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Abstract

We study Ricci solitons in (ϵ)-trans-Sasakian manifolds. It is shown that

a symmetric parallel second order covariant tensor in a (ϵ)-trans-Sasakian man-

ifold is a constant multiple of the metric tensor. Using this it is shown that

if LV g + 2S is parallel where V is a given vector field, then (g, V ) is Ricci

soliton. Further, by virtue of this result, Ricci solitons for n-dimensional (ϵ)-

trans-Sasakian Manifolds are obtained. Next, Ricci solitons for 3-dimensional

(ϵ)-trans-Sasakian Manifolds of type (α, β) are discussed.
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1. Introduction

A Ricci soliton is a generalization of an Einstein metric and is defined on

a Riemannian manifold (M, g) by

LV g + 2S + 2λg = 0, (1.1)

where V is a vector field on M and λ is a constant. The Ricci soliton is said

to be shrinking, steady or expanding according as λ is negative, zero and pos-

itive respectively. Compact Ricci solitons are the fixed point of the Ricci flow
∂g
∂t = −2Ric projected from the space of metrics onto its quotient modulo dif-

feomorphisms and scalings and often arise as blow-up limits for the Ricci flow

on compact manifolds.
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In 1923, L.P. Eisenhart [9] proved that if a positive definite Riemannian

manifold (M, g) admits a second order parallel symmetric covariant tensor other

than a constant multiple of the metric tensor, then it is reducible. In 1925, Levy

[12] obtained the necessary and sufficient conditions for the existence of such

tensors. In 1989 and 1990, R. Sharma [20, 21] has generalized Levy’s result

by showing that a second order parallel (not necessarily symmetric and non

singular) tensor on an n-dimensional (n > 2) space of constant curvature is

a constant multiple of the metric tensor. It is also proved that in a Sasakian

manifold there is no nonzero parallel 2-form.

In 2008, R. Sharma [22] studied Ricci solitons in K-contact manifolds, where

the structure field ξ is killing and he proved that a complete K-contact gradi-

ent soliton is compact Einstein and Sasakian. In 2010, Constantin Calin and

Mircea Crasmareanu [7] extended the Eisenhart problem to Ricci solitons in f -

Kenmotsu manifolds. They studied the case of f -Kenmotsu manifolds satisfying

a special condition called regular and a symmetric parallel tensor field of second

order is a constant multiple of the Riemannian metric. Using this result, they

obtained the results on Ricci solitons. Again in 2011, Amadendu Ghosh and

Ramesh Sharma [1] studied on K-contact metrics as Ricci solitons.

The present paper is organized as follows: the second section is devoted to

preliminaries. In the third section we prove that a symmetric parallel second

order covariant tensor in an (ϵ)-trans-Sasakian manifold is a constant multiple

of the associated metric tensor. A Ricci soliton in an n-dimensional η-Einstein

(ϵ)-trans-Sasakian manifold is shrinking or expanding according as λ is positive

or negative. Similarly also for Ricci soliton in 3-dimensional (ϵ)-trans-Sasakian

manifold is either shrinking or expanding according as λ is positive or negative.

2. Preliminaries

Let M be an almost contact metric manifold of dimension n equipped with

an almost contact metric structure (ϕ, ξ, η, g) consisting of a (1, 1) tensor field

ϕ, a vector field ξ, a 1-form η and a Riemannian metric g satisfying

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, η ◦ ϕ = 0, ϕξ = 0. (2.1)

Almost contact metric manifold M is called (ϵ)-almost contact metric manifold

if

g(ξ, ξ) = ϵ, η(X) = ϵg(X, ξ), (2.2)

g(ϕX, ϕY ) = g(X,Y )− ϵη(X)η(Y ), ∀X,Y ∈ TM (2.3)

for all vector fields X,Y on M, where ϵ = g(ξ, ξ) = ±1.
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An (ϵ)-almost contact metric manifold is called an (ϵ)-trans-Sasakian man-

ifold if

(∇Xϕ)Y = α(g(X,Y )ξ − ϵη(Y )X) + β(g(ϕX, Y )ξ − ϵη(Y )ϕX), (2.4)

holds for some smooth functions α and β on M and ϵ = ±1.

The notations used in Lemmas (2.1) to (2.4) are from [15] and [23].

Lemma 2.1. An (ϵ)-almost contact metric manifoldM is an (ϵ)-trans-Sasakian

manifold if and only if

∇Xξ = ϵ[−αϕX + β(X − η(X)ξ)]. (2.5)

Proof. By taking Y = ξ in (2.4) and making use of (2.1), we have (2.5).

From (2.5), it follows that

(∇Xη)Y = β[g(X,Y )− ϵη(X)η(Y )]− αg(ϕX, Y ). (2.6)

Lemma 2.2. In an (ϵ)-trans-Sasakian manifold M, the Riemannian curvature

tensor R satisfies

R(X,Y )ξ =(α2 − β2)[η(Y )X − η(X)Y ] + 2αβ[η(Y )ϕX − η(X)ϕY ]

+ ϵ[(Y α)ϕX − (Xα)ϕY + (Y β)ϕ2X − (Xβ)ϕ2Y ],
(2.7)

R(ξ, Y )X =(α2 − β2)[ϵg(X,Y )ξ − η(X)Y ] + 2αβ[ϵg(ϕX, Y )ξ

+ η(X)ϕY ] + ϵg(ϕX, Y )(gradα) + ϵ(Xα)ϕY

− ϵg(ϕX, ϕY )(grad β) + ϵ(Xβ)[Y − η(Y )ξ].

(2.8)

Proof. We know that R(X,Y )ξ = ∇X∇Y ξ −∇Y ∇Xξ −∇[X,Y ]ξ. Using (2.5)

the above equation becomes

R(X,Y )ξ =∇X(ϵ[−αϕY + β(Y − η(Y )ξ)])−∇Y (ϵ[−αϕX + β(X

− η(X)ξ)])− ϵ{−αϕ[X,Y ] + β([X,Y ]− η([X,Y ])ξ)}.
(2.9)

Using (2.4), the above relation yields (2.7).

From (2.7) and g(R(ξ,X)Y, Z) = g(R(Y, Z)ξ,X), we obtain (2.8).
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Lemma 2.3. In an (ϵ)-trans-Sasakian manifold M, we have

η(R(X,Y )Z) = ϵ(α2 − β2)[g(Y, Z)η(X)− g(X,Z)η(Y )]

+ 2ϵαβ[g(ϕY,Z)η(X)− g(ϕX,Z)η(Y )]

+ [(Xα)g(ϕY,Z)− (Y α)g(ϕX,Z)]

+ [(Xβ)g(ϕ2Y,Z)− (Y β)g(ϕ2X,Z)].

(2.10)

Consequently

η(R(X,Y )ξ) = 0. (2.11)

Proof. Now we have

η(R(X,Y )Z) = ϵg(R(X,Y )Z, ξ)

= −ϵg(R(X,Y )ξ, Z).

Using (2.7), in the above equation, we have (2.10) that is

η(R(X,Y )Z) = ϵ(α2 − β2)[g(Y,Z)η(X)− g(X,Z)η(Y )] + 2ϵαβ[g(ϕY,Z)η(X)

− g(ϕX,Z)η(Y )] + [(Xα)g(ϕY,Z)− (Y α)g(ϕX,Z)]

+ [(Xβ)g(ϕ2Y,Z)− (Y β)g(ϕ2X,Z)].

Replacing Z = ξ in the above equation then we have (2.11).

Lemma 2.4. In an (ϵ)-trans-Sasakian manifold M, the following relations

holds true

S(X, ξ) = [(n− 1)(α2 − β2)− ϵ(ξβ)]η(X)− ϵ((ϕX)α)− (n− 2)ϵ(Xβ) (2.12)

and

ϵ(ξα) + 2αβ = 0. (2.13)

Proof. Taking Y = Z = ei in (2.11) and we obtain (2.12).

Taking X = ξ in (2.7), we have

R(ξ,X)ξ = [(α2 − β2)− ϵ(ξβ)][−Y + η(Y )ξ]− [2αβ + ϵ(ξα)]ϕY. (2.14)

Taking Y = ξ in (2.8), we obtain

R(ξ,X)ξ = [(α2 − β2)− ϵ(ξβ)][−Y + η(Y )ξ] + [2αβ + ϵ(ξα)]ϕY. (2.15)

Comparing (2.14) and (2.15), we obtain (2.13).

Lemma 2.5. In an (ϵ)-trans-Sasakian manifold M of type (α, β), if

ϕ(gradα) = (n− 2)(grad β), (2.16)
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then we have

(ξβ) = 0. (2.17)

Thus the directional derivative of β with respect to characteristic vector field ξ

is zero.

Proof. We know that

Xβ = g(X, grad β) = g(X,
ϕ(gradα)

(n− 2)
)

= − 1

(n− 2)
g(ϕX, gradα),

(2.18)

which implies

(n− 2)Xβ + (ϕX)α = 0. (2.19)

On putting X = ξ in (2.19), we obtain (2.17).

2.1. Example [14] We consider the 3-dimensional manifold M = {(x, y, z) ∈
R3; z ̸= 0}, where (x, y, z) are the standard co-ordinates in R3. Let {E1, E2, E3}
be linearly independent global frame field on M given by

E1 =
x

z

∂

∂x
, E2 =

y

z

∂

∂y
, E3 = ϵ

∂

∂z
. (2.20)

Let g be the Riemannian metric defined by g(E1, E2) = g(E2, E3) = g(E1, E3) =

0 and g(E1, E1) = g(E2, E2) = 1, g(E3, E3) = ϵ, where ϵ = ±1 and g is given

by

g =
z2

x2
dx⊗ dx+

z2

y2
dy ⊗ dy + ϵdz ⊗ dz.

The (ϕ, ξ, η) is given by η = ϵdz, ξ = E3 = ∂
∂z ϕE1 = E2, ϕE2 = −E1

and ϕE3 = 0. The linearity property of ϕ and g yields that η(E3) = 1, ϕ2U =

−U+η(U)E3, g(ϕU, ϕW ) = g(U,W )−ϵη(U)η(W ), for any vector fields U,W on

M. Hence for E3 = ξ, (ϕ, ξ, η, g) defines an (ϵ)-almost contact metric structure

on M. By definition of Lie bracket, we have [E1, E2] = 0, [E1, E3] = − ϵ
zE1

[E2, E3] = ϵ
zE2. Let ∇ be Levi-Civita connection with respect to the above

metric g given by Koszula formula

2g(∇XY,Z) =X(g(Y, Z)) + Y (g(Z,X))− Z(g(X,Y ))

− g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X,Y ]).
(2.21)

Using (2.21), we have

2g(∇E1E3, E1) = 2g(
ϵ

z
E1, E1) + 2g(ϵE2, E1) = 2g(

ϵ

z
E1 + ϵE2, E1), (2.22)

since g(E1, E2) = 0. Thus ∇E1E3 =
ϵ
zE1 + ϵE2.
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Again by (2.21), we get

2g(∇E2E3, E2) = 2g(
ϵ

z
E2, E2)− 2g(ϵE2, E1) = 2g(

ϵ

z
E2 − ϵE1, E2), (2.23)

since g(E1, E2) = 0. Therefore we have ∇E2E3 =
ϵ
zE2 − ϵE1.

Using (2.21), we have

∇E1E1 = − ϵ
zE3, ∇E2E2 = − ϵ

zE3, ∇E3E3 = 0,

∇E1E2 = 0, ∇E2E1 = 0, ∇E1E3 =
ϵ
zE1 + ϵE2,

∇E3E1 = 0, ∇E2E3 =
ϵ
zE2 − ϵE1, ∇E3E2 = 0.

(2.24)

The tangent vectors X and Y to M are expressed as linear combination of

E1, E2, E3, that is X = a1E1+ a2E2+ a3E3 and Y = b1E1+ b2E2+ b3E3 where

ai, bi(i = 1, 2, 3) are scalars.

Now, for ξ = E3, above results that is (2.24) satisfy (2.5) that is

∇Xξ = ϵ[−αϕX + β(X − η(X)ξ)],

with α = −1 and β = 1
z . Consequently M is a 3-dimensional (ϵ)-trans-Sasakian

manifold.

3. Parallel symmetric second order tensors and Ricci solitons in (ϵ)-

trans-Sasakian manifolds

Fix h a symmetric tensor field of (0, 2)-type which we suppose to be parallel

with respect to ∇ that is ∇h = 0. Applying the Ricci identity [20]

∇2h(X,Y ;Z,W )−∇2h(X,Y ;W,Z) = 0, (3.1)

we obtain the relation

h(R(X,Y )Z,W ) + h(Z,R(X,Y )W ) = 0, (3.2)

Replacing Z = W = ξ in (3.2) and using (2.7) and by the symmetry of h, we

have

2(α2 − β2)[η(Y )h(X, ξ)− η(X)h(Y, ξ)] + 4αβ[η(Y )h(ϕX, ξ)

−η(X)h(ϕY, ξ)] + 2ϵ[(Y α)h(ϕX, ξ)− (Xα)h(ϕY, ξ)

+(Y β)h(ϕ2X, ξ)− (Xβ)h(ϕ2Y, ξ)] = 0. (3.3)

Put X = ξ in (3.3) and by virtue of (2.1), we have

2(α2 − β2)[η(Y )h(ξ, ξ)− h(Y, ξ)]− 2(ϵ(ξα) + 2αβ)h(ϕY, ξ)

−2ϵ(ξβ)h(ϕ2Y, ξ) = 0. (3.4)
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By using (2.13) and (2.17) in (3.4) we have

2(α2 − β2)[η(Y )h(ξ, ξ)− h(Y, ξ)] = 0. (3.5)

And suppose 2(α2 − β2) ̸= 0, it results

h(Y, ξ) = η(Y )h(ξ, ξ). (3.6)

Differentiating (3.6) covariantly with respect to X, we have

(∇Xh)(Y, ξ) + h(∇XY, ξ) +h(Y,∇Xξ) = [(∇Xη)(Y ) + η(∇XY )]h(ξ, ξ)

+ η(Y )[(∇Xh)(Y, ξ) + 2h(∇Xξ, ξ)]. (3.7)

By using (2.6) and (3.6) in the above equation, we have

−ϵαh(Y, ϕX) + βh(Y,X) = −αg(ϕX, Y )h(ξ, ξ) + βg(Y,X)h(ξ, ξ).

Put X = ϕX in the above equation and on simplification, we have

h(X,Y ) = ϵg(X,Y )h(ξ, ξ), (3.8)

which together with the standard fact that the parallelism of h implies that

h(ξ, ξ) is a constant, via (3.6). Now, by considering the above conditions we can

state the following theorem:

Theorem 3.1. A symmetric parallel second order covariant tensor in an (ϵ)-

trans-Sasakian manifold is a constant multiple of the associated metric tensor.

Corollary 3.1. A locally Ricci symmetric (∇S = 0) (ϵ)-trans-Sasakian mani-

fold is an Einstein manifold.

3.1. Remark. The following statements for (ϵ)-trans-Sasakian manifold are

equivalent:

(1) Einstein,

(2) locally Ricci symmetric,

(3) Ricci semi-symmetric that is R · S = 0.

The implication (1) −→ (2) −→ (3) is trivial. Now we prove the implication

(3) −→ (1) and R · S = 0 means exactly (3.2) with replaced h by S, that is

(R(X,Y ) · S)(U, V ) = −S(R(X,Y )U, V )− S(U,R(X,Y )V ). (3.9)

Considering R · S = 0 and putting X = ξ in equation (3.9), we have

S(R(ξ, Y )U, V ) + S(U,R(ξ, Y )V ) = 0. (3.10)
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By using (2.8), (2.12), (2.13) and (2.17), we obtain

(α2 − β2)[ϵg(U, Y )S(ξ, V )− η(U)S(Y, V )] + 2αβ[ϵg(ϕU, Y )S(ξ, V )

+ η(U)S(ϕY, V )] + ϵg(ϕU, Y )S(gradα, V ) + ϵ(Uα)S(ϕY, V )

− ϵg(ϕU, ϕY )S(gradβ, V ) + ϵ(Uβ)[S(Y, V )− η(Y )S(ξ, V )]

+ (α2 − β2)[ϵg(V, Y )S(U, ξ)− η(V )S(U, Y )] + 2αβ[ϵg(ϕV, Y )S(U, ξ)

+ η(V )S(U, ϕY )] + ϵg(ϕV, Y )S(U, gradα) + ϵ(V α)S(U, ϕY )

− ϵg(ϕV, ϕY )S(U, gradβ) + ϵ(V β)[S(U, Y )− η(Y )S(U, ξ)] = 0.

Again by putting U = ξ in above equation and by using (2.1), (2.16), (2.12) and

(2.17), on simplification we obtain

S(Y, V ) = ϵ(n− 1)(α2 − β2)g(Y, V ). (3.11)

In conclusion:

Proposition 3.2. A Ricci semi-symmetric (ϵ)-trans-Sasakian manifold is an

Einstein manifold.

A Ricci soliton in an (ϵ)-trans-Sasakian manifold defined by (1.1). In the

theorem 3.1 we proved that if an (ϵ)-trans-Sasakian manifold admits a symmetric

parallel (0, 2) tensor, then the tensor is a constant multiple of the metric tensor.

Thus LV g+2S is parallel. Hence LV g+2S is a constant multiple of the metric

tensor g that is (LV g + 2S)(X,Y ) = ϵg(X,Y )h(ξ, ξ), where h(ξ, ξ) is a nonzero

constant. We close this section with applications of our Theorem 3.1 to Ricci

solitons:

Corollary 3.2. Suppose that on a (ϵ)-trans-Sasakian manifold the (0, 2)-type

field LV g + 2S is parallel where V is a given vector field or point-wise collinear

with ξ. Then (g, V ) yield a Ricci soliton. In particular, if the given (ϵ)-trans-

Sasakian manifold is Ricci semi-symmetric with LV g parallel, we have the same

conclusion.

Proof. Follows from theorem 3.1 and corollary 3.1

Corollary 3.3. If a Ricci soliton (g, ξ, λ) in an n-dimensional (ϵ)-trans-Sasakian

manifold cannot be steady.

Proof. From Linear Algebra either the vector field V ∈ Span ξ or V ⊥ ξ.

However the second case seems to be complex to analyse in practice. For this

reason we investigate for the case V = ξ.
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A simple computation of Lξg + 2S gives

(Lξg)(X,Y ) = 2β[ϵg(X,Y )− η(X)η(Y )]. (3.12)

From equation (1.1), we have h(X,Y ) = −2λg(X,Y ) and then putting X =

Y = ξ, we have

h(ξ, ξ) = −2λϵ, (3.13)

where

h(ξ, ξ) = (Lξg)(ξ, ξ) + 2S(ξ, ξ), (3.14)

by using (3.12) and (2.12) in the above equation, we have

h(ξ, ξ) = 2(n− 1)[(α2 − β2)]. (3.15)

Equating (3.13) and (3.15), we have

λ = −(n− 1)ϵ(α2 − β2). (3.16)

Since α and β are some nonzero functions, we have λ ̸= 0, that is a Ricci soliton

in an n-dimensional (ϵ)-trans-Sasakian manifold cannot be steady. Hence the

proof.

Proposition 3.3. If an n-dimensional (ϵ)-trans-Sasakian manifold is η-Einstein

then the Ricci soliton (g, ξ, λ) in an (ϵ)-trans-Sasakian manifold with varying

scalar curvature cannot be steady but it is shrinking or expanding according as

λ is positive or negative, that is

(1) shrinking(λ < 0) for ϵ = 1 and α2 > β2

(2) expanding(λ > 0) for ϵ = −1 and α2 > β2

(3) expanding(λ > 0) for ϵ = 1 and α2 < β2

(4) shrinking(λ < 0) for ϵ = −1 and α2 < β2.

Proof. The proof consists of three parts:

In first step we prove that the metric tensor is η-Einstein: that is the metric

g is called η-Einstein if there exists two real functions a and b such that the Ricci

tensor of g is given by

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ). (3.17)

Let ei = 1, 2, . . . n be an orthonormal basis of the tangent space at any point of

the manifold. Then putting X = Y = ei in (3.17) and taking summation over

i, then we get

r = na+ bϵ. (3.18)
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Again putting X = Y = ξ in (3.17) then by using (2.12), we have

ϵa+ b = (n− 1)(α2 − β2). (3.19)

Then from (3.18) and (3.19), we have

a =
r

(n− 1)
− ϵ(α2 − β2), b = − rϵ

(n− 1)
+ n(α2 − β2). (3.20)

Substituting the value of a and b in (3.17), we have

S(X,Y ) =

[
r

(n− 1)
− ϵ(α2 − β2)]

]
g(X,Y )

+

[
n(α2 − β2)− rϵ

(n− 1)

]
η(X)η(Y ). (3.21)

Equation (3.21) is an η-Einstein (ϵ)-trans-Sasakian manifold.

In the second step we prove that the scalar curvature r is varying: A Ricci

solitons in an (ϵ)-trans-Sasakian manifolds with V = ξ in (1.1) and it reduced

to

(Lξg)(X,Y ) + 2S(X,Y ) + 2λg(X,Y ) = 0. (3.22)

The above equation can be written as

h(X,Y ) + 2λg(X,Y ) = 0, (3.23)

where h is a symmetric parallel covariant tensor of type (0, 2) and is given by

h(X,Y ) = (Lξg)(X,Y ) + 2S(X,Y ). (3.24)

By using (3.12) and (3.21) in (3.24), we have

h(X,Y ) =

[
2r

(n− 1)
− 2ϵ(α2 − β2) + 2ϵβ

]
g(X,Y )

+

[
− 2rϵ

(n− 1)
+ 2n(α2 − β2)− 2β

]
η(X)η(Y ). (3.25)

Differentiating the above equation with respect to Z, we have

(∇Zh)(X,Y ) =

[
2(∇Zr)

(n− 1)
− 2ϵ[2α(Zα)− 2β(Zβ)] + 2ϵ(Zβ)

]
g(X,Y )

+

[
−2ϵ(∇Zr)

(n− 1)
+ 2n[2α(Zα)− 2β(Zβ)]− 2(Zβ)

]
η(X)η(Y )

+

[
− 2rϵ

(n− 1)
+ 2n(α2 − β2)− 2β

]
[−αg(ϕZ,X)η(Y ) + βg(X,Z)η(Y )

−2ϵβη(X)η(Y )η(Z)− αg(ϕZ, Y )η(X) + βg(Z, Y )η(X)]. (3.26)
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By substituting Z = ξ and X = Y ∈ (Spanξ)⊥ in (3.26) and a tensor h is

parallel. By using (2.17) in (3.26), we have

∇ξr = −4(n− 1)α2β, (3.27)

Thus (3.27) implies that the scalar curvature r is not constant.

In the third step we prove that the Ricci soliton in an (ϵ)-trans-Sasakian

manifold is shrinking or expanding according as λ is positive or negative: From

equation (3.23), we have

h(X,Y ) = −2λg(X,Y ).

Putting X = Y = ξ in the above equation, we have

h(ξ, ξ) = −2λϵ. (3.28)

Now,

h(ξ, ξ) =

[
2r

(n− 1)
− 2ϵ(α2 − β2) + 2ϵβ

]
g(ξ, ξ)

+

[
− 2rϵ

(n− 1)
+ 2n(α2 − β2)− 2β

]
η(ξ)η(ξ).

The above equation reduced as,

h(ξ, ξ) = 2(n− 1)[(α2 − β2)]. (3.29)

Equating (3.28) and (3.29) and by using (2.17), we have

λ = −(n− 1)ϵ(α2 − β2). (3.30)

From (3.30) we can see that the Ricci soliton in an η-Einstein (ϵ)-trans-Sasakian

manifold is shrinking or expanding according as λ is positive or negative. This

completes the proof.

Now, we restrict our study to 3-dimensional (ϵ)-trans-Sasakian manifolds:

Proposition 3.4. If a Ricci soliton (g, ξ, λ) of 3-dimensional (ϵ)-trans-Sasakian

manifold with varying scalar curvature the is shrinking or expanding according

as λ is positive or negative, that is

(1) expanding(λ > 0) for ϵ = 1 and α2 < β2

(2) shrinking(λ < 0) for ϵ = −1 and α2 < β2

(3) shrinking(λ < 0) for ϵ = 1 and α2 > β2

(4) expanding(λ > 0) for ϵ = −1 and α2 > β2.
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Proof. The proof consists of three parts:

In first step we find 3-dimensional η-Einstein (ϵ)-trans-Sasakian manifolds:

A general expression of Ricci tensor S is known by us for the 3-dimensional η-

Einstein (ϵ)-trans-Sasakian manifolds by considering 3-dimensional Riemannian

manifold that is,

R(X,Y )Z = g(Y, Z)QX − g(X,Z)QY + S(Y, Z)X − S(X,Z)Y

− r

2
[g(Y,Z)X − g(X,Z)Y ], (3.31)

put Z = ξ in the above equation and by using (2.7) and (2.12) we have

(α2 − β2)[η(Y )X − η(X)Y ] + 2αβ[η(Y )ϕX − η(X)ϕY ]

+ϵ[(Y α)ϕX − (Xα)ϕY + (Y β)ϕ2X − (Xβ)ϕ2Y ] = ϵ[η(Y )QX − η(X)QY ]

+2(α2 − β2)[η(Y )X − η(X)Y ] + ϵ[((ϕX)α)Y + (Xβ)Y − ((ϕY )α)X

−(Y β)X]− rϵ

2
[η(Y )X − η(X)Y ].

Again put Y = ξ in the above equation and by using (2.1), (2.16) and (2.17) we

get

QX =
[r
2
− ϵ(α2 − β2)

]
X +

[
3ϵ(α2 − β2)− r

2

]
η(X)ξ (3.32)

and

S(X,Y ) =
[r
2
− ϵ(α2 − β2)

]
g(X,Y ) +

[
3(α2 − β2)− rϵ

2

]
η(X)η(Y ). (3.33)

Equation (3.33) is an 3-dimensional η-Einstein (ϵ)-trans-Sasakian manifold.

In the second step we prove that the scalar curvature r is varying: A Ricci

solitons in a 3-dimensional (ϵ)-trans-Sasakian manifolds with V = ξ in (1.1) and

it reduced to

(Lξg)(X,Y ) + 2S(X,Y ) + 2λg(X,Y ) = 0. (3.34)

The above equation can be written as

h(X,Y ) + 2λg(X,Y ) = 0, (3.35)

where h is a symmetric parallel covariant tensor of type (0, 2) and is given by

h(X,Y ) = (Lξg)(X,Y ) + 2S(X,Y ). (3.36)

By using (3.12) and (3.33) in (3.36), we have

h(X,Y ) = [r − 2ϵ(α2 − β2) + 2ϵβ]g(X,Y )

+ [6(α2 − β2)− ϵr − 2β]η(X)η(Y ). (3.37)
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Differentiating the above equation covariantly with respect to Z, we have

(∇Zh)(X,Y ) = [∇Zr − 4ϵ(α(Zα)− β(Zβ)) + 2ϵ(Zβ)]g(X,Y )

+[12[α(Zα)− β(Zβ)]− ϵ(∇Zr)− 2(Zβ)]η(X)η(Y )

+[6(α2 − β2)− ϵr − 2β]{−αg(ϕZ,X)η(Y ) + βg(X,Z)η(Y )

−2ϵβη(X)η(Y )η(Z)− αg(ϕZ, Y )η(X) + βg(Z, Y )η(X)}. (3.38)

Substituting Z = ξ, X = Y ∈ (Spanξ)⊥ in (3.38) and a tensor h is parallel. By

using (2.17), we have

∇ξr = −8α2β. (3.39)

Thus, (3.39) implies that the scalar curvature r is not constant.

In the third step we prove that the Ricci soliton in 3-dimensional (ϵ)-trans-

Sasakian manifold is shrinking or expanding according as λ is positive or nega-

tive: From equation (3.35), we have

h(X,Y ) = −2λg(X,Y ).

Putting X = Y = ξ in the above equation, we have

h(ξ, ξ) = −2λϵ. (3.40)

Now,

h(X,Y ) = [r − 2ϵ(α2 − β2) + 2ϵβ]g(X,Y ) + [6(α2 − β2)− ϵr − 2β]η(X)η(Y ).

If X = Y = ξ in the above equation, we have

h(ξ, ξ) = 4(α2 − β2). (3.41)

Equating (3.40) and (3.41), we have

λ = −2ϵ(α2 − β2). (3.42)

From (3.42) we can see that the Ricci soliton in 3-dimensional (ϵ)-trans-Sasakian

manifold is shrinking or expanding according as λ is positive or negative. This

completes the proof.
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