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Abstract

We study Ricci solitons in (e)-trans-Sasakian manifolds. It is shown that
a symmetric parallel second order covariant tensor in a (¢)-trans-Sasakian man-
ifold is a constant multiple of the metric tensor. Using this it is shown that
if Lyg + 2S5 is parallel where V' is a given vector field, then (g,V’) is Ricci
soliton. Further, by virtue of this result, Ricci solitons for n-dimensional (¢)-
trans-Sasakian Manifolds are obtained. Next, Ricci solitons for 3-dimensional
(e)-trans-Sasakian Manifolds of type (o, 3) are discussed.
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1. Introduction

A Ricci soliton is a generalization of an Einstein metric and is defined on
a Riemannian manifold (M, g) by

Lvg+2S+2X\g =0, (1.1)

where V' is a vector field on M and A is a constant. The Ricci soliton is said
to be shrinking, steady or expanding according as A is negative, zero and pos-
itive respectively. Compact Ricci solitons are the fixed point of the Ricci flow
% = —2Ric projected from the space of metrics onto its quotient modulo dif-
feomorphisms and scalings and often arise as blow-up limits for the Ricci flow

on compact manifolds.
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In 1923, L.P. Eisenhart [9] proved that if a positive definite Riemannian
manifold (M, g) admits a second order parallel symmetric covariant tensor other
than a constant multiple of the metric tensor, then it is reducible. In 1925, Levy
[12] obtained the necessary and sufficient conditions for the existence of such
tensors. In 1989 and 1990, R. Sharma [20, 21] has generalized Levy’s result
by showing that a second order parallel (not necessarily symmetric and non
singular) tensor on an n-dimensional (n > 2) space of constant curvature is
a constant multiple of the metric tensor. It is also proved that in a Sasakian
manifold there is no nonzero parallel 2-form.

In 2008, R. Sharma [22] studied Ricci solitons in K-contact manifolds, where
the structure field ¢ is killing and he proved that a complete K-contact gradi-
ent soliton is compact Einstein and Sasakian. In 2010, Constantin Calin and
Mircea Crasmareanu [7] extended the Eisenhart problem to Ricci solitons in f-
Kenmotsu manifolds. They studied the case of f-Kenmotsu manifolds satisfying
a special condition called regular and a symmetric parallel tensor field of second
order is a constant multiple of the Riemannian metric. Using this result, they
obtained the results on Ricci solitons. Again in 2011, Amadendu Ghosh and
Ramesh Sharma [1] studied on K-contact metrics as Ricci solitons.

The present paper is organized as follows: the second section is devoted to
preliminaries. In the third section we prove that a symmetric parallel second
order covariant tensor in an (e)-trans-Sasakian manifold is a constant multiple
of the associated metric tensor. A Ricci soliton in an n-dimensional n-Einstein
(e)-trans-Sasakian manifold is shrinking or expanding according as A is positive
or negative. Similarly also for Ricci soliton in 3-dimensional (€)-trans-Sasakian
manifold is either shrinking or expanding according as \ is positive or negative.

2. Preliminaries

Let M be an almost contact metric manifold of dimension n equipped with
an almost contact metric structure (¢, £, n,g) consisting of a (1,1) tensor field
¢, a vector field £, a 1-form 7 and a Riemannian metric g satisfying
Almost contact metric manifold M is called (€)-almost contact metric manifold
if

98,8 =€ n(X) =eg(X,9), (2.2)
9(0X,0Y) = g(X,Y) —en(X)n(Y), VXY € TM (2.3)
for all vector fields X,Y on M, where € = g(£,&) = £1.
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An (e)-almost contact metric manifold is called an (e)-trans-Sasakian man-
ifold if

(Vx@)Y = a(g(X,Y)§ — en(Y)X) + B(g(oX, Y)§ — en(Y)¢X), (2.4)

holds for some smooth functions « and 5 on M and € = +1.

The notations used in Lemmas (2.1) to (2.4) are from [15] and [23].

Lemma 2.1. An (¢)-almost contact metric manifold M is an (¢)-trans-Sasakian
manifold if and only if

Vx€ = e[—apX + f(X —n(X)E)]. (2.5)

Proof. By taking Y = £ in (2.4) and making use of (2.1), we have (2.5).
From (2.5), it follows that

(Vxn)Y = Blg(X,Y) —en(X)n(Y)] — ag(¢X,Y). (2.6)

Lemma 2.2. In an (e)-trans-Sasakian manifold M, the Riemannian curvature
tensor R satisfies

R(X,Y)¢ =(a® = B)[n(Y)X — n(X)Y]+ 2a8[n(Y)¢X — n(X)¢Y]

, ) (2.7)
+e[(Y)pX — (X)pY + (Y B)¢"X — (XB)¢7Y],

R(&,Y)X =(0? — 8)[eg(X,Y)E — n(X)Y] + 208[eg(¢ X, Y)E
+n(X)pY] + eg(¢X,Y)(grada) + (X )oY (2.8)
— €g(¢X, ¢Y)(grad 8) + e(XB)[Y — n(Y)E].

Proof. We know that R(X,Y){ = VxVy{ - VyVx{ — Vixy)§. Using (2.5)
the above equation becomes
R(X,Y)E =Vx(e[-agY + B(Y —n(Y)E)]) — Vy(e[-adX + B(X

—n(X)8)]) — e{ —ao[X, Y]+ B([X, Y] — n([X,Y])E)}. 29

Using (2.4), the above relation yields (2.7).
From (2.7) and g(R(&, X)Y, Z) = g(R(Y, Z)§, X), we obtain (2.8).
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Lemma 2.3. In an (e)-trans-Sasakian manifold M, we have
N(R(X,Y)Z) =e(a® = B2)[g(Y, Z)n(X) — (X, Z)n(Y)]
+2eaflg(oY, Z)n(X) — g(¢X, Z)n(Y)]

+[(Xa)g(6Y. 2) ~ (Ya)g(6X. 2) 210
+[(XB)g(¢*Y, Z) — (Y B)g(¢° X, Z)].
Consequently
n(R(X,Y)¢) =0. (2.11)

Proof. Now we have
n(R(X,Y)Z) = eg(R(X,Y)Z,¢)
— —eg(R(X, V)5, 2).

Using (2.7), in the above equation, we have (2.10) that is
N(R(X,Y)Z) = e(a®~B)g(Y. Z)n(X) — g(X, Z)n(Y)] + 2eaBlg(¢Y., Z)n(X)

— 90X, Z)n(Y)] + [(Xa)g(¢Y, Z) — (Ya)g(¢X, Z)]

+ [(XB)g(¢%Y, Z) — (YB)g(6° X, Z)).
Replacing Z = £ in the above equation then we have (2.11).

Lemma 2.4. In an (e¢)-trans-Sasakian manifold M, the following relations
holds true

S(X,€) = [(n—1)(@” = 5%) — e(¢B)In(X) — e((¢X)a) — (n — 2)e(XB) (2.12)
and
e(a) +2ap = 0. (2.13)
Proof. Taking Y = Z =e¢; in (2.11) and we obtain (2.12).
Taking X = ¢ in (2.7), we have
R(&,X)€ = [(0® = 5%) — e(B)][-Y +n(Y)E] — [2a8 + e(€a)]pY.  (2.14)
Taking Y = ¢ in (2.8), we obtain
R(§, X)E = [(a® = 57) — e(€P)[-Y +n(Y)E] + 208 + e(€a)loY.  (2.15)
Comparing (2.14) and (2.15), we obtain (2.13).
Lemma 2.5. In an (€)-trans-Sasakian manifold M of type («, ), if

d(grada) = (n — 2)(grad ), (2.16)
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then we have
(€8) =0. (2.17)

Thus the directional derivative of 8 with respect to characteristic vector field &
is zero.

Proof. We know that

X8 = g(X,grad §) = g(x, 220,
X (n=2) (2.18)
= —mg(d)X,gmda),
which implies
(n—2)XB+ (¢pX)a = 0. (2.19)

On putting X = £ in (2.19), we obtain (2.17).

2.1. Example [14] We consider the 3-dimensional manifold M = {(z,y,2) €
R3; 2 # 0}, where (z,y, 2) are the standard co-ordinates in R3. Let {E;, Fy, E3}
be linearly independent global frame field on M given by

jai’ 2:?:(%, Egzegz. (2.20)
Let g be the Riemannian metric defined by g(E1, E2) = g(E2, E3) = g(E1, E3) =
0 and g(F1, E1) = g(Eq, E2) = 1, g(E3, E3) = €, where ¢ = +1 and g is given
by

B =

22 22
9= dr®dr+ —Sdy®@dy +edz ®@dz.
L Yy

The (¢a§a77) is giVGIl by n = GdZ, 5 = E5 = % ¢E1 = FEy, ¢E2 = -k
and ¢E3 = 0. The linearity property of ¢ and g yields that n(FE3) = 1, ¢*°U =
—U+n(U)Es, g(oU, pW) = g(U, W) —en(U)n(W), for any vector fields U, W on
M. Hence for E3 =&, (¢,&,1,g) defines an (€)-almost contact metric structure
on M. By definition of Lie bracket, we have [E1, Es] = 0, [Ey, B3] = —<E;
[Ea, B3] = £E». Let V be Levi-Civita connection with respect to the above
metric g given by Koszula formula

29(VXY> Z) :X(g(Yv Z)) + Y(g(Z> X)) - Z(g(Xa Y)) (2 21)

Using (2.21), we have
€ €
29(VE, E3, ) = 29(;E1, Eq) +2g(eEy, En) = 29(;E1 +eby, Er),  (2.22)
since g(El,Eg) = 0. Thus VElEg = EEl + €Fs.
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Again by (2.21), we get

29(V , B3, Es) = 2g(§E2, Ey) — 29(eEs, By) = Qg(gEg — By, By), (2.23)
since g(E1, E2) = 0. Therefore we have Vg, F3 = $Ey — eby.

Using (2.21), we have

Vg B =—tE;, VgFEy=—{E;3, Ve E3 =0,
VEIEQ =0, VEQEl =0, vElEg = §E1 + ek, (2.24)
Vi, By =0, Vi, By =SBy — €By, Vg, Ey=0.

The tangent vectors X and Y to M are expressed as linear combination of
FEq, Eo, E3, that is X = a1 F1 + asFs + agFE3 and Y = b1 Ey + by Ey + b3 E3 where
a;, bi(i = 1,2,3) are scalars.

Now, for £ = E3, above results that is (2.24) satisfy (2.5) that is
Vx§ = e[—agX + B(X —n(X)E)],

with « = —1 and 8 = % Consequently M is a 3-dimensional (€)-trans-Sasakian
manifold.

3. Parallel symmetric second order tensors and Ricci solitons in (¢€)-
trans-Sasakian manifolds

Fix h a symmetric tensor field of (0, 2)-type which we suppose to be parallel
with respect to V that is VA = 0. Applying the Ricci identity [20]

VAWX,Y;Z,W) - VWX, Y;W, Z) =0, (3.1)
we obtain the relation
MR(X,Y)Z, W)+ h(Z,R(X,Y)W) =0, (3.2)
Replacing Z = W = £ in (3.2) and using (2.7) and by the symmetry of h, we
have
2(a” = B2)(Y)h(X, &) = n(X)h(Y, )] + 4aBn(Y)h($ X, £)
—n(X)h(DY, )] + 2¢[(Y a)h(¢ X, §) — (Xa)h(eY,€)
+HYBh(¢*X,€) — (XB)h(¢°Y,€)] = 0.
Put X = ¢ in (3.3) and by virtue of (2.1), we have

2(a” = %) [n(Y)h(&, §) — h(Y,€)] — 2(e(§a) + 2aB)h(4Y,€)
—26(£B)h (%Y, €) = 0. (3.4)
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By using (2.13) and (2.17) in (3.4) we have

2(a® = B%)[n(Y)h(&,€) — h(Y, )] = 0. (3.5)
And suppose 2(a? — 32) # 0, it results
h(Y,&) = n(Y)h(&, ). (3.6)

Differentiating (3.6) covariantly with respect to X, we have

(Vxh)(Y,8) + M(VxY,§) +h(Y,VxE) = [(Vxn)(Y)+n(VxY)h(,E)
+n(Y)[(Vxh)(Y,§) + 2h(VxE, §)]. (3.7)

By using (2.6) and (3.6) in the above equation, we have
—eah(Y,pX) + Bh(Y, X) = —ag(¢X,Y)h(£,§) + Bg(Y, X)h(E, §).
Put X = ¢X in the above equation and on simplification, we have
WX, Y) = eg(X,Y)h(&, ), (3-8)

which together with the standard fact that the parallelism of h implies that
h(§,&) is a constant, via (3.6). Now, by considering the above conditions we can
state the following theorem:

Theorem 3.1. A symmetric parallel second order covariant tensor in an (e)-
trans-Sasakian manifold is a constant multiple of the associated metric tensor.

Corollary 3.1. A locally Ricci symmetric (V.S = 0) (e)-trans-Sasakian mani-
fold is an Einstein manifold.

3.1. Remark. The following statements for (e¢)-trans-Sasakian manifold are
equivalent:

(1) Einstein,

(2) locally Ricci symmetric,

(3) Ricci semi-symmetric that is R - .S = 0.

The implication (1) — (2) — (3) is trivial. Now we prove the implication
(3) — (1) and R - S = 0 means exactly (3.2) with replaced h by S, that is

Considering R - S = 0 and putting X = £ in equation (3.9), we have
S(R(E,Y)U,V)+ S(U,R(E,Y)V) =0. (3.10)
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By using (2.8), (2.12), (2.13) and (2.17), we obtain

(@® = B%)[eg(U,Y)S(&, V) = n(U)S(Y, V)] + 2a8[eg(oU, Y)S (£, V)
+n(U)S(@Y, V)] + eg(oU,Y)S(grade, V) + e(Ua) S(¢Y, V)
—€g(¢U, ¢Y)S(gradB, V) + e(UB)[S(Y, V) —n(Y)S(E, V)]

+(a® = B2)[eg(V,Y)S(U,€) = n(V)S(U,Y)] + 2a8[eg(¢V, Y)S (U, €)
+n(V)S(U, ¢Y)] + eg(oV,Y)S(U, grada) + ¢(Va)S(U, ¢Y)
—eg(¢V, 0Y)S(U, gradB) + e(VB)[S(U,Y) —n(Y)S(U,€)] = 0.

Again by putting U = ¢ in above equation and by using (2.1), (2.16), (2.12) and
(2.17), on simplification we obtain

S(Y,V) = e(n—1)(a® = 5%)g(Y, V). (3.11)
In conclusion:

Proposition 3.2. A Ricci semi-symmetric (e)-trans-Sasakian manifold is an
Einstein manifold.

A Ricci soliton in an (e)-trans-Sasakian manifold defined by (1.1). In the
theorem 3.1 we proved that if an (e)-trans-Sasakian manifold admits a symmetric
parallel (0, 2) tensor, then the tensor is a constant multiple of the metric tensor.
Thus Ly g+ 2S is parallel. Hence Ly g+ 2S5 is a constant multiple of the metric
tensor ¢ that is (Ly g+ 25)(X,Y) = eg(X,Y)h(&, &), where h(&,§) is a nonzero
constant. We close this section with applications of our Theorem 3.1 to Ricci
solitons:

Corollary 3.2. Suppose that on a (€)-trans-Sasakian manifold the (0, 2)-type
field Ly g + 25 is parallel where V' is a given vector field or point-wise collinear
with €. Then (g, V) yield a Ricci soliton. In particular, if the given (e)-trans-
Sasakian manifold is Ricci semi-symmetric with Ly g parallel, we have the same
conclusion.

Proof. Follows from theorem 3.1 and corollary 3.1

Corollary 3.3. If a Ricci soliton (g, &, A) in an n-dimensional (€)-trans-Sasakian
manifold cannot be steady.

Proof. From Linear Algebra either the vector field V € Span& or V L &.
However the second case seems to be complex to analyse in practice. For this
reason we investigate for the case V = €.
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A simple computation of L¢g + 2S5 gives

(Leg)(X,Y) = 26[eg(X,Y) —n(X)n(Y)]. (3.12)

From equation (1.1), we have h(X,Y) = —2\g(X,Y) and then putting X =
Y = ¢, we have

BE€) = —2), (3.13)
where
h(€,€) = (Leg)(&,€) +25(£,9), (3.14)
by using (3.12) and (2.12) in the above equation, we have
(€ = 2(n-1)a® -5 (3.15)
Equating (3.13) and (3.15), we have
A= —(n—1)e(a® - F%). (3.16)

Since o and B are some nonzero functions, we have A # 0, that is a Ricci soliton
in an n-dimensional (€)-trans-Sasakian manifold cannot be steady. Hence the
proof.

Proposition 3.3. If an n-dimensional (€)-trans-Sasakian manifold is n-Einstein
then the Ricci soliton (g,&, A) in an (€)-trans-Sasakian manifold with varying
scalar curvature cannot be steady but it is shrinking or expanding according as
A is positive or negative, that is

1) shrinking(\ < 0) for € = 1 and a? > 52

2) expanding(\ > 0) for e = —1 and a? > 32

3) expanding()\ > 0) for e = 1 and o? < 32

4) shrinking(\ < 0) for e = —1 and o? < 2.

o~~~ A~~~

Proof. The proof consists of three parts:

In first step we prove that the metric tensor is n-Einstein: that is the metric
g is called n-Einstein if there exists two real functions a and b such that the Ricci
tensor of g is given by

S(X,Y) =ag(X,Y)+ bn(X)n(Y). (3.17)
Let ¢; = 1,2,...n be an orthonormal basis of the tangent space at any point of

the manifold. Then putting X =Y = ¢; in (3.17) and taking summation over
1, then we get

r = na + be. (3.18)
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Again putting X =Y = £ in (3.17) then by using (2.12), we have
ca+b=(n—1)a®—p%. (3.19)

Then from (3.18) and (3.19), we have

r 2 re )

627—60{—2 = = 7’LO[—2. .
oy 0?8 b= - ). (320)

Substituting the value of a and b in (3.17), we have

e - ﬁ?)]] g(X.Y)

s = |5l

+ [n(a2 — 5% —

(n—=1)

Equation (3.21) is an n-Einstein (e)-trans-Sasakian manifold.

] n(X)n(Y). (3.21)

In the second step we prove that the scalar curvature r is varying: A Ricci
solitons in an (e)-trans-Sasakian manifolds with V' = &£ in (1.1) and it reduced
to

(Leg)(X,Y) +25(X,Y) +2XM9(X,Y) = 0. (3.22)
The above equation can be written as
hMX,Y)+2Xg(X,Y) =0, (3.23)
where h is a symmetric parallel covariant tensor of type (0,2) and is given by
h(X,Y) = (Leg)(X,Y)+25(X,Y). (3.24)
By using (3.12) and (3.21) in (3.24), we have

o ela? — 2 €
oty 2?4 268 (X Y)

; [_(jfl)mn(atﬂ?)—w] W), (3.25)

hX,Y) = [

Differentiating the above equation with respect to Z, we have
2(Vzr)
(n—1)

1 20[20(Za) — 28(28)] - 2(2@} D(X)n(Y)

(V2h)(X,Y) = [

— 2f2a(Za) - 2B(ZB)] + 2e<Zﬁ>} 9(X,Y)

+ {_ (n2i€1) +2n(a? - %) - 25] [~ag(¢Z, X)n(Y) + Bg(X, Z)n(Y)

—2eBn(X)n(Y)n(Z) — ag(¢Z,Y)n(X) + Bg(Z,Y )n(X)]. (3.26)
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By substituting Z = £ and X = Y € (Spané&)* in (3.26) and a tensor h is
parallel. By using (2.17) in (3.26), we have

Ver = —4(n — 1)a?B, (3.27)
Thus (3.27) implies that the scalar curvature r is not constant.

In the third step we prove that the Ricci soliton in an (€)-trans-Sasakian
manifold is shrinking or expanding according as A is positive or negative: From
equation (3.23), we have

h(X,Y)=-2X\g(X,Y).
Putting X =Y = £ in the above equation, we have
h(§, &) = —2Xe. (3.28)

Now,

66 = | oy — 2ele = 574 268 g(6.)

2re
+ [_ ) +2n(a? — %) — 25} n(€)n(§).

The above equation reduced as,

7€) = 2(n = D[(a” - 8] (3.29)
Equating (3.28) and (3.29) and by using (2.17), we have
A= —(n—1)e(a® - (). (3.30)

From (3.30) we can see that the Ricci soliton in an n-Einstein (€)-trans-Sasakian
manifold is shrinking or expanding according as A is positive or negative. This
completes the proof.

Now, we restrict our study to 3-dimensional (e)-trans-Sasakian manifolds:

Proposition 3.4. If a Ricci soliton (g, £, \) of 3-dimensional (e)-trans-Sasakian
manifold with varying scalar curvature the is shrinking or expanding according
as A is positive or negative, that is

(1) expanding(\ > 0) for e = 1 and o? < 32

(2) shrinking(\ < 0) for e = —1 and a? < 32

(3) shrinking(\ < 0) for e = 1 and a? > 32

(4) expanding(\ > 0) for e = —1 and a? > 2.
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Proof. The proof consists of three parts:

In first step we find 3-dimensional 7-Einstein (€)-trans-Sasakian manifolds:
A general expression of Ricci tensor S is known by us for the 3-dimensional -
Einstein (e)-trans-Sasakian manifolds by considering 3-dimensional Riemannian
manifold that is,

[9(Y, 2)X — g(X, Z)Y], (3.31)

2
put Z = ¢ in the above equation and by using (2.7) and (2.12) we have
(0 = B)[(Y)X = n(X)Y] + 2a8[(Y )X — 1(X)oY]
+e[(Ya)pX — (Xa)pY + (YB)§*X — (XB)¢°Y] = e[n(Y)QX — n(X)QY]
+2(a” = B)(Y)X = n(X)Y] + e[((6X)a)Y + (XB)Y — ((¢Y)a) X
~(YB)X] = ZIn(¥)X = n()Y].
Again put Y = £ in the above equation and by using (2.1), (2.16) and (2.17) we
get

QX = [5—ecla® =8| X+ [3e(a? = g9 = T m(X)e  (3.32)
and
S(X,Y) = |5 —ea? = )] g(X.Y) + [3(a” = B%) = T n(X)n(Y). (3.33)

Equation (3.33) is an 3-dimensional n-Einstein (€)-trans-Sasakian manifold.

In the second step we prove that the scalar curvature r is varying: A Ricci
solitons in a 3-dimensional (¢)-trans-Sasakian manifolds with V' = ¢ in (1.1) and
it reduced to

(Leg)(X,Y) +25(X,Y) +2XM9(X,Y) = 0. (3.34)
The above equation can be written as
hMX,Y)+2Xg(X,Y) =0, (3.35)
where h is a symmetric parallel covariant tensor of type (0,2) and is given by
h(X,Y) = (Leg)(X,Y)+25(X,Y). (3.36)
By using (3.12) and (3.33) in (3.36), we have
h(X,Y) = [r—2ea® - B%) +2B]9(X,Y)

+ [6(a® = B%) —er — 28]n(X)n(Y). (3.37)
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Differentiating the above equation covariantly with respect to Z, we have
(Vzh)(X,Y) = [Vzr — de(a(Za) — B(Z)) + 2¢(ZB)]9(X,Y)
+12[a(Za) = B(ZB)] — e(Vzr) = 2(ZB)In(X)n(Y)
+[6(a? = 5%) — er — 268){—ag(¢Z, X)n(Y) + Bg(X, Z)n(Y)
=2eBn(X)n(Y)n(Z) — ag(¢Z,Y)n(X) + Bg(Z,Y)n(X)}. (3.38)

Substituting Z = ¢, X =Y € (Spané)= in (3.38) and a tensor h is parallel. By
using (2.17), we have

Ver = —8a?. (3.39)

Thus, (3.39) implies that the scalar curvature r is not constant.

In the third step we prove that the Ricci soliton in 3-dimensional (€)-trans-
Sasakian manifold is shrinking or expanding according as A is positive or nega-
tive: From equation (3.35), we have

h(X,Y)=-2Xg(X,Y).
Putting X =Y = £ in the above equation, we have
h(&, &) = —2Xe. (3.40)
Now,
h(X,Y) = [r—2e(a® = 5%) + 2eB]g(X,Y) + [6(a” — §°) — er = 28]n(X)n(Y).
If X =Y = ¢ in the above equation, we have
h(E,€) = 4(a® — B%). (3.41)
Equating (3.40) and (3.41), we have
A= —2¢(a® — B?). (3.42)

From (3.42) we can see that the Ricci soliton in 3-dimensional (€)-trans-Sasakian
manifold is shrinking or expanding according as A is positive or negative. This
completes the proof.
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