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Abstract

In the present investigation, we study applications of the theory of differ-
ential subordination and superordination, that are connected to Wright’s gen-
eralized hypergeometric function. Relevant connections of the results are noted
and the new results are also pointed out.
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1. Introduction

Let H be the class of analytic functions in the unit disk U := {z : |z| < 1}
and let HJa, p] be the subclass of H consisting of functions of the form

f(z)=a+ap’ +ap2" +..., peN={1,2,3...}.
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Let A(p) be the subclass of H consisting of functions of the form

oo
flz)=2"+ > anz", peN. (1.1)
n=p+1
For simplicity, let Hla] = Hla,1]. Also, let A(1) = A be the subclass of H
consisting of functions of the form

f2) =24 an2". (1.2)
n=2

For f and F' be members of the function class H, the function f is said to
be subordinate to F' in U, or the function F' is said to be superordinate to f in
U, if there exists a Schwarz function w(z), which is analytic in U with w(0) =0
and |w(z)| < 1 (z € U), such that f(z) = F(w(z)) (# € U). In such a case,
we write f < F (z € U) or F' < f (z € U). Furthermore if the function F is
univalent in U, then we have that the following equivalence holds (see [10, 17]);

[ <F(zelU) <« f(0)=F(0)and f(U) C F(U).
Let ¢(r,s,t;2) : C2 x U — C and let h be univalent in U. If p is analytic in U

and satisfies the following differential subordination

$(p(2), 20 (2), 2" (2); 2) < h(z) (2 € V), (1.3)

then p is called a solution of the differential subordination (1.3). The univalent
function ¢ is called a dominant of the solutions of the differential subordination
(1.3) or, more simply, a dominant if p < ¢ (2 € U) for all p satisfying (1.3) is
said to be the best dominant. A dominant ¢ that satisfies the subordination
relationship ¢ < p (z € U) for all dominants ¢ of (1.3) is said to be the best
dominant.

Let (r, s,t;2) : C*xU — C and h be analytic in U. If p and o(p(z2), 2p/(2),
22p"(2); z) are univalent in U and satisfying the following differential superordi-
nation

h(z) < @(p(2), 20'(2), 2" (2); 2) (2 € V), (1.4)
then p is called a solution of the differential superordination (1.4). An analytic
function ¢ is called a subordinant of the solutions of the differential superordi-
nation (1.4) or, more simply, a subordinant if ¢ < p (z € U) for all p satisfying
(1.4). A univalent subordinant ¢ that satisfies the subordination relationship
g < q (z € U) for all subordinants ¢ of (1.4) is said to be the best subordinant.
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Recently, Bulboaca [6] (see also [5]) considered certain classes of first order
differential superordinations as well as superordination-preserving integral oper-
ators by using the results of Miller and Mocanu[18]. Further, many researchers
([16, 19, 23]) have obtained sufficient conditions on normalized analytic func-
tions f(z) by means of differential subordinations and superordinations. Also
the results have been extended and discussed for multivalent functions by Aouf
and Bulboaca [1], Aouf et al., [4], Cho et al., [7] [9] and Goyal et al., [13] and
others.

For functions f(2) = 2P + 3707 ) an2" and g(z) = 2P + 3% .| by2", the
Hadamard product (or convolution) of f and g is defined by

(f*xg)(z) =2+ Z anbn 2" x f)(2). (1.5)

n=p+1

For positive real parameters a1, A; ..., oq, Ayand 1, By ..., B, B (I,m €
N =1,2,3,...) such that

m l
14> Bp—) A, >0 (1.6)
n=1 n=1
the Wright generalization [26]

1Wml(a1, A1), ..oy (auy Ar); (B1, Bh)s - - -5 (Bmy B 2]

= Z\Ijm[(ana An)l,l(ﬁna Bn)l,m; Z]

of the hypergeometric function ,Fy(a1,...,ap; B1,. .., Bg; 2) is defined by

1ol (as, A1 (B, Be)1m; 2 Z{Hr at—l—nAt}{HF Bi+nBi}~ L ,z €U

n=0 t=0

IfA =1(t=1,2,...,1) and B, = 1(t = 1,2, ...,m) we have the relationship:
Von[(ar, )18 D 1ms 2] = iFmlan, - o3 815+ B 2)

_y~ (@0 2
_nzzo (Bu)n - - - (Bm)n ! (1.7)

(Il <m+1;1,m € Ny = NU{0};z € U) is the generalized hypergeometric
function ( see for details [26] ) where N denotes the set of all positive integers
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and (), is the Pochhammer symbol and

l -1 m
Q= (H F(%)) (H F(ﬁt)) : (1.8)
t=0 t=0

By using the generalized hypergeometric function Dziok and Srivastava
[11] introduced the linear operator which was subsequently extended by Dziok
and Raina [12] (see also [3]) by using the Wright generalized hypergeometric
function.

Let Op[(ou, Ae)1,; (B, Be)i,m) © A(p) — A(p) be a linear operator defined
by
Opl(as, At)1 (Be, Be)imlf(2) = 2P WU, [(ow, Ae)1as (B, Be)ims 2] * f(2).

We observe that, for f(z) of the form (1.1), we have

Opl(ats A)1ss (B, Be)iml f(2) = 2P + Z onplar) anz" (1.9)
n=p+1

where o, (1) is defined by
o o(01) = Qa1 + A1(n—p))...T(ag + Ai(n — p))
MV (= p)T By + Bi(n —p)) .. T (B + Bu(n = p)
and  is given by (1.8).

(1.10)

If, for convenience, we write

Gp[al]f(z) = Gp[(a17A1)ﬂ CERE) (alv Al>; (51, Bl)ﬂ EER) (ﬁmv Bm)]f(z> (1'11)
introduced by Dziok and Raina [12]. In view of (1.9), we get,

2A1(0p[a1]f(2)) = a10,[a1 + 1] f(2) — (a1 — pA1)Oplan]f(2), A1 > 0. (1.12)

We observe that for A, = 1(t = 1,2,...,1) and B, = 1(t = 1,2,...,m), we
obtain Dziok-Srivastava linear operator [11]. Also for f € A, the linear operator
©1[a1] = Ofa1] was introduced by Dziok and Raina [12] and extensively studied
by others [3, 4, 16].

Further, we note that for f € A(p), A = 1(t = 1,2,...,1), B, = 1(t =
1,2,...,m), l =2 and m = 1, we have the following well known operators.
(1) For a1 = a, ap = 1 and 31 = ¢, we have O,la, 1;¢|f(z) = Ly(a,c)f(z)
(a > 0;¢ > 0;p € N) introduced and studied by [22].
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(2) For y = 0 +p, g = p and B = p, we get ©,[0 + p,p;p|f(z) =
DIFTP=Lf(2) (6§ > —p;p € N) where D**P~1 is § + p — 1-th order of
Ruscheweyh derivative, introduced and studied by [14].

(3) For oy = 14p, ap = 1 and 51 = 14+p—6, we get Op[1+p, 1; 1+p—6]f(2) =
Qi’p f(2) where Q‘}p was introduced and studied by Srivastava and Aouf
[24], defined by

O f(z)= 2"DI (0<6<LpeN),

where D? is the fractional derivative operator.

(4) For a1 = c+p, ag = 1 and f1 = c+p+ 1, we get Oylc + p,1;¢ +
p+ 1]f(2) = Jepf(z) where J., is the generalized Bernardi-Libera-
Livingston-integral operator, defined by

4
Tepf(z) = 1L /0 LTt (e > —pip € ).

(5) For oy =p+1, az =1 and 1 = n+p, we have Op[p+1,1;n+p|f(z) =
In,f(2) (n€ Zyn > —p;p € N) where the operator I, , was introduced
and studied by Liu and Noor [15].

(6) For ag =n+p, ag = c and 1 = a, we have O,[n +p,c;alf(z) = I, f(2)
(a,c € R\ Zo;n > —p;p € N) where the operator I, is Cho-Kwon-
Srivastava operator [8].

The main object of the present paper is to find a sufficient condition for
certain normalized analytic functions f(z) in U such that (f * ¥)(z) # 0 and f
satisfy

o) < (“Qn 2D L0y )f )Y

(a+ B)zP <q(2), (1.13)

where ¢1, g2 are given univalent functions in U with ¢1(0) = 1, ¢2(0) = 1 and
[o.¢] oo
O(z)=2P+ > A2", ¥(2) =2+ > pupz" are analytic functions in U with

n=p+1 n=p+1
An >0, p, > 0 and Ay, > py,. Also, we obtain the number of known results as

their special cases.

For our present investigation, we shall need the following:

Lemma 1.1. [21, p.159, Theorem 6.2] The function L(z,t) = a1(t)z+ag(t)2%+
. with a;(t) # 0 for ¢t > 0 and tlim |a1(t)| = +00, is a subordination chain if
—00
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OL(z,t)

0z

ot
Definition 1.2. [18, p.817, Definition 2] Denote by @, the set of all functions
f that are analytic and injective on U — E(f), where
B(f) = {C € 0U s lim f(2) = o0)
z—
and are such that f'(¢) # 0 for ¢ € 9U — E(f).

Lemma 1.3. [17, p.132, Theorem 3.4h| Let ¢ be univalent in the unit disk U
and € and ¢ be analytic in a domain D containing ¢(U) with ¢(w) # 0 when
w € ¢(U). Set

Q(z) = 2q'(2)0(q(2)) and h(z):=0(q(z)) + Q().
Suppose that

(1) Q(z) is starlike univalent in U and
(2) %{Zhl(z)} > 0 for z € U.

Q(z)
If p is analytic with p(0) = ¢(0), p(U) C D and
0(p(2)) + 20/ (2)0(p(2)) < 0(a(2)) + 24'(2)d(a(2)), (1.14)
then
p(z) < q(?)

and ¢ is the best dominant.
Lemma 1.4. [6, p.289, Corollary 3.2] Let g be convex univalent in the unit disk

U and 9 and ¢ be analytic in a domain D containing ¢(U). Suppose that

(1) R{P(a(2))/p(a())} > 0 for = € U and
(2) ¥(z) = 2¢'(2)p(q(z)) is starlike univalent in U.

If p(z) € H[g(0),1] N Q, with p(U) C D, and J(p(z)) + 2p'(2)p(p(z)) is univalent
in U and

9(q(2)) + 24/ (2)(q(2)) < 9(p(2)) + 29 (2)2(p(2)); (1.15)
then ¢(z) < p(z) and ¢ is the best subordinant.

2. Subordination results

Using Lemma 1.3, we first prove the following theorem.
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Theorem 2.1. Let ®, ¥ € A(p), 1, € C (i=1,...,4)(74 #0), p,a, f € C such
that u # 0 and a+ 8 # 0, and ¢ be convex univalent with ¢(0) = 1, and assume
that

By 222 24 () 2q" () B
51%{74(1( )+ ) (2) ) + 1+ /) }>0 (z € U). (2.1)

If f € A(p) satisfies

AOVI(f; @, 0) =
2q'(2)

A(f, @, v1,72,73,74) <71 + 72¢%(2) + 739(2) + 14 ) (2.2)
where
ALY (f; @, W)
2p
"t + 70 <a®p[a1 + 1](f * C(IZ(j)ﬁ—{)—fp@M@ﬂ(f * \I’)(2)>
aOplar +1)(f * )(2) + BOp[an](f * ¥)(2) \*
B +73 < (a + ﬁ)zp > (2 3)

At (a(al + D[Op[ar + 2)(f * @) (2) = Oplar + (S * P)(2)]
aOplay + 1)(f * @)(2) + SOp[aa](f * ¥)(2)

B0 [Opon + 1](f * ¥)(2) — Oplen](f \I’)(Z)])

)

and A; > 0, then

0O, + 1](f * @)(2) + BO,fa](f * V() ) "
( (@t B)zr > < al@)

and ¢ is the best dominant.

Proof. Define the function p by

ple) = (2l ML DE L POl + 1))

o
B ) (zeU). (24)
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Then the function p is analytic in U and p(0) = 1. Therefore, by making use of
(2.4) and (1.12), we obtain

Y1+ 720%(2) + Y3p(2) + 14 Zgéij)

a@da1+1Kf*®ﬂz)+ﬁ@pMﬂLf*WXd)2“
@+ B)

’Y1+’Y2<

s <Oé@p[041 + 1(f * ®)(2) + B8p[cu](f ‘I’)(Z))”

_ (a4 p)zP 25)

JeCt] (a(al + D[Oplan + 2)(f * @)(2) = Oplen + 1(f * @)(2)]
aOplar +1](f * )(2) + AOp[an](f * ¥)(2)

Ay
+Ba1[Op[ar + 1](f * ¥)(2) — Op[an](f ‘P)(Z)]) .

By using (2.5) in (2.2), we have

2p'(2)
p(2)

<o+ ra(2) +a(e) + 2L (26)

Y1+ 71202(2) + v3p(2) + Y4

By setting

O(w) ==y +7uw?(2) + 3w and @w) = %,
it can be easily observed that 0(w), ¢(w) are analytic in C — {0} and ¢(w) # 0.
Also we see that

Q(2) = 2q'(2)¢(q(2)) = 74

and
2q'(2)
q(2)

h(z) == 0(g(2)) + Q(2) = 1 +72¢%(2) +13a(2) +m

It is clear that Q(z) is starlike univalent in U and
zh'(2) } {73 272 o 2q'(2) 2q"(2) }
R =R< —q(2) + —q¢°(2) — + 1+ > 0.
V76 WO ST T

By the hypothesis of Theorem 2.1, the result now follows by an application of
Lemma 1.3.

By fixing ®(z) = £~ and U(z) = &= (or,up = Ay = Ln > p+1,p € N)
in Theorem 2.1, we obtain the following corollary.
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Corollary 2.2. Let v, € C (i =1,...,4)(y4 # 0), p,a, 8 € C such that pu # 0
and a +  # 0, and ¢ be convex univalent with ¢(0) = 1, and (2.1) holds true.
If f € A(p) satisfies

2
N+ (a@p[al - 1(]£ (j);)j@p[al]f@)) !
a®plan + 1] f(2) + BO,[aa] f(2) ¥
s ( (o +B)= >
LAk (a(a1+1)[ plar +2]f(2) — Oplan +1]f(2)]
Ay a®play + 1]f(2) + BOplai]f(2)
+B8a1[Oplar + 1]f(2) — Oplan] f (Z)]>

2q' (2
<Y1+ 720%(2) + 73q(2) + 1 q(i)),

and Ay > 0, then

(a@p[al +1]f(2) + 6®p[a1]f(z)>“
(o + B)zP

< q(2)

and q is the best dominant.

By taking A, =1 (t=1,...,)and B, =1 (t=1,...,m), l =2, m = 1,

ag =1, a2 =1, 01 =1and ¢(z) = ¥(2) = lz_pz in Theorem 2.1, we state the

following corollary.

Corollary 2.3. Let v, € C (i =1,...,4)(y4 # 0), p,a, 8 € C such that pu # 0
and o 4+ 8 # 0, and ¢ be convex univalent with ¢(0) = 1, and (2.1) holds true.
If f € A(p) satisfies

azf'(z) + Bf(2)\* azf'(z) + Bf(2)\*
e < (a+B)z > e ( (a+ B)z >
al22f"(2) + B2 () — F(2)]
ok < azf'(2) + Bf(2) >
<1+ 2282+ a(z) + L
then
0zf'(2) + BF(2)\"
( (a+ B)z» ) = atz)

and ¢ is the best dominant.
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By fixing @« = 1 and 8 = 0 in Corollary 2.3, we obtain the following
corollary.

Corollary 2.4. Let v; € C (i = 1,...,4)(v4 # 0), p € C such that g # 0 and ¢
be convex univalent with ¢(0) = 1, and (2.1) holds true. If f € A(p) satisfies

A2 (FE) + s (f1(2)" + 74#1{,/;;) <Y1+ 720 (2) + 3p(2) + 1 zﬁég) ;
then , u
<J; p(_zl) > <4q(2)

and ¢ is the best dominant.

By taking ¢(z) = %igz (-1 < B < A <1)in Theorem 2.1, we have the

following corollary.

Corollary 2.5. Let &, ¥ € A(p), v, € C(i=1,...,4)(74 #0), p, v, B € C such
that u # 0 and a + 8 # 0, and ¢ be convex univalent with ¢(0) = 1. Assume

that
1+ A 2y (14 Az\? 1 — AB2?
R (ZEEZ) 22 (2EAEY ° > 0.
Y4 \1+ Bz v4 \ 1+ Bz (1+ Az)(1+ Bz)

If f e A(p) and

_ 1+ Az\? 1+ Az (A—B)z
A('Yz)% (I) \I/ -
(f; @, ¥) <71+ 72 <1+Bz> TR YA A+ Ba)’
then
a®plon + 1](f * @)(2) + BO,[ar](f * V) (2)\* 1+ Az
(e + B)zP 1+ Bz
and %Ig'z is the best dominant.

3. Superordination results
Now, by applying Lemma 1.4, we prove the following theorem.

Theorem 3.1. Let &,V € A(p), v, € C (i =1,...,4)(y4 #0), pu,, 5 € C such
that u # 0 and a4 8 # 0, and ¢ be convex univalent with ¢(0) = 1, and assume
that

R {ﬁq(z) + 2,742&(2)} > 0. (3.1)
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It f € Ap), (el POl )T ¢ Hilg(0),1) N Q. Let AC(f;

®, U) be univalent in U and

) 4 ma() + 9 < A0, ), (3.2)

where A(%‘)%(f; ®, U) is given by (2.3), then

0@, fon + 1(J * ®)(2) + B0, [on] (f + T)(=) |
“”<< (@B >

and ¢q is the best subordinant.

Proof. Define the function p by

_ (9Oplas + 1](f * B)(2) + FOplaa](f * V)(2) )"
p(Z) _( (a—i—ﬁ)zl’ > :

With simple computation from (3.3), we get,

(3.3)

/
AWWﬁ@m=w+wﬁ@+%ma+mﬁgﬁ
then
Y1+ 12¢%(2) + v3q(2) + Y4 24(2) <71 4+ 72p%(2) + v3p(2) + Y4 ' (2)
q(2) p(2)

By setting 9(w) = v1 + yow? + 3w and ¢(w) = 1 it is easily observed

that ¥(w) is analytic in C. Also, ¢(w) is analytic in C — {0} and ¢(w) # 0.

If we let

L@w:=ﬁmaw¢mwmﬂ@=w+wf@+%“”*wﬁg)

= a(t)z+... (3.4)

Differentiating (3.4) with respect to z and ¢, we have

()]

OL(z,t)
0z

= 2vq(2)q (2) + 3¢ () + t1a

and
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Also,
OL(0,1t)
0z

oy |82 1
=g (0) [74 A 1(0) +tq(O)} '

From the univalence of ¢ we have ¢/(0) # 0 and ¢(0) = 1, it follows that
ay(t) # 0 for t > 0 and tlim la1(t)| = +oo.
—00

A simple computation yields,

9 P ) QY )+ 222+ (14228 Ly
aL(z1) ( q 74q q :

Ya q'(2)

ot

Using the fact that ¢ is convex univalent function in U and 74 # 0, we have,

OL(z0) .y -
aZ . 19 “2 2
%{zaL(Zﬂ:) } >0 if %{Mq(z)%— 74 q (z)} >0, zeU, t>0.

ot

Now Theorem 3.1 follows by applying Lemma 1.4.

By fixing ®(z) = % and ¥(z) = 1"’_pz in Theorem 3.1, we obtain the

following corollary.

Corollary 3.2. Let v, € C (i =1,...,4)(y4 # 0), p,a, 8 € C such that pu # 0
and a + § # 0, and ¢ be convex univalent with ¢(0) = 1, and (3.1) holds true.

If f € Ap), (et A0slenl] ‘Z>)“ € H[g(0),1] N Q. Let

a@#n+ﬂﬂ@+ﬁ@#ﬂﬂ@>%

Y1+ V2 ( (a+ B)2r

a®plan + 1] f(2) + BOp[a1] f(2) \*
B ( (a+ Bz )

Yap <a(al + D[Oplen + 2]/ (2) = Oplan +1]f(2)]

Ay a8, [01 +11f(2) + BO,la1] F(2)

+B1[Oplan +1]f(2) — ®p[a1]f(z)]>

be univalent in U and
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Y1+ 72¢%(2) + 73q(2) + Y4 Z;](/S) <

a®plar +1]£(2) + BO[en] £(2) \
Y1+ 72 ( (a + B)2r )
aBplar +1]f(2) + O[] f(2) \*
+’73 < (Oé + 5)21) >
+M <a(a1 + 1)[Op[a1 + 2] f(2) — Oplaa + 1] f(2)]
Ay aOplar + 1]f(2) + fO,[a1] f(2)
+Ba1[Oplan +1]f(2) — ep[al]f(?«“)]>

)

then

aOplar +1]f(2) + BOp[an] f(2) \ "
q(z) < ( (a+ ) >
and q is the best subordinant.

When 4, =1 (t=1,...,0)and B, =1 (t =1,....,m),l =2, m = 1,
ar =1, a0 =1, 1 =1 ®(2P) = ¥(2P) = 1% in Theorem 3.1 with o = 1 and
B = 0, we derive the following corollary.

Corollary 3.3. Let v; € C (i = 1,...,4)(74a # 0), 0 # p € C and ¢ be
convex univalent with ¢(0) = 1, and (3.1) holds true. If f € A(p), (f'(2))" €
H[g(0),1] N Q. Let v1 + 7o (f/(2))™ + 3 (f'(2))" + 74uzf,(§§) be univalent in U
and

2q'(2)

) Smtm () + 9 (f(2)" +~ quf”(z)

TGy

Y+ 720°(2) +73q(2) + 1

then ¢(2) < (%)u and ¢ is the best subordinant.

By taking ¢(z) = (1 + A2)/(1+ Bz) (-1 < B < A <1) in Theorem 3.1,
we obtain the following corollary.

Corollary 3.4. Let ®,¥ € A(p), v, € C i = 1,...,4)(va # 0), p,a, € C
such that u # 0 and a4+ 8 # 0, and g be convex univalent with ¢(0) = 1, and

2
1442\ | 29 (1+4
%{zi(JBi)*Jf(liBi) }>O- If

aOplar +1](f * )(2) + BOp[an](f * ¥)(2) \"
(a4 B)zP ) € H]

f € Ap), ( q(0),1]N Q.
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Let AG1(f; ®, ¥) be univalent in U and

1+Az)2 1—|—Az+ (A— B)z
1+ Bz B1+ B2 74(1+Az)(1+Bz)

7 + 79 ( < AU f: D, W),

then

1+4z <a@p[a1 + U+ ®)(2) + BOp[an](f * ‘1’)(2)>“
1+ Bz (o + B)zP

1+ Az
1+ Bz

and is the best subordinant.

4. Sandwich results

There is a complete analog of Theorem 2.1 for differential subordination
and Theorem 3.1 for differential superordination. We can combine the results
of Theorem 2.1 with Theorem 3.1 and obtain the following sandwich theorem.

Theorem 4.1. Let ¢ and g3 be convex univalent in U, v; € C (i = 1,...,4)(y4 #
0), u,a,p € C such that p # 0 and a + 5 # 0, and let g2 satisfy (2.1) and

q satisfy (3.1). For f,®, ¥ € A(p), let ("‘@P[‘“H](f*‘?ii?gtfp@p[al](f*‘y)(z))ﬂ €

H[1,1] N Q and AGT (f;®, V) defined by (2.3) be univalent in U satisfying

z2qh (2 .
Y1+ 7265 (2) + 13q1(2) + V4 qqll((z)) < AL f; D, W)

<Y1+ 7263 (2) + 1392(2) + 74

2q5(2)
q2(2)

)

then

aOplar + 1(f * @)(2) + BOp[aa](f * ¥)(2) \*
0z = ( (a+ B)=r >

and ¢qp, go are respectively the best subordinant and best dominant.

< QQ(Z)

By taking q1(z) = £E412 (=1 < By < Ay < 1) and ga(2) = 15422 (-1 <

By < As < 1) in Theorem 4.1 we obtain the following result.

Corollary 4.2. For f,®, U € A(p), let (az(f*é)l(z)Jrﬁ(f*\I})(z))u € H[1,1]n@Q

(@tB)z"
and AOV1(f; ®, U) defined by (2.3) be univalent in U satisfying
1+ Az 2 1+ Az (Al—Bl)Z V4
AOD(F- P T
n+nli g7 B B T O A B (f;,9)
1+ A 1+ A Ay — B
<+ () + 2 (4; — By)2

1+ B2 " B15Boz " 1+ A92)(1 + Baz)
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then

1+A1z< az(f«=®)(z)+ B(f*¥)(2) “<1+A22
1+ Bz (o + B)zP 1+ Boz

1+A1z 14+Asz2 . . .
1B 115 are respectively the best subordinant and best dominant.

and

5. Remarks and Conclusion

We remark that, one can easily restate Theorem 4.1 for the different choices
of ¢(Z)7 \Il(z)7 Ata Bt7 luma a1, a2, ...0, ﬂle?) e Bm and for V1,725,773, V4-

Remark 5.1.
(1) Puttlngp:171:17 72:()7 7320, Oézl,,@:(), Q(Z) parrd (be

= (1_»)2ab
C\{0}), pu=a and 4 = % in Corollary 2.3, we get the re31(11t o)btained
by Obradovic et al., [20, Theorem 1].

(2) Puttingp=1v=1,7%=0,3=0a=0,5=1, q(z)zﬁ (b e
C\ {0}), p = 1 and 74 = § in Corollary 2.3 and then combining this
together with Lemma 1.3, we obtain the result of Srivastava and Lashin
[25, Theorem 3|.

(3) Taking p =179 =1, %2 =0,13=0a =0, =1, 4 =
(a,beC,|A\[ < %), n=aandq(z) = (1— z)2abeoshe™*
we obtain the result of Aouf et al. [2, Theorem 1].

(4) By taking A, =1 (t=1,....,0)and By=1(t=1,....m),p=F=m =
1, and 79 = 73 = a = 0, in Corollary 2.2, we have the result obtained
by the second author [19, Theorem 3.5].

(5) By setting taking A, =1 (t=1,...,)and By=1(t=1,...,m), l =2,
m=1lLa=m=Ff=la=r=13=0,=n=p=1,%(2) =%
and ¢(z) = (1+Bz)*A=B)/B in Corollary 2.5, we get the result obtained
by Goyal et al., [13, Corollary 3.6].

P

abcos\

in Corollary 2.3,

We conclude this paper by remarking that in view of the function class
defined by the subordination relation (1.13) and expressed in terms of the con-
volution (1.5) involving arbitrary coefficients, the main results would lead to
additional new results. In fact, by appropriately selecting the arbitrary se-
quences (®(z) and ¥(z)) and specializing the parameters A, =1 (t = 1,...,1)
and B, =1 (t =1,...,m), [, m, o, B, p, v1,72,73 and 4 and the function
q(z) the results presented in this paper would find further applications for the
classes which incorporate generalized forms of linear operators in Theorem 2.1,
Theorem 3.1 and Theorem 4.1 would eventually lead further new results. These
considerations can fruitfully be worked out and we skip the details in this regard.
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