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Abstract

In the present paper we treat the Finsler space F ∗n equipped with the

fundamental function L∗ which is obtained by the conformal transformation

of the metric ds =
(
gij(y) y

i yj
)1/2

+ di(x, y) y
i. We have here expressed the

Cartan’s connection of F ∗n = (Mn, L∗) in terms of the one of Fn = (Mn, L)

using the difference tensor Di
jk. Also, we have obtained the v-curvature tensor

S∗
hijk of the Finsler space F ∗n.
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1. Introduction

G. Rander’s in 1941 introduced a Finsler space with metric ds = α + β,

where α2 = gij(x)y
iyj is a Riemannian metric and β = bi(x)y

i is a one form.

The geometrical properties of the Rander’s space have been studied by various

authors [7], [8] etc. In all these works the covariant vector bi is assumed to be

the function of positional co-ordinates (x) only. Later in 1971, M.Matsumoto [5]

studied the properties of a Finsler space F ′n = (Mn, L′) obtained from a locally

Minkowskian space Fn = (Mn, L) by the following transformation:

L′(x, y) = L(y) + bi(x) y
i.

In 1980, H. Izumi [2] introduced the h-vector while studying the conformal

transformation of Finsler spaces. The h-vector di is assumed to be v-covariantly

constant with respect to Cartan’s connection CΓ and is not only the function

of positional co-ordinates but it is also the function of directional arguments.
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The conformal theory of Finsler metric has been defined by Hashiguchi [1]

and Knebelman [3]. According to the conformal theory two metric functions are

said to be conformal if the length of an arbitrary vector in one is proportional

to the length in the other.

This paper deals with a metric:

(1.1) L∗(x, y) = eσ (L(y) + δ(x, y))

where σ(x) is a scalar field, L =
(
gij(y)y

iyj
)1/2

is a Minkowski metric and

δ = di(x, y)y
i, di being h-vector. The metric L = L(y) + δ in equation (1.1)

has been studied by Prasad [6 ]. It is similar to the Rander’s one but with

different tensor properties in a way that the Riemmanian space with metric

α2 = gij(x)y
iyj is characterized by Ci

jk = 0, on the other hand the Minkowski

space is characterized by Rhijk = 0, Chij∥k = 0. Besides this the covariant

vector bi of the one-form vanishes on differentiation while the h-vector di satisfies

∂̇jdi = ρL−1hij .

The purpose of the present paper is to study the conformally transformed

Finsler space with metric defined in (1.l). We shall here determine the Cartan’s

connection CΓ of the Finsler space F ∗n in terms of the one of Fn = (Mn, L).

Also the v-curvature tensor S∗
hijk of the space F ∗n has been obtained.

2. Preliminaries

Let Mn be an n-dimensional smooth manifold and F ∗n = (Mn, L∗) be an

n- dimensional Finsler space equipped with the fundamental function L∗(x, y)

defined as :

(2.1) L∗(x, y) = eσ
{
(gij(y)y

iyj)
1/2

+ di(x, y)y
i
}
.

Let di(x, y) be a vector field in the Finsler space Fn = (Mn, L). Then the

vector di is called as h-vector if it satisfies the following conditions:

(2.2) (i) di∥j = 0

and (ii) LCh
ijdh = ρhij .

Here ||r denotes the v-covariant differentiation with respect to the Cartan’s

connection CΓ, Ch
ij is Cartan’s C-tensor and hij is the angular metric tensor.

The function ρ is given by:
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(2.3) ρ = 1
(n−1)LC

idi.

where Ciis the torsion vector field Ci
jkg

jk.

For an h-vector we have the following lemmas defined in [2] :

Lemma 2.1. If di is an h-vector then the function ρ and l∗i = di − ρli are

independent of y.

Lemma 2.2. The magnitude d of an h-vector di is independent of y.

Since di is an h-vector, thus from (2.2) and (2.3) we get:

(2.4) (i) ∂̇jdi = ρL−1hij

and (ii) ∂̇jδ = dj .

The following notations have been used throughout the paper:

∂̇jL = Lj , ∂̇i∂̇jL = Lij etc.

and the quantities referring to F ∗n are indicated using *.

3. Fundamental Tensors

If li, hij , gij and Cijk denote the normalized supporting element, angular

metric tensor, metric tensor and Cartan’s C-tensor respectively of the space

Fn = (Mn, L) then the corresponding quantities of the spaceF ∗n = (Mn, L∗)

equipped with metric L∗ defined in (2.1) are determined using the following

relations between two spaces Fn and F ∗n:

(3.1) (a) L∗
i = eσ(Li + di),

(b) L∗
ij = eσ(1 + ρ)Lij ,

(c) L∗
ijk = eσ(1 + ρ)Lijk

and

(d) L∗
ijkh = eσ(1 + ρ)Lijkh. Thus, from (3.1) we have:

(3.2) l∗i = eσ(li + di)

and h∗ij = eσλhij .

where λ = τ(1 + ρ)



164 Asha Srivastava and Priya Arora

and τ = L∗L−1.

To obtain the value of g∗ij we substitute values from (3.2) in the relation

g∗ij = h∗ij + l∗i l
∗
j and get the following result:

(3.3) g∗ij = eσ[λgij + (eσ − λ)lilj + eσ(lidj + ljdi + didj)].

The relation between the contravariant components of the fundamental tensors

are derived as:

(3.4) g∗ij = e−σ

λ [gij − (1+ρ)
λ (lidj + dilj)− (1+ρ)2

λ2 θlilj ].

where θ = 1− d2 − e−σλ,

d2 = gijd
idj

and λ being defined in (3.2).

Theorem 3.1. The fundamental metric function g∗ij of the conformally trans-

formed Finsler space F ∗n = (Mn, L∗) and its contravariant component in terms

of Fn = (Mn, L) are given as:

g∗ij = eσ [λgij + (eσ − λ)lilj + eσ(lidj + ljdi + didj)]

and

g∗ij =
e−σ

λ

[
gij − (1 + ρ)

λ
(lidj + dilj)− (1 + ρ)2

λ2
θlilj

]
.

From the lemma (2.1) we get:

(3.5) ∂̇iλ = eσ

L (1 + ρ)mi.

where

(3.6) ∂̇iλ = ∂λ
∂yi

and mi = di − δ
L li.

From the definition of mi, we have the following results:

(3.7) (a) mi.l
i = 0,

(b) mi.d
i = d2 − δ2

L2 = mi.m
i = m2,

(c) hij .m
i = hijd

i = mj

and



On Conformal Tranformation of Finsler Spaces with the Metric.... 165

(d) Ch
ijmh = ρ

Lhij .

We know that:

(3.8) 2Cijk = ∂̇khij +L−1(hiklj + hjkli).

Differentiating (3.2) with respect to yk and using the relation (3.8) we have:

(3.9) C∗
ijk = eσ[λCijk + eσ (1+ρ)

2L cycl(i, j, k)(hijmk)].

where mk is defined in (3.6) and cycle (i, j, k) stands for cyclic interchange of i,

j and k.

A non-Riemannian Finsler space is called C-reducible if the torsion tensor Cijk

is of the form [4]:

Cijk = hijMk + hjkMi + hikMj

From (3.2) and (3.9) it follows that:

Proposition 3.1. If the Finsler space Fn is C-reducible then the Finsler space

F ∗n is also C- reducible.

Multiplying (3.4) with (3.9) and using (2.2) and (3.7) we get:

(3.10) C∗h
ij = Ch

ij +
eσ

2L∗ (hijm
h + hhi mj + hhjmi)− eσ

L∗Aijl
h.

where Ch
ij = ghkCijk

and Aij =
[
e−σρ+ 1

2τ
−1m2

]
hij + τ−1mimj .

Theorem 3.2. The Cartan’s tensor of the conformally transformed Finsler

space F ∗n = (Mn, L∗) expressed in terms of Fn = (Mn, L) takes the following

forms:

C∗
ijk = eσ[λCijk + eσ

(1 + ρ)

2L
cycl(i, j, k)(hijmk)]

and

C∗h
ij = Ch

ij +
eσ

2L∗ (hijm
h + hhi mj + hhjmi)−

eσ

L∗Aijl
h.

If L is a Riemmanian metric, then

(I) Cijk = 0.

Hence the Cartan’s tensor is expressed as:

C∗
ijk = h∗ijM

∗
k + h∗ikM

∗
j + h∗jkM

∗
i
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where M∗
i = eσ

2L∗mi.

Hence we have:

Theorem 3.3. The conformally transformed Finsler space F ∗n is C-reducible

if the metric L is Riemannian and does not vanish.

4. Cartan’s Connection of F ∗n

The Cartn’s connection CΓ is denoted by CΓ = (F i
jk, N

i
k, C

i
jk) where N

i
k =

F i
0k = yjF i

jk is the non-linear connection and Ch
ij = ghkCijk.

In virtue of Lij∥k = 0, we have:

(4.1) ∂kLij = LijrN
r
k + LrjF

r
ik + LirF

r
jk.

Differentiation of (3.1)(b) leads to:

(4.2) ∂kL
∗
ij = eσ[(1 + ρ)∂kLij + (ρk + (1 + ρ)σk)Lij ].

where ρk = ∂kρ and σk = ∂kσ.

We shall now suppose

(4.3) Di
jk = F ∗i

jk − F i
jk.

Clearly the difference Di
jk is a tensor of type (1, 2).

On account of (4.1) and (4.3) we may write (4.2) as:

(4.4) (1 + ρ)
[
LijrD

r
ok + LirD

r
jk + LrjD

r
ik

]
= (ρk + (1 + ρ)σk)Lij .

Now, differentiation of (3.1)a. yields:

(4.5) ∂jL
∗
i = eσ[∂jLi + ∂jdi + (Li + di)σj ].

In virtue of Li∥j = 0 and dir = ρLir, we get:

(1+ ρ)LirN
∗r
j +(Lr + dr)F

∗r
ij = (1+ ρ)LirN

r
j +(Lr + dr)F

r
ij + di∥j +(Li+ di)σj .

By means of (3.1) and (4.3) the above equation reduces to:

(4.6) (1 + ρ)LirD
r
oj + (Lr + dr)D

r
ij = di∥j + (Li + di)σj .

Now to find the difference tensor we introduce the following lemma defined

in [4]:
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Lemma 4.1. The system of algebraic equations

(i) LirA
r = Bi

and (ii) (lr + dr)A
r = B

has a unique solution Ar for given Bi and B such that Bi.l
i = 0. The solution

is given by:

Ai = LBi + τ−1(B − LBβ)l
i

where subscript β denotes contraction with di.

Now, the equation (4.6) is equivalent to two equations:

(4.7) (1 + ρ)(LirD
r
oj + LjrD

r
oi) + 2(lr + dr)D

r
ij = 2Eij

and

(4.8) (1 + ρ)(LirD
r
oj − LjrD

r
oi) = 2Fij .

where

(4.9) 2Eij = [di∥j + (Li + di)σj ] + [dj∥i + (Lj + dj)σi]

and

2Fij = [di∥j + (Li + di)σj ]− [dj∥i + (Lj + dj)σi].

On the other hand equation (4.4) is equivalent to:

(4.10) (1+ρ)(2LjrD
r
ik+LijrD

r
ok+LjkrD

r
oi−LikrD

r
oj) = (1+ρ)Uijk+Vijk.

where Uijk = σkLij + σiLjk − σjLik

and Vijk = ρkLij + ρiLjk − ρjLik.

Contraction of (4.7) and (4.8) with yj yields:

(4.11) (1 + ρ)LirD
r
oo + 2(lr + dr)D

r
io = 2Eio

and

(4.12) (1 + ρ)LirD
r
oo = 2Fio.

Similarly, contracting (4.10) with yj and interchanging j and k we get:

(4.13) (1 + ρ)(LirD
r
oj + LjrD

r
oi + LijrD

r
oo) = (ρo + (1 + ρ)σo)Lij .

Contracting (4.11) with yj again we get:
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(4.14) (lr + dr)D
r
oo = Eoo.

Applying lemma (4.1)to the set of equations (4.12) and (4.14) we get the fol-

lowing results:

(4.15) Di
oo = 2L(1 + ρ)−1F i

o + τ−1[Eoo − 2L(1 + ρ)−1Fβo] l
i

where F r
o = girFio.

We may now add (4.8) and (4.13) to obtain the following:

(4.16) LirD
r
oj = Gij .

where

(4.17) Gij = [2(1 + ρ)]−1[2Fij + (ρo + (1 + ρ)σo)Lij − (1 + ρ)LijrD
r
oo].

Then equation (4.11) is written in the following form:

(4.18) (lr + dr)D
r
oj = Gj .

where

(4.19) Gj = Ejo − (1+ρ)
2 LjrD

r
oo = Ejo − Fjo.

Substituting the value of Dr
oo from (4.15) in (4.17) we obtain the value of Gij

as:

(4.20) Gij = (1 + ρ)−1[Fij − LLijrF
r
o + LijQo(2L

∗)−1].

where

Qo = (ρo + (1 + ρ)σo)L
∗ + (1 + ρ)Eoo − 2LFβo.

Using (3.8) in the above equation we now have:

(4.21) Gij = (1 + ρ)−1[Kij + L−1(liFjo + ljFio) +Ghij ]

where

Kij = Fij − 2CijrF
r
o

and

G = (2LL∗)−1[(1 + ρ)Eoo − 2LFβo + L∗(ρo + (1 + ρ)σo)].

Now, applying lemma 4.1 to the system of equations (4.16) and (4.18) we obtain:

(4.22) Di
oj = LGi

j + τ−1(Gj − LGβj)l
i.
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where Gi
j = girGrj .

Finally from (4.7) and (4.10) we have the following set of equations:

(II) LirD
r
jk = Hijk

and (lr + dr)D
r
jk = Hjk

where

(4.23) Hijk = 1
2{cycl(i, j, k)(σiLjk)+(1 + ρ)−1cycl(i, j, k)(ρiLjk)−Ai

jk},

Ai
jk = LijrD

r
ok + LikrD

r
oj − LkjrD

r
oi

and

Hjk = Ejk − (1+ρ)
2 (LjrD

r
ok + LkrD

r
oj).

Hence, applying lemma (4.1) to (II) we get:

(4.24) Di
jk = LH i

jk + τ−1(Hjk − LHβjk)l
i

where H i
jk = ghiHhjk

and Hijk and Hjk are defined in (4.23).

Hence, we now establish the following theorem:

Theorem 4.1. The connection parameters of the Cartan’s connection of the

conformally transformed Finsler space F ∗n are completely determined by the

set of equations (4.4) and (4.6) in terms of the one of Fn utilizing (4.24).

5. The v-Curvature Tensor of F ∗n

The v-curvature tensor S∗
hijk of F ∗n = (Mn, L∗) is defined as:

(5.1) S∗
hijk = C∗

hkmC∗m
ij − C∗

hjmC∗m
ik .

From (3.7), (3.9) and (3.10) we first obtain:

(5.2) C∗
hkmC∗m

ij = eσ
{
λChkmCm

ij + e2σϕhijhhk

+ eσ
(1 + ρ)

2L
cycl (i, j, k, h)(Cijkmh) + e2σ

(1 + ρ)

4LL∗ Jhijk
}

where

(5.3) ϕ = (1+ρ)
L

[
e−σρ
L + 1

4L∗m2
]
,

Jhijk = 2hijmhmk + 2hhkmimj + hikmjmh + hihmjmk + hjkmimh + hhjmimk
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and λ being defined in (3.2).

Thus, from (5.1) we get:

(5.4) S∗
hijk = eσ[λShijk + e2σ(hijdhk + hhkdij − hikdhj − hhjdik)]

where dij =
ϕ
2hij +

(1+ρ)
4LL∗ mimj .

In virtue of (I) and (5.1) we get:

(III) Shijk = 0.

Hence, the v-curvature tensor takes the following form:

(5.5) L∗2S∗
hijk = hijPhk + hhkPij − hikPhj − hhjPik.

where

Phk = e3σ
λ

4
[2(e−σρτ +

1

4
m2)hhk +mhmk].

We may now state the following theorem:

Theorem 5.1. If condition (III) holds good for the conformally transformed

Finsle space then the v-curvature tensor S∗
hijk takes the following form:

L∗2S∗
hijk = hijPhk + hhkPij − hikPhj − hhjPik.
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