\xi\}$ is the distribution spanned by $\{\xi\}$ and $\{\xi\}^\perp$ is complementary arthogonal distribution of $\{\xi\}$ in M then one gets

$$(2.9) \quad P\xi = 0 = Q\xi, \quad u0P = 0 = u0Q,$$

$$(2.10) \quad P^2 + BQ = 1 + u \oplus \xi, \quad QP + CQ = 0,$$

$$(2.11) \quad C^2 + QB = 1, \quad BC + PB = 0.$$

A submanifold M of almost hyperbolic contact metric manifold \overline{M} with $\xi \in TM$ is called a semi-invariant submanifold of M there exists two differentiable distribution D^1 and D^o on M such that

- (1) $TM = D^1 \oplus D^o \oplus (\xi)$,
- (2) The distribution D^1 is invariant by F , that is $F(D^1) = D^1$ and
- (3) The distribution D^o is invariant by F , that is $F(D^o) \subseteq T^\perp M$.

Here

$$D_X^1 = \text{Ker } (Q|\xi^\perp)_X = \{X_X \in |\xi|_X^\perp : \|X_X\| = \|PX_X\| = T_X M \cap (T_X M)\},$$

$$D_X^o = \text{Ker } (P|\xi)_X = \{X_X \in |\xi|_X^\perp : \|X_X\| = \|QX_X\|\} = T_X M \cap (T_X M),$$

for $X \in TM$, then we have

$$(2.12) \quad X = \Phi^1 X + \Phi^o X + u(X)\xi,$$

where Φ^1 and Φ^o are projection operators of TM on D^1 and D^o respectively.

A semi-invariant submanifold of an almost hyperbolic contact metric manifold [6] becomes an invariant submanifold (resp. Anti-invariant submanifold) if $D^o = \{0\}$ (resp. $D^1 = \{0\}$).

So we have

$$T^\perp M = \overline{D}^1 \oplus \overline{D}^o$$

where

$$\begin{aligned}\overline{D}^1 &= \text{Ker } (B) = T^\perp M \cap F(T^\perp M), \\ \overline{D}^o &= \text{Ker } (C) = T^\perp M \cap F(TM), \\ QD^o &= \overline{D}^o, \text{ and } B\overline{D}^o = D^o.\end{aligned}$$

3. Nijenhuis tensor

An almost hyperbolic contact metric manifold is said to be normal if the torsion tensor $N^{(1)}$ vanishes [5]

$$(3.1) \quad N^1 \equiv [F, F] + 2du \oplus \xi = 0,$$

where $[F, F]$ is the Nijenhuis tensor of F and d denotes the exterior derivatives operator.

Now we get the Nijenhuis tensor $[F, F]$ of the structure tensor field F is

$$(3.2) \quad [F, F](X, Y) = ((\overline{\nabla}_{FX} F)Y - (\overline{\nabla}_{FY} F)X) - F((\overline{\nabla}_X F)Y - (\overline{\nabla}_Y F)X).$$

Lemma 3.1. In an almost hyperbolic metric manifold we have

$$(3.3) \quad (\overline{\nabla}_Y F)FX = -F(\overline{\nabla}_Y F)X + ((\overline{\nabla}_Y u)X)\xi + u(X)\overline{\nabla}_Y \xi.$$

Proof. If $X, Y \in T\overline{M}$, we get

$$(\overline{\nabla}_Y F)FX = \overline{\nabla}_Y(F^2X) - F(\overline{\nabla}_Y FX) + F(F\overline{\nabla}_Y X) - F^2\overline{\nabla}_Y X.$$

$$\begin{aligned}(\overline{\nabla}_Y F)FX &= \overline{\nabla}_Y(X + u(X)\xi) - F(\overline{\nabla}_Y FX) + F(F\overline{\nabla}_Y X) - (\overline{\nabla}_Y X + u(\overline{\nabla}_Y X)\xi) \\ &= ((\overline{\nabla}_Y u)X)\xi + u(X)\overline{\nabla}_Y \xi - F((\overline{\nabla}_Y F)X + F(\overline{\nabla}_Y X)) + F(F\overline{\nabla}_Y X).\end{aligned}$$

$$(3.4) \quad (\overline{\nabla}_Y F)FX = ((\overline{\nabla}_Y u)X)\xi + u(X)\overline{\nabla}_Y \xi - F(\overline{\nabla}_Y F)X.$$

Theorem 3.1. In a nearly hyperbolic β -Kenmotsu manifold the Nijenhuis tensor $[F, F]$ of F is given by

$$\begin{aligned}(3.5) \quad [F, F](X, Y) &= 4F(\overline{\nabla}_Y F)X + 2du(X, u)\xi - u(X)\overline{\nabla}_Y \xi \\ &\quad - u(Y)\overline{\nabla}_X \xi + \beta(u(Y)F^2X + 3u(X)F^2Y).\end{aligned}$$

Proof. In view of Lemma (3.1) and $u0F = 0$ in (1.6)

$$(\overline{\nabla}_{FX} F)Y = -(\overline{\nabla}_Y F)FX - \beta u(Y)F^2X.$$

$$(3.6) \quad (\overline{\nabla}_{FX} F)Y = F(\overline{\nabla}_Y F)X - (\overline{\nabla}_Y u)X)\xi + u(X)\overline{\nabla}_Y \xi - \beta u(Y)F^2X.$$

Therefore

$$\begin{aligned}
[F, F](X, Y) &= ((\bar{\nabla}_{FX} F)Y - (\bar{\nabla}_{FY} F)X) - F((\bar{\nabla}_X F)Y - (\bar{\nabla}_Y F)X) \\
&= F(\bar{\nabla}_Y F)X - ((\bar{\nabla}_Y u)X)\xi - u(X)\bar{\nabla}_Y \xi - \beta(u(FX)^o FY \\
&\quad + u(y)F^2 X) - F(\bar{\nabla}_X F)Y + ((\bar{\nabla}_X u)Y)\xi - u(Y)\bar{\nabla}_X \xi \\
&\quad + \beta(u(FY)^o FX + u(X)F^2 Y) + F(\bar{\nabla}_X F)Y + F(\bar{\nabla}_Y F) \\
[F, F](X, Y) &= 2F[(\bar{\nabla}_Y F)X - (\bar{\nabla}_X F)Y] - ((\bar{\nabla}_Y u) + ((\bar{\nabla}_X u)Y)\xi \\
&\quad - u(X)\bar{\nabla}_Y \xi + u(Y)\bar{\nabla}_X \xi - \beta(u(Y)F^2 X - u(X)F^2 Y) \\
[F, F](X, Y) &= 2F(\bar{\nabla}_Y F)X - 2F(\bar{\nabla}_X F)Y + 2du(X, Y)\xi \\
(3.7) \quad &\quad - u(X)\bar{\nabla}_Y \xi + u(Y)\bar{\nabla}_X \xi - \beta(u(Y)F^2 X - u(X)F^2 Y). \\
[F, F](X, Y) &= 2F(\bar{\nabla}_Y F)X - 2F(\bar{\nabla}_Y F)X - \beta(u(X)FY + u(Y)FX) \\
&\quad + 2du(X, Y)\xi - u(X)\bar{\nabla}_Y \xi + u(Y)\bar{\nabla}_X \xi - \beta(u(Y)F^2 X - u(X)F^2 Y) \\
&= 4F((\bar{\nabla}_Y F)X) + 2F\beta(u(X)FY - u(Y)FX) + 2du(X, Y)\xi \\
&\quad - u(X)\bar{\nabla}_Y \xi + u(Y)\bar{\nabla}_X \xi - \beta(u(Y)F^2 X - u(X)F^2 Y) \\
[F, F](X, Y) &= 4F((\bar{\nabla}_Y F)X) + 2du(X, Y)\xi - u(X)\bar{\nabla}_Y \xi \\
&\quad + u(Y)\bar{\nabla}_X \xi + \beta(u(Y)F^2 X + 3u(X)F^2 Y).
\end{aligned}$$

From (3.5) we obtain

$$\begin{aligned}
u(N^1(X, Y)) &= u([F, F](X, Y) + 2du(X, Y)\xi) \\
&= u[4F((\bar{\nabla}_Y F)X) + 2du(X, Y)\xi - u(X)\bar{\nabla}_Y \xi \\
&\quad + u(Y)\bar{\nabla}_X \xi + \beta(u(Y)F^2 X + 3u(X)F^2 Y) + 2du(X, Y)\xi \\
&\quad - \xi u(N^1(X, Y)) = -4du(X, Y).
\end{aligned}$$

In particular, if X and Y are perpendicular to ξ then (3.6) gives

$$[F, F](X, Y) = 4F(\bar{\nabla}_Y F)X - 2u(|X, Y|)\xi, \quad \forall X, Y \perp \xi.$$

4. Some basic results

Taken M be a submanifold of a nearly hyperbolic β -Kenmotsu manifold. Applying (2.4) and (2.6) in (1.6) $\forall X, Y \in TM$ then we find

$$\begin{aligned}
&(\bar{\nabla}_X P)Y - A_{QY}X - Bh(X, Y) + ((\bar{\nabla}_X Q)Y + h(X, PY) - Ch(X, Y) + ((\bar{\nabla}_Y P)X \\
&\quad - A_{QX}Y - Bh(X, Y)) + ((\bar{\nabla}_Y Q)X + h(PX, Y) - Ch(X, Y) \\
&\quad = -\beta(u(X)PY + u(X)QY + u(Y)PX + u(Y)QX).
\end{aligned}$$

$$\begin{aligned}
& (\nabla_X P)Y - A_{QY}X - 2Bh(X, Y) + \bar{\nabla}_X Q)Y - 2Ch(X, Y) + (\bar{\nabla}_Y P)X - A_{QX}Y \\
& \quad + (\nabla_Y Q)X + h(PX, Y) + h(X, PY) \\
& = -\beta(u(X)PY + u(Y)PX + u(X)QY + u(Y)QX).
\end{aligned}$$

As a result, we have

Proposition 4.1. Let M be a submanifold of a nearly hyperbolic β -Kenmotsu manifold. Then for all $X, Y \in TM$ we have

$$\begin{aligned}
(4.1) \quad & (\nabla_X P)Y + (\nabla_Y P)X - A_{QY}X - A_{QX}Y - 2Bh(X, Y) \\
& = -\beta(u(X)PY + u(Y)PX).
\end{aligned}$$

$$\begin{aligned}
(4.2) \quad & (\nabla_X Q)Y + (\nabla_Y Q)X + h(X, PY) + h(PX, Y) - 2Ch(X, Y) \\
& = -\beta(u(X)QY + u(Y)QX).
\end{aligned}$$

Therefore, we have

Proposition 4.2. Let M be a submanifold of a nearly hyperbolic β -Kenmotsu manifold. Then for all $X, Y \in TM$, we find that

$$\begin{aligned}
(4.3) \quad & \bar{\nabla}_X FY - \bar{\nabla}_Y FX - F[X, Y] \\
& = 2((\nabla_X P)Y - A_{QY}X - Bh(X, Y)) + 2((\nabla_X Q)Y + h(X, PY) \\
& \quad - h(X, Y)) + \beta(u(Y)PX + u(X)PY) + \beta(u(Y)QX + u(X)QY).
\end{aligned}$$

Therefore, we have

$$\begin{aligned}
(4.4) \quad & P[X, Y] = -\nabla_X PY - \nabla_Y PX + A_{QX}Y + A_{QY}X + 2P\nabla_X Y \\
& \quad + 2Bh(X, Y) + \beta(u(Y)PX + u(X)PY),
\end{aligned}$$

$$\begin{aligned}
(4.5) \quad & Q[X, Y] = -\nabla_X^\perp QY - \nabla_Y^\perp QX - h(X, PY) - h(PX, Y) \\
& \quad + 2Q\nabla_X Y + 2(h(X, Y) - \beta(u(Y)QX + u(X)QY)).
\end{aligned}$$

Proposition 4.3. Let M be a semi-invariant submanifold of nearly hyperbolic β -Kenmotsu manifold. Then (P, ξ, u, g) is a nearly hyperbolic β -Kenmotsu structure on the distribution $D^1 \oplus \{\xi\}$ if $Bh(X, Y) = 0$, for all $X, Y \in D^1 \oplus \{\xi\}$.

Proof. In view of $D^1 \oplus \{\xi\} = \ker(F)$ and (2.10), we get $P^2 = 1 + u \oplus \xi$ on $D^1 \oplus \{\xi\}$ consequently we have

$$P\xi = 0, \quad u(\xi) = -1, \quad uoP = 0.$$

Applying $D^1 \oplus \{\xi\} = \ker(F)$ and $Bh(X, Y) = 0$ in (4.1), we obtain

$$(4.6) \quad (\nabla_X P)Y + (\nabla_Y P)X = -\beta(u(X)PY + u(Y)PX).$$

Theorem 4.1. Let M be a semi-invariant submanifold of a nearly hyperbolic β -Kenmotsu manifold. we have

(a) If $D^o \oplus \{\xi\}$ is autoparallel then

$$A_{QX}Y + A_{QY}X + 2Bh(X, Y) = 0, \quad X, Y \in D^o\{\xi\},$$

(b) If $D^1 \oplus \{\xi\}$ is autoparallel then

$$h(X, PY) + h(PX, Y) = 2Ch(X, Y), \quad X, Y \in D^1 \oplus \{\xi\}.$$

Proof. From (4.1) and autoparallel of $D^o \oplus \{\xi\}$ we get (a). Consequently from (4.2) and autoparallel of $D^1 \oplus \{\xi\}$ we get (b).

Moreover proposition (4.3) and theorem (4.1), we have

Theorem 4.2. Let M be a submanifold of a nearly hyperbolic β -Kenmotsu manifold with $\xi \in TM$. If M is invariant then M is nearly hyperbolic β -Kenmotsu. Therefore

$$h(X, PY) + h(PX, Y) - 3Ch(X, Y) = 0, \quad X, Y \in TM$$

Proof. From $D^1 \oplus \{\xi\} = \ker(F)$ and equation (4.2).

5. Integrability of the distribution $D^1 \oplus \{\xi\}$

Lemma 5.1. Let M be a semi-invariant submanifold of a nearly hyperbolic β -Kenmotsu manifold. For $X, Y \in D^1 \oplus \{\xi\}$ we get

$$(5.1) \quad Q[X, Y] = -h(X, PY) - h(PX, Y) + 2Q\nabla_X Y + 2Ch(X, Y).$$

Consequently

$$(5.2) \quad -h(X, PX) + Q\nabla_X X + Ch(X, X) = 0.$$

Proof. Using $D^1 \oplus \{\xi\} = \ker(Q)$ and (4.5) we get equation (5.1) and applying $X = Y$ in equation (5.1) we get (5.2).

From (5.2) and $D^1 \oplus \{\xi\} = \ker(Q)$, we present the following theorem:

Theorem (5.1) : The distribution $D^1 \oplus \{\xi\}$ on a semi-invariant submanifold of a nearly hyperbolic β -Kenmotsu manifold is integrable if and only if

$$h(X, PY) + h(PX, Y) = 2(Q\nabla_X Y + Ch(X, Y)).$$

Then we required the following :

Definition 5.1. Let M be a Riemannian manifold with the Riemannian connection ∇ . A distribution D on M will be called nearly autoparallel if for all $X, Y \in D$ we have $(\nabla_X Y + \nabla_Y X) \in D$ or equivalently $\nabla_X X \in D$.

Thus we get following flow chart

Parallel \Rightarrow Autoparallel \Rightarrow nearly autoparallel,

Parallel \Rightarrow Integrable,

Autoparallel \Rightarrow Integrable and

Nearly autoparallel + Integrable \Rightarrow Autoparallel.

Theorem 5.2. Let M be a semi-invariant submanifold of a nearly hyperbolic β -Kenmotsu manifold. Then the following four statements holds

- (a) the distribution $D^1 \oplus \{\xi\}$ is autoparallel,
- (b) $h(X, PY) + h(PX, Y) = 2Ch(X, Y), X, Y \in D^1 \oplus \{\xi\}$,
- (c) $h(X, PX) = 2Ch(X, X), X \in D^1 \oplus \{\xi\}$,
- (d) the distribution $D^1 \oplus \{\xi\}$, is nearly autoparallel are related by (a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d). In particular if $D^1 \oplus \{\xi\}$ is integrable then the above four statements are equivalent

Proof. (a) \Rightarrow (b) follows from theorem (5.1) putting $X = Y$ in (b) \Rightarrow (c), from (4.8) we get (c) \Rightarrow (d).

This completes the proof of theorem.

6. Integrability of the distribution $D^o \oplus \{\xi\}$

Lemma 6.1. Suppose M be a semi-invariant submanifold of a nearly hyperbolic β -Kenmotsu manifold. Then

$$(6.1) \quad 3(A_{FX}Y - A_{FY}X) = P[X, Y], \quad \text{for } X, Y \in D^o \oplus \{\xi\}.$$

Proof. Suppose $X, Y \in D^o \oplus \{\xi\}$ and $Z \in TM$. Then we have

$$-A_{FX}Z + \nabla_Z^{\perp}FX = \bar{\nabla}_ZFX = (\bar{\nabla}_ZF)X + F\bar{\nabla}_ZX$$

$$= (\bar{\nabla}_X F)Z - u(X)FZ - u(Z)FX + F\bar{\nabla}_ZX + Fh(Z, X).$$

Therefore

$$Fh(Z, X) = -A_{FX}Z + \nabla_Z^{\perp}FX + u(X)FZ - u(Z)FX - F\bar{\nabla}_ZX + (\bar{\nabla}_X F)Z$$

and hence we have

$$g(Fh(Z, X), Y) = -g(A_{FX}Z, Y) + g((\bar{\nabla}_X F)Z, Y) - g(A_{FX}Y, Z) - g((\bar{\nabla}_X F)Y, Z).$$

It means that

$$g(Fh(Z, X), Y) = -g(h(Z, X), FY) = -g(A_{FY}X, Z).$$

Therefore from the above two relations , we get

$$(6.2) \quad g(A_{FX}X, Z) = g(A_{FX}Y, Z) + g((\bar{\nabla}_X F)Y, Z),$$

for $X, Y \in D^o \oplus \{\xi\}$ we drive $(\bar{\nabla}_X F)Y$ as followed

$$\bar{\nabla}_X FY - \bar{\nabla}_Y FX = A_{FX}Y - A_{FY}X + \nabla_X^\perp FY - \nabla_Y^\perp FX$$

and

$$\bar{\nabla}_X FY - \bar{\nabla}_Y FX = (\bar{\nabla}_X F)Y - (\bar{\nabla}_X F)X + F[X, Y].$$

We get

$$(\bar{\nabla}_X F)Y - (\bar{\nabla}_Y F)X = A_{FX}Y - A_{FY}X + \bar{\nabla}_X^\perp FX - F[X, Y].$$

From (1.7) we get

$$(6.3) \quad (\bar{\nabla}_X F)Y = \frac{1}{2}(A_{FX}Y) - A_{FY}X + \nabla_X^\perp FY - \nabla_Y^\perp FX - F[X, Y] - u(Y)FX - u(X)FY.$$

In view of (6.2) and (6.3) we get the required result (6.1).

Theorem 6.1. Let M be a semi-invariant submanifold of nearly hyperbolic β -Kenmotsu manifold. Then the distribution $D^o \oplus \{\xi\}$, is integrable if and only if

$$A_{FX}Y = A_{FY}X, \quad X, Y \in D^o \oplus \{\xi\}.$$

Proof. Taking (6.1) in (6.2) for $X, Y \in D^o \oplus \{\xi\}$ we obtain $A_{FX}Y = A_{FY}X$.

Corollary 6.1. Let M be a semi-invariant submanifold of a nearly hyperbolic β -Kenmotsu manifold. Then the distribution $D^o \oplus \{\xi\}$ is integrable.

7. Totally umbilical and totally geodesic submanifolds

Lemma 7.1. Let M be a submanifold of nearly hyperbolic β -Kenmotsu manifold, tangent to ξ . Then the integral curve of ξ in M is a geodesic in M , and ξ is an asymptotic direction.

Proof. Since in a nearly hyperbolic β -Kenmotsu manifold we have $\bar{\nabla}_\xi \xi = 0$. Now in view of equation (2.1) we get $h(\xi, \xi) = 0$, this completes the proof.

Proposition 7.1. Let D be a distribution on a submanifold M of nearly hyperbolic β -Kenmotsu such that $\xi \in TM$. If MD -totally umbilical then M is D -totally geodesic.

Proof. Since D -totally umbilical we get

$$h(X, Y) = g(X, Y)K, \quad \forall X, Y \in D$$

A direction ξ at a point of M is an asymptotic direction if normal vector field $K = 0$, which implies that $h(X, Y) = 0$, which shows that M is totally geodesic. In view of this proposition we get the theorem:

Theorem 7.1. Every totally umbilical submanifold of a nearly hyperbolic β -Kenmotsu manifold, tangent to u , is totally geodesic.

8. Totally hyperbolic contact umbilical and totally hyperbolic contact geodesic submanifolds

Let M be a submanifold of an almost hyperbolic contact metric manifolds, tangent to ξ . In this case $TM = \{\xi\} \oplus \{\xi\}^\perp$, where $\{\xi\}$ is the distribution spanned by $\{u\}$ and $\{u\}^\perp$ is the complementary orthogonal distribution of $\{\xi\}$ in M .

Definition 8.1. A submanifold M of an almost hyperbolic contact metric manifold, tangent to ξ is called [16].

- (1) Totally hyperbolic contact umbilical if it is ξ^\perp totally umbilical and
- (2) Totally hyperbolic contact geodesic if it is $\{\xi\}^\perp$ totally geodesic.

The condition of totally hyperbolic contact umbilical and totally hyperbolic contact geodesic are respectively

$$(8.1) \quad h(F^2X, F^2Y) = g(F^2X, F^2Y)K, \quad \forall X, Y \in TM,$$

$$(8.2) \quad h(F^2X, F^2Y) = 0, \quad \forall X, Y \in TM$$

where K is normal vector field.

From (1) in (8.1), we have

$$(8.3) \quad h(X, Y) = -g(FX, FY)K - u(X)h(Y, \xi) - u(Y)h(X, \xi)$$

and

$$(8.4) \quad h(X, Y) = -u(X)h(Y, \xi) - u(Y)h(X, \xi) \text{ respectively.}$$

Theorem 8.1. If M is a totally hyperbolic contact umbilical semi-invariant submanifold of nearly hyperbolic β -Kenmotsu manifold then M is (D^1, D^o) mixed totally geodesic.

Proof. We have $h(X, Y) = g(X, Y)K$ and for $X, Y \in \{u\}^\perp$, $h(\xi, , \xi) = g(\xi, , \xi)K$

$$g(\xi, , \xi)K = 0, \text{ by using gauss equation } \Rightarrow K = 0.$$

Therefore M is (D^1, D^o) mixed totally geodesic.

Theorem 8.2. Let M be a totally hyperbolic contact umbilical submanifold of a nearly hyperbolic β -Kenmotsu manifold, then either $D^o = \{0\}$ or $(\text{Dim } D^o) = 1$ or the normal vector field K is orthogonal to FD^o .

Proof : If $\text{Dim } (D^o) > 1$, for each $H \in D^o$, $\exists X \in D^o$. Such that $g(X, H) = 0$ and $\|X\| = 1$. Then

$$\begin{aligned} g(K, H) &= g(h(X, X), Qh) = g(A_{QH}X, X) \\ &= g(A_{QX}H, X) = g(h(X, H)QX) = 0. \end{aligned}$$

This prove theorem.

REFERENCES

- [1] Bejancu, A. : On semi-invariant submanifolds of an almost contact metric manifold., An. Stint. Univ. "Al. L. Cuza" Lasi Sect. la Mab., 27 (1987), 17.
- [2] Srivastava, Asha and Bhatia, Kamal : CR-submanifold of a hyperbolic trans Sasakian manifold (under publication).
- [3] Srivastava, Asha : invariant submanifolds in hyperbolic Riemannian manifolds, J.T.S.I., 21 (2003).
- [4] Parsad, R., Sharma Shiv and Rai, A. K. : On Semi-invariant submanifolds of nearly trans-Sasakian manifolds., Bull. Cal. Math. Soc., 98(4) (2006), 347-366 .
- [5] Blair, D. E. : Contact manifold in Riemannian geometry, lecture notes in Math, 509, Springer Verlag (1976).
- [6] Bejancu, A. : Geometry of CR-submanifold, D.Reidel Publi.Co., Holland (1986).
- [7] Matsumoto, K. Shahid, M. H. and Mihai, I. : Semi-invariant submanifolds of certain almost contact manifold. Bull. Yamagata Univ. Natur. Sci. 13-3 (1994), 183.
- [8] Srivastava, Asha and Uperti, Jaya : CR-Submanifold of a hyperbolic Kahler manifold, J.T.S.I, 17 (1999).
- [9] Blair, D. E., Showers, D. K. and Yano, K. : Nearly Sasakian structures, Kodai Math. Sem. Rep., 27 (1976),175.
- [10] Matsumoto, K. : Semi-invariant submanifolds of certain class of almost contact manifold., Tensor, 43 (1986), 28.
- [11] Dube, K. K. and Bhatt, Latika : On CR-submanifold of trans hyperbolic Sasakian manifold. Acta ciencia indica, XXIXM (2003), 091.

- [12] Mishra, R. S. : Almost contact metric manifolds, Monograph1, Tensor Soc. of india, Lucknow (1991).
- [13] Blair, D. E. and Oubina, J. A. : Conformal and related changes of metric on the product of two almost contact metric manifolds., Publications Matematiques, 34 (1990), 199.
- [14] Calin, C. : Contact CR-submanifolds of a nearly Sasakian manifold, Demonstratio math., 29 (1996), 337.
- [15] Shahid, M. H. : CR-submanifold of trans Sasakian manifold., Indian J. Pure Appl. Math., 22(12)(1991), 1007-1012.
- [16] Tripathi, M. M. : A note on certain Legendre curves in a Kenmotsu manifold, Ganita, 51, No. 1 (2000), 57.