

J. T. S.

Vol. 6 No.1 (2012), pp.145-159

<https://doi.org/10.56424/jts.v6i01.10452>

Ricci Solitons in (ϵ) -Trans-Sasakian Manifolds

Gurupadavva Ingalahalli and C. S. Bagewadi

Department of Mathematics

Kuvempu University, Shankaraghatta - 577 451,

Shimoga, Karnataka, INDIA

e-mail:gurupadavva@gmail.com; prof_bagewadi@yahoo.co.in

(Received: 4 May, 2011)

(Dedicated to Prof. K. S. Amur on his 80th birth year)

Abstract

We study Ricci solitons in (ϵ) -trans-Sasakian manifolds. It is shown that a symmetric parallel second order covariant tensor in a (ϵ) -trans-Sasakian manifold is a constant multiple of the metric tensor. Using this it is shown that if $L_V g + 2S$ is parallel where V is a given vector field, then (g, V) is Ricci soliton. Further, by virtue of this result, Ricci solitons for n -dimensional (ϵ) -trans-Sasakian Manifolds are obtained. Next, Ricci solitons for 3-dimensional (ϵ) -trans-Sasakian Manifolds of type (α, β) are discussed.

Key Words : Ricci soliton, (ϵ) -trans-Sasakian manifold, Einstein.

2000 AMS Subject Classification : 53C15, 53C20, 53C21, 53C25, 53D10.

1. Introduction

A Ricci soliton is a generalization of an Einstein metric and is defined on a Riemannian manifold (M, g) by

$$\mathcal{L}_V g + 2S + 2\lambda g = 0, \quad (1.1)$$

where V is a vector field on M and λ is a constant. The Ricci soliton is said to be shrinking, steady or expanding according as λ is negative, zero and positive respectively. Compact Ricci solitons are the fixed point of the Ricci flow $\frac{\partial g}{\partial t} = -2Ric$ projected from the space of metrics onto its quotient modulo diffeomorphisms and scalings and often arise as blow-up limits for the Ricci flow on compact manifolds.

In 1923, L.P. Eisenhart [9] proved that if a positive definite Riemannian manifold (M, g) admits a second order parallel symmetric covariant tensor other than a constant multiple of the metric tensor, then it is reducible. In 1925, Levy [12] obtained the necessary and sufficient conditions for the existence of such tensors. In 1989 and 1990, R. Sharma [20, 21] has generalized Levy's result by showing that a second order parallel (not necessarily symmetric and non singular) tensor on an n -dimensional ($n > 2$) space of constant curvature is a constant multiple of the metric tensor. It is also proved that in a Sasakian manifold there is no nonzero parallel 2-form.

In 2008, R. Sharma [22] studied Ricci solitons in K-contact manifolds, where the structure field ξ is killing and he proved that a complete K-contact gradient soliton is compact Einstein and Sasakian. In 2010, Constantin Calin and Mircea Crasmareanu [7] extended the Eisenhart problem to Ricci solitons in f -Kenmotsu manifolds. They studied the case of f -Kenmotsu manifolds satisfying a special condition called regular and a symmetric parallel tensor field of second order is a constant multiple of the Riemannian metric. Using this result, they obtained the results on Ricci solitons. Again in 2011, Amadendu Ghosh and Ramesh Sharma [1] studied on K-contact metrics as Ricci solitons.

The present paper is organized as follows: the second section is devoted to preliminaries. In the third section we prove that a symmetric parallel second order covariant tensor in an (ϵ) -trans-Sasakian manifold is a constant multiple of the associated metric tensor. A Ricci soliton in an n -dimensional η -Einstein (ϵ) -trans-Sasakian manifold is shrinking or expanding according as λ is positive or negative. Similarly also for Ricci soliton in 3-dimensional (ϵ) -trans-Sasakian manifold is either shrinking or expanding according as λ is positive or negative.

2. Preliminaries

Let M be an almost contact metric manifold of dimension n equipped with an almost contact metric structure (ϕ, ξ, η, g) consisting of a $(1, 1)$ tensor field ϕ , a vector field ξ , a 1-form η and a Riemannian metric g satisfying

$$\phi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad \eta \circ \phi = 0, \quad \phi \xi = 0. \quad (2.1)$$

Almost contact metric manifold M is called (ϵ) -almost contact metric manifold if

$$g(\xi, \xi) = \epsilon, \quad \eta(X) = \epsilon g(X, \xi), \quad (2.2)$$

$$g(\phi X, \phi Y) = g(X, Y) - \epsilon \eta(X) \eta(Y), \quad \forall X, Y \in TM \quad (2.3)$$

for all vector fields X, Y on M , where $\epsilon = g(\xi, \xi) = \pm 1$.

An (ϵ) -almost contact metric manifold is called an (ϵ) -trans-Sasakian manifold if

$$(\nabla_X \phi)Y = \alpha(g(X, Y)\xi - \epsilon\eta(Y)X) + \beta(g(\phi X, Y)\xi - \epsilon\eta(Y)\phi X), \quad (2.4)$$

holds for some smooth functions α and β on M and $\epsilon = \pm 1$.

The notations used in Lemmas (2.1) to (2.4) are from [15] and [23].

Lemma 2.1. An (ϵ) -almost contact metric manifold M is an (ϵ) -trans-Sasakian manifold if and only if

$$\nabla_X \xi = \epsilon[-\alpha\phi X + \beta(X - \eta(X)\xi)]. \quad (2.5)$$

Proof. By taking $Y = \xi$ in (2.4) and making use of (2.1), we have (2.5).

From (2.5), it follows that

$$(\nabla_X \eta)Y = \beta[g(X, Y) - \epsilon\eta(X)\eta(Y)] - \alpha g(\phi X, Y). \quad (2.6)$$

Lemma 2.2. In an (ϵ) -trans-Sasakian manifold M , the Riemannian curvature tensor R satisfies

$$\begin{aligned} R(X, Y)\xi = & (\alpha^2 - \beta^2)[\eta(Y)X - \eta(X)Y] + 2\alpha\beta[\eta(Y)\phi X - \eta(X)\phi Y] \\ & + \epsilon[(Y\alpha)\phi X - (X\alpha)\phi Y + (Y\beta)\phi^2 X - (X\beta)\phi^2 Y], \end{aligned} \quad (2.7)$$

$$\begin{aligned} R(\xi, Y)X = & (\alpha^2 - \beta^2)[\epsilon g(X, Y)\xi - \eta(X)Y] + 2\alpha\beta[\epsilon g(\phi X, Y)\xi \\ & + \eta(X)\phi Y] + \epsilon g(\phi X, Y)(grad \alpha) + \epsilon(X\alpha)\phi Y \\ & - \epsilon g(\phi X, \phi Y)(grad \beta) + \epsilon(X\beta)[Y - \eta(Y)\xi]. \end{aligned} \quad (2.8)$$

Proof. We know that $R(X, Y)\xi = \nabla_X \nabla_Y \xi - \nabla_Y \nabla_X \xi - \nabla_{[X, Y]}\xi$. Using (2.5) the above equation becomes

$$\begin{aligned} R(X, Y)\xi = & \nabla_X(\epsilon[-\alpha\phi Y + \beta(Y - \eta(Y)\xi)]) - \nabla_Y(\epsilon[-\alpha\phi X + \beta(X \\ & - \eta(X)\xi)]) - \epsilon\{-\alpha\phi[X, Y] + \beta([X, Y] - \eta([X, Y])\xi)\}. \end{aligned} \quad (2.9)$$

Using (2.4), the above relation yields (2.7).

From (2.7) and $g(R(\xi, X)Y, Z) = g(R(Y, Z)\xi, X)$, we obtain (2.8).

Lemma 2.3. In an (ϵ) -trans-Sasakian manifold M , we have

$$\begin{aligned}\eta(R(X, Y)Z) &= \epsilon(\alpha^2 - \beta^2)[g(Y, Z)\eta(X) - g(X, Z)\eta(Y)] \\ &\quad + 2\epsilon\alpha\beta[g(\phi Y, Z)\eta(X) - g(\phi X, Z)\eta(Y)] \\ &\quad + [(X\alpha)g(\phi Y, Z) - (Y\alpha)g(\phi X, Z)] \\ &\quad + [(X\beta)g(\phi^2 Y, Z) - (Y\beta)g(\phi^2 X, Z)].\end{aligned}\tag{2.10}$$

Consequently

$$\eta(R(X, Y)\xi) = 0.\tag{2.11}$$

Proof. Now we have

$$\begin{aligned}\eta(R(X, Y)Z) &= \epsilon g(R(X, Y)Z, \xi) \\ &= -\epsilon g(R(X, Y)\xi, Z).\end{aligned}$$

Using (2.7), in the above equation, we have (2.10) that is

$$\begin{aligned}\eta(R(X, Y)Z) &= \epsilon(\alpha^2 - \beta^2)[g(Y, Z)\eta(X) - g(X, Z)\eta(Y)] + 2\epsilon\alpha\beta[g(\phi Y, Z)\eta(X) \\ &\quad - g(\phi X, Z)\eta(Y)] + [(X\alpha)g(\phi Y, Z) - (Y\alpha)g(\phi X, Z)] \\ &\quad + [(X\beta)g(\phi^2 Y, Z) - (Y\beta)g(\phi^2 X, Z)].\end{aligned}$$

Replacing $Z = \xi$ in the above equation then we have (2.11).

Lemma 2.4. In an (ϵ) -trans-Sasakian manifold M , the following relations holds true

$$S(X, \xi) = [(n-1)(\alpha^2 - \beta^2) - \epsilon(\xi\beta)]\eta(X) - \epsilon((\phi X)\alpha) - (n-2)\epsilon(X\beta)\tag{2.12}$$

and

$$\epsilon(\xi\alpha) + 2\alpha\beta = 0.\tag{2.13}$$

Proof. Taking $Y = Z = e_i$ in (2.11) and we obtain (2.12).

Taking $X = \xi$ in (2.7), we have

$$R(\xi, X)\xi = [(\alpha^2 - \beta^2) - \epsilon(\xi\beta)][-Y + \eta(Y)\xi] - [2\alpha\beta + \epsilon(\xi\alpha)]\phi Y.\tag{2.14}$$

Taking $Y = \xi$ in (2.8), we obtain

$$R(\xi, X)\xi = [(\alpha^2 - \beta^2) - \epsilon(\xi\beta)][-Y + \eta(Y)\xi] + [2\alpha\beta + \epsilon(\xi\alpha)]\phi Y.\tag{2.15}$$

Comparing (2.14) and (2.15), we obtain (2.13).

Lemma 2.5. In an (ϵ) -trans-Sasakian manifold M of type (α, β) , if

$$\phi(\text{grad } \alpha) = (n-2)(\text{grad } \beta),\tag{2.16}$$

then we have

$$(\xi\beta) = 0. \quad (2.17)$$

Thus the directional derivative of β with respect to characteristic vector field ξ is zero.

Proof. We know that

$$\begin{aligned} X\beta &= g(X, \text{grad } \beta) = g(X, \frac{\phi(\text{grad } \alpha)}{(n-2)}) \\ &= -\frac{1}{(n-2)}g(\phi X, \text{grad } \alpha), \end{aligned} \quad (2.18)$$

which implies

$$(n-2)X\beta + (\phi X)\alpha = 0. \quad (2.19)$$

On putting $X = \xi$ in (2.19), we obtain (2.17).

2.1. Example [14] We consider the 3-dimensional manifold $M = \{(x, y, z) \in R^3; z \neq 0\}$, where (x, y, z) are the standard co-ordinates in R^3 . Let $\{E_1, E_2, E_3\}$ be linearly independent global frame field on M given by

$$E_1 = \frac{x}{z} \frac{\partial}{\partial x}, \quad E_2 = \frac{y}{z} \frac{\partial}{\partial y}, \quad E_3 = \epsilon \frac{\partial}{\partial z}. \quad (2.20)$$

Let g be the Riemannian metric defined by $g(E_1, E_2) = g(E_2, E_3) = g(E_1, E_3) = 0$ and $g(E_1, E_1) = g(E_2, E_2) = 1$, $g(E_3, E_3) = \epsilon$, where $\epsilon = \pm 1$ and g is given by

$$g = \frac{z^2}{x^2} dx \otimes dx + \frac{z^2}{y^2} dy \otimes dy + \epsilon dz \otimes dz.$$

The (ϕ, ξ, η) is given by $\eta = \epsilon dz$, $\xi = E_3 = \frac{\partial}{\partial z}$, $\phi E_1 = E_2$, $\phi E_2 = -E_1$ and $\phi E_3 = 0$. The linearity property of ϕ and g yields that $\eta(E_3) = 1$, $\phi^2 U = -U + \eta(U)E_3$, $g(\phi U, \phi W) = g(U, W) - \epsilon \eta(U)\eta(W)$, for any vector fields U, W on M . Hence for $E_3 = \xi$, (ϕ, ξ, η, g) defines an (ϵ) -almost contact metric structure on M . By definition of Lie bracket, we have $[E_1, E_2] = 0$, $[E_1, E_3] = -\frac{\epsilon}{z}E_1$, $[E_2, E_3] = \frac{\epsilon}{z}E_2$. Let ∇ be Levi-Civita connection with respect to the above metric g given by Koszula formula

$$\begin{aligned} 2g(\nabla_X Y, Z) &= X(g(Y, Z)) + Y(g(Z, X)) - Z(g(X, Y)) \\ &\quad - g(X, [Y, Z]) - g(Y, [X, Z]) + g(Z, [X, Y]). \end{aligned} \quad (2.21)$$

Using (2.21), we have

$$2g(\nabla_{E_1} E_3, E_1) = 2g\left(\frac{\epsilon}{z}E_1, E_1\right) + 2g(\epsilon E_2, E_1) = 2g\left(\frac{\epsilon}{z}E_1 + \epsilon E_2, E_1\right), \quad (2.22)$$

since $g(E_1, E_2) = 0$. Thus $\nabla_{E_1} E_3 = \frac{\epsilon}{z}E_1 + \epsilon E_2$.

Again by (2.21), we get

$$2g(\nabla_{E_2}E_3, E_2) = 2g\left(\frac{\epsilon}{z}E_2, E_2\right) - 2g(\epsilon E_2, E_1) = 2g\left(\frac{\epsilon}{z}E_2 - \epsilon E_1, E_2\right), \quad (2.23)$$

since $g(E_1, E_2) = 0$. Therefore we have $\nabla_{E_2}E_3 = \frac{\epsilon}{z}E_2 - \epsilon E_1$.

Using (2.21), we have

$$\begin{aligned} \nabla_{E_1}E_1 &= -\frac{\epsilon}{z}E_3, & \nabla_{E_2}E_2 &= -\frac{\epsilon}{z}E_3, & \nabla_{E_3}E_3 &= 0, \\ \nabla_{E_1}E_2 &= 0, & \nabla_{E_2}E_1 &= 0, & \nabla_{E_1}E_3 &= \frac{\epsilon}{z}E_1 + \epsilon E_2, \\ \nabla_{E_3}E_1 &= 0, & \nabla_{E_2}E_3 &= \frac{\epsilon}{z}E_2 - \epsilon E_1, & \nabla_{E_3}E_2 &= 0. \end{aligned} \quad (2.24)$$

The tangent vectors X and Y to M are expressed as linear combination of E_1, E_2, E_3 , that is $X = a_1E_1 + a_2E_2 + a_3E_3$ and $Y = b_1E_1 + b_2E_2 + b_3E_3$ where $a_i, b_i (i = 1, 2, 3)$ are scalars.

Now, for $\xi = E_3$, above results that is (2.24) satisfy (2.5) that is

$$\nabla_X\xi = \epsilon[-\alpha\phi X + \beta(X - \eta(X)\xi)],$$

with $\alpha = -1$ and $\beta = \frac{1}{z}$. Consequently M is a 3-dimensional (ϵ) -trans-Sasakian manifold.

3. Parallel symmetric second order tensors and Ricci solitons in (ϵ) -trans-Sasakian manifolds

Fix h a symmetric tensor field of $(0, 2)$ -type which we suppose to be parallel with respect to ∇ that is $\nabla h = 0$. Applying the Ricci identity [20]

$$\nabla^2h(X, Y; Z, W) - \nabla^2h(X, Y; W, Z) = 0, \quad (3.1)$$

we obtain the relation

$$h(R(X, Y)Z, W) + h(Z, R(X, Y)W) = 0, \quad (3.2)$$

Replacing $Z = W = \xi$ in (3.2) and using (2.7) and by the symmetry of h , we have

$$\begin{aligned} &2(\alpha^2 - \beta^2)[\eta(Y)h(X, \xi) - \eta(X)h(Y, \xi)] + 4\alpha\beta[\eta(Y)h(\phi X, \xi) \\ &\quad - \eta(X)h(\phi Y, \xi)] + 2\epsilon[(Y\alpha)h(\phi X, \xi) - (X\alpha)h(\phi Y, \xi) \\ &\quad + (Y\beta)h(\phi^2 X, \xi) - (X\beta)h(\phi^2 Y, \xi)] = 0. \end{aligned} \quad (3.3)$$

Put $X = \xi$ in (3.3) and by virtue of (2.1), we have

$$\begin{aligned} &2(\alpha^2 - \beta^2)[\eta(Y)h(\xi, \xi) - h(Y, \xi)] - 2(\epsilon(\xi\alpha) + 2\alpha\beta)h(\phi Y, \xi) \\ &\quad - 2\epsilon(\xi\beta)h(\phi^2 Y, \xi) = 0. \end{aligned} \quad (3.4)$$

By using (2.13) and (2.17) in (3.4) we have

$$2(\alpha^2 - \beta^2)[\eta(Y)h(\xi, \xi) - h(Y, \xi)] = 0. \quad (3.5)$$

And suppose $2(\alpha^2 - \beta^2) \neq 0$, it results

$$h(Y, \xi) = \eta(Y)h(\xi, \xi). \quad (3.6)$$

Differentiating (3.6) covariantly with respect to X , we have

$$\begin{aligned} (\nabla_X h)(Y, \xi) + h(\nabla_X Y, \xi) + h(Y, \nabla_X \xi) &= [(\nabla_X \eta)(Y) + \eta(\nabla_X Y)]h(\xi, \xi) \\ &\quad + \eta(Y)[(\nabla_X h)(Y, \xi) + 2h(\nabla_X \xi, \xi)]. \end{aligned} \quad (3.7)$$

By using (2.6) and (3.6) in the above equation, we have

$$-\epsilon\alpha h(Y, \phi X) + \beta h(Y, X) = -\alpha g(\phi X, Y)h(\xi, \xi) + \beta g(Y, X)h(\xi, \xi).$$

Put $X = \phi X$ in the above equation and on simplification, we have

$$h(X, Y) = \epsilon g(X, Y)h(\xi, \xi), \quad (3.8)$$

which together with the standard fact that the parallelism of h implies that $h(\xi, \xi)$ is a constant, via (3.6). Now, by considering the above conditions we can state the following theorem:

Theorem 3.1. A symmetric parallel second order covariant tensor in an (ϵ) -trans-Sasakian manifold is a constant multiple of the associated metric tensor.

Corollary 3.1. A locally Ricci symmetric $(\nabla S = 0)$ (ϵ) -trans-Sasakian manifold is an Einstein manifold.

3.1. Remark. The following statements for (ϵ) -trans-Sasakian manifold are equivalent:

- (1) Einstein,
- (2) locally Ricci symmetric,
- (3) Ricci semi-symmetric that is $R \cdot S = 0$.

The implication (1) \rightarrow (2) \rightarrow (3) is trivial. Now we prove the implication (3) \rightarrow (1) and $R \cdot S = 0$ means exactly (3.2) with replaced h by S , that is

$$(R(X, Y) \cdot S)(U, V) = -S(R(X, Y)U, V) - S(U, R(X, Y)V). \quad (3.9)$$

Considering $R \cdot S = 0$ and putting $X = \xi$ in equation (3.9), we have

$$S(R(\xi, Y)U, V) + S(U, R(\xi, Y)V) = 0. \quad (3.10)$$

By using (2.8), (2.12), (2.13) and (2.17), we obtain

$$\begin{aligned}
& (\alpha^2 - \beta^2)[\epsilon g(U, Y)S(\xi, V) - \eta(U)S(Y, V)] + 2\alpha\beta[\epsilon g(\phi U, Y)S(\xi, V) \\
& + \eta(U)S(\phi Y, V)] + \epsilon g(\phi U, Y)S(\text{grad}\alpha, V) + \epsilon(U\alpha)S(\phi Y, V) \\
& - \epsilon g(\phi U, \phi Y)S(\text{grad}\beta, V) + \epsilon(U\beta)[S(Y, V) - \eta(Y)S(\xi, V)] \\
& + (\alpha^2 - \beta^2)[\epsilon g(V, Y)S(U, \xi) - \eta(V)S(U, Y)] + 2\alpha\beta[\epsilon g(\phi V, Y)S(U, \xi) \\
& + \eta(V)S(U, \phi Y)] + \epsilon g(\phi V, Y)S(U, \text{grad}\alpha) + \epsilon(V\alpha)S(U, \phi Y) \\
& - \epsilon g(\phi V, \phi Y)S(U, \text{grad}\beta) + \epsilon(V\beta)[S(U, Y) - \eta(Y)S(U, \xi)] = 0.
\end{aligned}$$

Again by putting $U = \xi$ in above equation and by using (2.1), (2.16), (2.12) and (2.17), on simplification we obtain

$$S(Y, V) = \epsilon(n-1)(\alpha^2 - \beta^2)g(Y, V). \quad (3.11)$$

In conclusion:

Proposition 3.2. A Ricci semi-symmetric (ϵ) -trans-Sasakian manifold is an Einstein manifold.

A Ricci soliton in an (ϵ) -trans-Sasakian manifold defined by (1.1). In the theorem 3.1 we proved that if an (ϵ) -trans-Sasakian manifold admits a symmetric parallel $(0, 2)$ tensor, then the tensor is a constant multiple of the metric tensor. Thus $\mathcal{L}_V g + 2S$ is parallel. Hence $\mathcal{L}_V g + 2S$ is a constant multiple of the metric tensor g that is $(\mathcal{L}_V g + 2S)(X, Y) = \epsilon g(X, Y)h(\xi, \xi)$, where $h(\xi, \xi)$ is a nonzero constant. We close this section with applications of our Theorem 3.1 to Ricci solitons:

Corollary 3.2. Suppose that on a (ϵ) -trans-Sasakian manifold the $(0, 2)$ -type field $\mathcal{L}_V g + 2S$ is parallel where V is a given vector field or point-wise collinear with ξ . Then (g, V) yield a Ricci soliton. In particular, if the given (ϵ) -trans-Sasakian manifold is Ricci semi-symmetric with $\mathcal{L}_V g$ parallel, we have the same conclusion.

Proof. Follows from theorem 3.1 and corollary 3.1

Corollary 3.3. If a Ricci soliton (g, ξ, λ) in an n -dimensional (ϵ) -trans-Sasakian manifold cannot be steady.

Proof. From Linear Algebra either the vector field $V \in \text{Span } \xi$ or $V \perp \xi$. However the second case seems to be complex to analyse in practice. For this reason we investigate for the case $V = \xi$.

A simple computation of $\mathcal{L}_\xi g + 2S$ gives

$$(\mathcal{L}_\xi g)(X, Y) = 2\beta[\epsilon g(X, Y) - \eta(X)\eta(Y)]. \quad (3.12)$$

From equation (1.1), we have $h(X, Y) = -2\lambda g(X, Y)$ and then putting $X = Y = \xi$, we have

$$h(\xi, \xi) = -2\lambda\epsilon, \quad (3.13)$$

where

$$h(\xi, \xi) = (\mathcal{L}_\xi g)(\xi, \xi) + 2S(\xi, \xi), \quad (3.14)$$

by using (3.12) and (2.12) in the above equation, we have

$$h(\xi, \xi) = 2(n-1)[(\alpha^2 - \beta^2)]. \quad (3.15)$$

Equating (3.13) and (3.15), we have

$$\lambda = -(n-1)\epsilon(\alpha^2 - \beta^2). \quad (3.16)$$

Since α and β are some nonzero functions, we have $\lambda \neq 0$, that is a Ricci soliton in an n -dimensional (ϵ) -trans-Sasakian manifold cannot be steady. Hence the proof.

Proposition 3.3. If an n -dimensional (ϵ) -trans-Sasakian manifold is η -Einstein then the Ricci soliton (g, ξ, λ) in an (ϵ) -trans-Sasakian manifold with varying scalar curvature cannot be steady but it is shrinking or expanding according as λ is positive or negative, that is

- (1) shrinking($\lambda < 0$) for $\epsilon = 1$ and $\alpha^2 > \beta^2$
- (2) expanding($\lambda > 0$) for $\epsilon = -1$ and $\alpha^2 > \beta^2$
- (3) expanding($\lambda > 0$) for $\epsilon = 1$ and $\alpha^2 < \beta^2$
- (4) shrinking($\lambda < 0$) for $\epsilon = -1$ and $\alpha^2 < \beta^2$.

Proof. The proof consists of three parts:

In first step we prove that the metric tensor is η -Einstein: that is the metric g is called η -Einstein if there exists two real functions a and b such that the Ricci tensor of g is given by

$$S(X, Y) = ag(X, Y) + b\eta(X)\eta(Y). \quad (3.17)$$

Let $e_i = 1, 2, \dots, n$ be an orthonormal basis of the tangent space at any point of the manifold. Then putting $X = Y = e_i$ in (3.17) and taking summation over i , then we get

$$r = na + b\epsilon. \quad (3.18)$$

Again putting $X = Y = \xi$ in (3.17) then by using (2.12), we have

$$\epsilon a + b = (n - 1)(\alpha^2 - \beta^2). \quad (3.19)$$

Then from (3.18) and (3.19), we have

$$a = \frac{r}{(n - 1)} - \epsilon(\alpha^2 - \beta^2), \quad b = -\frac{r\epsilon}{(n - 1)} + n(\alpha^2 - \beta^2). \quad (3.20)$$

Substituting the value of a and b in (3.17), we have

$$\begin{aligned} S(X, Y) &= \left[\frac{r}{(n - 1)} - \epsilon(\alpha^2 - \beta^2) \right] g(X, Y) \\ &\quad + \left[n(\alpha^2 - \beta^2) - \frac{r\epsilon}{(n - 1)} \right] \eta(X)\eta(Y). \end{aligned} \quad (3.21)$$

Equation (3.21) is an η -Einstein (ϵ) -trans-Sasakian manifold.

In the second step we prove that the scalar curvature r is varying: A Ricci solitons in an (ϵ) -trans-Sasakian manifolds with $V = \xi$ in (1.1) and it reduced to

$$(\mathcal{L}_\xi g)(X, Y) + 2S(X, Y) + 2\lambda g(X, Y) = 0. \quad (3.22)$$

The above equation can be written as

$$h(X, Y) + 2\lambda g(X, Y) = 0, \quad (3.23)$$

where h is a symmetric parallel covariant tensor of type $(0, 2)$ and is given by

$$h(X, Y) = (\mathcal{L}_\xi g)(X, Y) + 2S(X, Y). \quad (3.24)$$

By using (3.12) and (3.21) in (3.24), we have

$$\begin{aligned} h(X, Y) &= \left[\frac{2r}{(n - 1)} - 2\epsilon(\alpha^2 - \beta^2) + 2\epsilon\beta \right] g(X, Y) \\ &\quad + \left[-\frac{2r\epsilon}{(n - 1)} + 2n(\alpha^2 - \beta^2) - 2\beta \right] \eta(X)\eta(Y). \end{aligned} \quad (3.25)$$

Differentiating the above equation with respect to Z , we have

$$\begin{aligned} (\nabla_Z h)(X, Y) &= \left[\frac{2(\nabla_Z r)}{(n - 1)} - 2\epsilon[2\alpha(Z\alpha) - 2\beta(Z\beta)] + 2\epsilon(Z\beta) \right] g(X, Y) \\ &\quad + \left[-\frac{2\epsilon(\nabla_Z r)}{(n - 1)} + 2n[2\alpha(Z\alpha) - 2\beta(Z\beta)] - 2(Z\beta) \right] \eta(X)\eta(Y) \\ &\quad + \left[-\frac{2r\epsilon}{(n - 1)} + 2n(\alpha^2 - \beta^2) - 2\beta \right] [-\alpha g(\phi Z, X)\eta(Y) + \beta g(X, Z)\eta(Y) \\ &\quad - 2\epsilon\beta\eta(X)\eta(Y)\eta(Z) - \alpha g(\phi Z, Y)\eta(X) + \beta g(Z, Y)\eta(X)]. \end{aligned} \quad (3.26)$$

By substituting $Z = \xi$ and $X = Y \in (\text{Span}\xi)^\perp$ in (3.26) and a tensor h is parallel. By using (2.17) in (3.26), we have

$$\nabla_\xi r = -4(n-1)\alpha^2\beta, \quad (3.27)$$

Thus (3.27) implies that the scalar curvature r is not constant.

In the third step we prove that the Ricci soliton in an (ϵ) -trans-Sasakian manifold is shrinking or expanding according as λ is positive or negative: From equation (3.23), we have

$$h(X, Y) = -2\lambda g(X, Y).$$

Putting $X = Y = \xi$ in the above equation, we have

$$h(\xi, \xi) = -2\lambda\epsilon. \quad (3.28)$$

Now,

$$\begin{aligned} h(\xi, \xi) &= \left[\frac{2r}{(n-1)} - 2\epsilon(\alpha^2 - \beta^2) + 2\epsilon\beta \right] g(\xi, \xi) \\ &\quad + \left[-\frac{2r\epsilon}{(n-1)} + 2n(\alpha^2 - \beta^2) - 2\beta \right] \eta(\xi)\eta(\xi). \end{aligned}$$

The above equation reduced as,

$$h(\xi, \xi) = 2(n-1)[(\alpha^2 - \beta^2)]. \quad (3.29)$$

Equating (3.28) and (3.29) and by using (2.17), we have

$$\lambda = -(n-1)\epsilon(\alpha^2 - \beta^2). \quad (3.30)$$

From (3.30) we can see that the Ricci soliton in an η -Einstein (ϵ) -trans-Sasakian manifold is shrinking or expanding according as λ is positive or negative. This completes the proof.

Now, we restrict our study to 3-dimensional (ϵ) -trans-Sasakian manifolds:

Proposition 3.4. If a Ricci soliton (g, ξ, λ) of 3-dimensional (ϵ) -trans-Sasakian manifold with varying scalar curvature the is shrinking or expanding according as λ is positive or negative, that is

- (1) expanding($\lambda > 0$) for $\epsilon = 1$ and $\alpha^2 < \beta^2$
- (2) shrinking($\lambda < 0$) for $\epsilon = -1$ and $\alpha^2 < \beta^2$
- (3) shrinking($\lambda < 0$) for $\epsilon = 1$ and $\alpha^2 > \beta^2$
- (4) expanding($\lambda > 0$) for $\epsilon = -1$ and $\alpha^2 > \beta^2$.

Proof. The proof consists of three parts:

In first step we find 3-dimensional η -Einstein (ϵ) -trans-Sasakian manifolds: A general expression of Ricci tensor S is known by us for the 3-dimensional η -Einstein (ϵ) -trans-Sasakian manifolds by considering 3-dimensional Riemannian manifold that is,

$$\begin{aligned} R(X, Y)Z &= g(Y, Z)QX - g(X, Z)QY + S(Y, Z)X - S(X, Z)Y \\ &\quad - \frac{r}{2}[g(Y, Z)X - g(X, Z)Y], \end{aligned} \quad (3.31)$$

put $Z = \xi$ in the above equation and by using (2.7) and (2.12) we have

$$\begin{aligned} &(\alpha^2 - \beta^2)[\eta(Y)X - \eta(X)Y] + 2\alpha\beta[\eta(Y)\phi X - \eta(X)\phi Y] \\ &+ \epsilon[(Y\alpha)\phi X - (X\alpha)\phi Y + (Y\beta)\phi^2 X - (X\beta)\phi^2 Y] = \epsilon[\eta(Y)QX - \eta(X)QY] \\ &+ 2(\alpha^2 - \beta^2)[\eta(Y)X - \eta(X)Y] + \epsilon[((\phi X)\alpha)Y + (X\beta)Y - ((\phi Y)\alpha)X \\ &\quad - (Y\beta)X] - \frac{r\epsilon}{2}[\eta(Y)X - \eta(X)Y]. \end{aligned}$$

Again put $Y = \xi$ in the above equation and by using (2.1), (2.16) and (2.17) we get

$$QX = \left[\frac{r}{2} - \epsilon(\alpha^2 - \beta^2) \right] X + \left[3\epsilon(\alpha^2 - \beta^2) - \frac{r}{2} \right] \eta(X)\xi \quad (3.32)$$

and

$$S(X, Y) = \left[\frac{r}{2} - \epsilon(\alpha^2 - \beta^2) \right] g(X, Y) + \left[3(\alpha^2 - \beta^2) - \frac{r\epsilon}{2} \right] \eta(X)\eta(Y). \quad (3.33)$$

Equation (3.33) is an 3-dimensional η -Einstein (ϵ) -trans-Sasakian manifold.

In the second step we prove that the scalar curvature r is varying: A Ricci solitons in a 3-dimensional (ϵ) -trans-Sasakian manifolds with $V = \xi$ in (1.1) and it reduced to

$$(\mathcal{L}_\xi g)(X, Y) + 2S(X, Y) + 2\lambda g(X, Y) = 0. \quad (3.34)$$

The above equation can be written as

$$h(X, Y) + 2\lambda g(X, Y) = 0, \quad (3.35)$$

where h is a symmetric parallel covariant tensor of type $(0, 2)$ and is given by

$$h(X, Y) = (\mathcal{L}_\xi g)(X, Y) + 2S(X, Y). \quad (3.36)$$

By using (3.12) and (3.33) in (3.36), we have

$$\begin{aligned} h(X, Y) &= [r - 2\epsilon(\alpha^2 - \beta^2) + 2\epsilon\beta]g(X, Y) \\ &\quad + [6(\alpha^2 - \beta^2) - \epsilon r - 2\beta]\eta(X)\eta(Y). \end{aligned} \quad (3.37)$$

Differentiating the above equation covariantly with respect to Z , we have

$$\begin{aligned} (\nabla_Z h)(X, Y) &= [\nabla_Z r - 4\epsilon(\alpha(Z\alpha) - \beta(Z\beta)) + 2\epsilon(Z\beta)]g(X, Y) \\ &\quad + [12[\alpha(Z\alpha) - \beta(Z\beta)] - \epsilon(\nabla_Z r) - 2(Z\beta)]\eta(X)\eta(Y) \\ &\quad + [6(\alpha^2 - \beta^2) - \epsilon r - 2\beta]\{-\alpha g(\phi Z, X)\eta(Y) + \beta g(X, Z)\eta(Y) \\ &\quad - 2\epsilon\beta\eta(X)\eta(Y)\eta(Z) - \alpha g(\phi Z, Y)\eta(X) + \beta g(Z, Y)\eta(X)\}. \end{aligned} \quad (3.38)$$

Substituting $Z = \xi$, $X = Y \in (\text{Span}\xi)^\perp$ in (3.38) and a tensor h is parallel. By using (2.17), we have

$$\nabla_\xi r = -8\alpha^2\beta. \quad (3.39)$$

Thus, (3.39) implies that the scalar curvature r is not constant.

In the third step we prove that the Ricci soliton in 3-dimensional (ϵ) -trans-Sasakian manifold is shrinking or expanding according as λ is positive or negative: From equation (3.35), we have

$$h(X, Y) = -2\lambda g(X, Y).$$

Putting $X = Y = \xi$ in the above equation, we have

$$h(\xi, \xi) = -2\lambda\epsilon. \quad (3.40)$$

Now,

$$h(X, Y) = [r - 2\epsilon(\alpha^2 - \beta^2) + 2\epsilon\beta]g(X, Y) + [6(\alpha^2 - \beta^2) - \epsilon r - 2\beta]\eta(X)\eta(Y).$$

If $X = Y = \xi$ in the above equation, we have

$$h(\xi, \xi) = 4(\alpha^2 - \beta^2). \quad (3.41)$$

Equating (3.40) and (3.41), we have

$$\lambda = -2\epsilon(\alpha^2 - \beta^2). \quad (3.42)$$

From (3.42) we can see that the Ricci soliton in 3-dimensional (ϵ) -trans-Sasakian manifold is shrinking or expanding according as λ is positive or negative. This completes the proof.

Acknowledgement. The authors express their thanks to DST (Department of Science and Technology), Government of India for providing financial assistance under major research project (No.SR/S4/ MS:482/07).

REFERENCES

- [1] Ghosh, Amalendu and Sharma, Ramesh : K-contact metrics as Ricci solitons, *Beitr Algebra Geom*, DOI 10.1007/s13366-011-0038-6.
- [2] Bagewadi, C. S. and Venkatesha : Some Curvature Tensors on a Trans-Sasakian Manifold, *Turk J Math*, 31, (2007), 111-121.
- [3] Bagewadi, C. S. and Ingalahalli, Gurupadavva : Ricci Solitons in Trans-Sasakian Manifolds, (Communicated).
- [4] Bagewadi, C. S. and Ingalahalli, Gurupadavva : Ricci solitons in Lorentzian α -Sasakian manifolds, appears in *Acta Mathematica Academicae Paedagogicae Nyíregyháziensis*.
- [5] Chow, Bennet, Lu, Peng and Lei, Ni : Hamilton's Ricci flow, *Graduate Studies in Mathematics*, American Mathematical Society Science Press, 77, (2006).
- [6] Blair, D. E. and Oubina, J. A. : Conformal and related changes of metric on the product of two almost contact metric manifolds, *Publ. Matematiques*, 34 (1990), 199-207.
- [7] Calin, Constantin and Crasmareanu, Mircea : From the Eisenhart Problem to Ricci Solitons in f-Kenmotsu Manifolds, *Bulletin of the Malaysian Mathematical Sciences Society*, 33(3) (2010), 361-368.
- [8] De, U. C. and Tripathi, M. M. : Ricci tensor in 3-dimensional trans-Sasakian manifolds, *Kyung- pook Math. J.*, 43(2) (2003), 247-255.
- [9] Eisenhart, L. P. : Symmetric tensors of the second order whose first covariant derivatives are zero, *Trans. Amer. Math. Soc.* 25(2) (1923), 297-306.
- [10] Ingalahalli, Gurupadavva and Bagewadi, C. S. : Ricci solitons in α -Sasakian manifolds, appears in *ISRN Geometry*.
- [11] Hamilton, R. S. : The Ricci flow on surfaces, *Mathematics and general relativity* (Santa Cruz, CA, 1986), 237-262, *Contemp. Math.* 71, American Math. Soc., 1988.
- [12] Levy, H. : Symmetric tensors of the second order whose covariant derivatives vanish, *Ann. of Math.*, 27(2) (1925), 91-98.
- [13] Das, Lovejoy : Second order parallel tensors on α -Sasakian manifold, *Acta Math. Acad. Paedagog. Nyhazi.*, 23(1) (2007), 65-69 (electronic).
- [14] Nagaraja, H. G. : ϕ -Recurrent Trans-Sasakian Manifolds, *Matematiqki Vesnik*, 63(2) (2011), 79-86.
- [15] Nagaraja, H. G., Premalatha, C. R. and Somashekhar, G. : On (ϵ, δ) -Trans-Sasakian Strucutre, *Proceedings of the Estonian Academy of Sciences*, 61(1) (2012), 20-28.
- [16] Oubina, J. A. : New classes of almost contact metric structures, *Publ. Math. Debrecen* 32 (1985), 187-193.
- [17] Perelman, G. : The Entropy Formula for the Ricci Flow and Its Geometric Applications, *arXiv: math.DG/0211159v1* (2002).
- [18] Toppping, Peter : Lectures on the Ricci flow, *LMS Lecture notes series* in conjunction with Cambridge University Press, 2006.
- [19] Shaikh, A. A., Baishya, K. K. and Eysam : On D-homothetic deformation of trans-Sasakian structure, *Demonstr. Math.*, XLI(1) (2008), 171 - 188.
- [20] Sharma, R. : Second order parallel tensor in real and complex space forms, *Internat. J. Math. Math. Sci.*, 12(4), (1989), 787-790.
- [21] Sharma, R. : Second order parallel tensors on contact manifolds, *Algebras Groups Geom.* 7(2), (1990), 145-152.

- [22] Sharma, R. : Certain results on K-contact and (k, μ) -contact manifolds, *J. Geom.*, 89 (1-2), (2008), 138-147.
- [23] Shukla, S. S. and Singh, D. D. : On (ϵ) -Trans-Sasakian Manifolds, *Int. Journal of Math. Analysis*, 49(4) (2010), 2401-2414.
- [24] Tripathi, M. M. : Ricci solitons in contact metric manifolds, arXiv:0801.4222.