

J. T. S.

Vol. 6 No.1 (2012), pp.127-136

<https://doi.org/10.56424/jts.v6i01.10464>

Quasi-Conformal Curvature Tensor on a K-Contact Manifold

Rajendra Prasad, Vibha Srivastava and Kwang-Soon Park*

Department of Mathematics and Astronomy,

University of Lucknow, Lucknow-226007, India

E-mail : rp.manpur@rediffmail.com, Vibha.one22@rediffmail.com

*Department of Mathematical Sciences

Seoul National University, South Korea

E-mail : Parkksn@gmail.com

(Received: 8 September, 2011)

(Dedicated to Prof. K. S. Amur on his 80th birth year)

Abstract

The object of this paper is to study K-contact manifold with quasi-conformal curvature tensor. We find some interesting results for a quasi conformally flat K-contact manifold under certain conditions. In particular it is proved that a K-contact manifold with the condition. $\tilde{C}.S = 0$ is η -Einstein.

Keywords and Phrases : Quasi-conformal curvature tensor, η -Einstein manifold.

2000 Mathematics Subject Classification : 53C15, 53C25.

1. Introduction

Let \bar{M} be a $(2n+1)$ -dimensional contact metric manifold. That is η is a contact form and (ϕ, ξ, η, g) is an associated almost contact metric structure. If the characteristic vector ξ is Killing vector field with respect to g . Then we call such a contact metric structure a K-contact structure. Hence for a K-contact manifold

$$\nabla_X \xi = -\phi X,$$

where ∇ is the Riemannian connection of g .

Conversely, as ϕ is a skew-symmetric operator, a contact metric structure satisfying the property $\nabla_X \xi = -\phi X$ is K-contact. Also a contact metric structure is K-contact if and only if $\mathcal{L}_\xi \phi = N^{(3)} = 0$. An interesting curvature property

of K-contact manifold [5] is given by

$$R(\xi, X)\xi = -X + \eta(X)\xi,$$

and

$$g(R(\xi, X)\xi, \xi) = 0.$$

Hence we see that an a K-contact manifold of dimension $(2n + 1)$, the Ricci curvature in the direction ξ is equal to $2n$. The converse of this is also true giving a characterization of K-contact manifold [8].

A quasi- conformal curvature tensor was introduced by Yano and Sawaki [10]. According to them a quasi conformal curvature tensor is defined by

$$\begin{aligned} \tilde{C}(X, Y)Z = & aR(X, Y)Z + b[S(Y, Z)X - S(X, Z)Y + g(X, Z)QX \\ & - g(X, Z)QY] - \frac{r}{2n+1} \left(\frac{a}{2n} + 2b \right) [g(Y, Z)X - g(X, Z)Y], \end{aligned} \quad (1.1)$$

where a and b are constants and R, S, Q and r are the Riemannian curvature tensor, the Ricci-tensor, the Ricci operator and the scalar curvature of the manifold respectively. If $a = 1$ and $b = -\frac{1}{2n-1}$, then \tilde{C} becomes a conformal curvature tensor C , given by

$$\begin{aligned} C(X, Y)Z = & R(X, Y)Z - \frac{1}{2n-1} [S(Y, Z)X - S(X, Z)Y + g(Y, Z)QX \\ & - g(X, Z)QY] + \frac{r}{2n(2n-1)} [g(Y, Z)X - g(X, Z)Y], \end{aligned} \quad (1.2)$$

where C is conformal curvature tensor [2]. Thus the conformal curvature tensor C is particular case of the tensor \tilde{C} . For this reason \tilde{C} is called the quasi-conformal curvature tensor. A manifold (\bar{M}) is called quasi-conformally flat if the quasi-conformal curvature tensor $\tilde{C} = 0$. It is known that the quasi-conformally flat manifold is either conformally flat if $a \neq 0$ or Einstein if $a = 0$ and $b \neq 0$.

The present work is organised as follows: section 1 is introductory. Section 2 contains necessary details about K-contact manifold. In section 3, it is proved that a compact orientable η - Einstein K-contact manifold does not admit a nonisometric conformal transformation. In section 4 we discussed a K-Contact manifold is a quasi-conformally flat if and only if it is locally isometric to the unit sphere $S^{2n+1}(1)$. In section 5 we prove that a K-contact manifold is quasi-conformally flat if and only if it is quasi-conformally semi-symmetric. A Riemannian or a semi-Riemannian manifold is to be semi-symmetric ([3],[4]) if $R(X, Y)R = 0$ where R is Riemannian curvature tensor and $R(X, Y)$ is considered as a derivation of the tensor algebra at each point of the manifold for tangent vectors X, Y . If a Riemannian manifold satisfies $R(X, Y)\tilde{C} = 0$,

where \tilde{C} is the quasi-conformal curvature tensor, then the manifold is said to be quasi-conformally semi-symmetric manifold. In Section 6, it is proved that a K-contact manifold with the condition $\tilde{C}.S = 0$ is η -Einstein.

2. Preliminaries

Let \bar{M} be a $(2n+1)$ -dimensional contact metric manifold with contact metric structure (ϕ, ξ, η, g) [1], where ϕ is $(1, 1)$ tensor field, ξ is a vector field, η is 1-form and g is compatible Riemannian metric defined as

$$\phi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1, \quad \phi\xi = 0, \quad \eta\phi = 0, \quad (2.1)$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad (2.2)$$

$$g(\phi X, Y) = -g(X, \phi Y), g(X, \xi) = \eta(X), \quad (2.3)$$

for all $X, Y \in T\bar{M}$. An almost contact metric manifold is said to be contact manifold if

$$d\eta(X, Y) = \phi(X, Y) = g(\phi X, Y),$$

where $\phi(X, Y)$ is called fundamental 2-form of \bar{M} . In contact metric manifold it is known that

$$\nabla_\xi\phi = 0, \nabla_\xi\xi = 0. \quad (2.4)$$

If in addition ξ is Killing vector field, then \bar{M} is said to K-contact metric manifold. A contact metric manifold is called a K-contact manifold if and only if

$$\nabla_X\xi = -\phi X. \quad (2.5)$$

A locally symmetric K-contact manifold is a Sasakian manifold of constant curvature one. Also if a K-contact manifold (\bar{M}^{2n+1}, g) is isometrically immersed in a manifold (M^{2n+2}, \bar{g}) of constant curvature one [9], then it is a Sasakian manifold. For all vector fields on \bar{M} .

An almost contact metric manifold is said to be η -Einstein manifold if the Ricci tensor S is of the form

$$S(X, Y) = ag(X, Y) + b\eta(X)\eta(Y), \quad (2.6)$$

where a and b are certain scalars. A η -Einstein manifold becomes Einstein if $b = 0$. If $\{e_1, e_2, \dots, e_{2n}, e_{2n+1} = \xi\}$ is a local orthonormal basis of vector fields in a $(2n+1)$ -dimensional almost contact manifold \bar{M} . It is easy to verify that

$$\sum_{i=1}^{2n+1} g(e_i, e_i) = (2n+1). \quad (2.7)$$

and

$$\begin{aligned} \sum_{i=1}^{2n+1} g(e_i, Y) S(X, e_i) &= \sum_{i=1}^{2n+1} R(e_i, Y, X, e_i) \\ &= S(X, Y), \end{aligned} \quad (2.8)$$

for all $X, Y \in T\bar{M}$. Also in a K-contact manifold following conditions hold

$$S(X, \xi) = 2n\eta(X), \quad (2.9)$$

$$Q\xi = 2n\xi, \quad (2.10)$$

$$(\nabla_X \phi)(Y) = R(\xi, X)Y, \quad (2.11)$$

where S is Ricci tensor.

A K-contact manifold is a contact metric manifold, while converse is true if the Lie derivative of ϕ in the characteristic direction ξ vanishes. A Sasakian manifold is always a K-contact manifold. A 3-dimensional K-contact manifold is a Sasakian manifold. A contact metric manifold is Sasakian if and only if

$$R(X, Y)\xi = \eta(Y)X - \eta(X)Y, \quad X, Y \in T\bar{M} \quad (2.12)$$

and

$$R(\xi, X)Y = g(X, Y) - \eta(Y)X, \quad X, Y \in T\bar{M} \quad (2.13)$$

If \bar{M} is a K-contact manifold then it is known that

$$R(X, \xi)\xi = X - \eta(X)\xi, X \in T\bar{M}, \quad (2.14)$$

and

$$S(\xi, \xi) = 2n. \quad (2.15)$$

In K- Contact manifold, we also get

$$R(\xi, Y, Z, \xi) = g(\phi Y, \phi Z), Y, Z \in T\bar{M}. \quad (2.16)$$

3. η -Einstein K-contact manifold

Let l^2 be the square of the length of the Ricci tensor then

$$l^2 = \sum_{i=1}^{2n+1} S(Qe_i, e_i), \quad (3.1)$$

where Q is the Ricci-operator and $\{e_1 e_2 \dots e_{2n}, \xi\}$ is a local orthonormal basis of tangent space.

Now Putting $Y = Z = e_i$ in equation (2.6) and taking summation over $1 \leq i \leq 2n + 1$, we get

$$r = (2n + 1)a + b, \quad (3.2)$$

where r is scalar curvature.

Again from equation (2.6), we have

$$S(\xi, \xi) = a + b. \quad (3.3)$$

Now from equation (2.6) with the help of equations (3.1) (3.2) and (3.3), we get

$$l^2 = 2na^2 + (a + b)^2 \quad (3.4)$$

if the scalars a and b are constants then the scalar curvature r and the length of Ricci tensor is constant it follows that

$$L_X l^2 = 0, \quad (3.5)$$

where L_X is lie-differentiation with respect to X .

Now it is known [6] that if a compact Riemannian manifold \bar{M} ($n > 2$) with constant scalar curvature admits an infinitesimal non isometric conformal transformation X such that $L_X l^2 = 0$ then \bar{M} is isometric to a sphere. But a sphere is an Einstein manifold. Hence we can state the following;

Theorem 3.1. A compact orientable η - Einstein K -contact manifold does not admit a non isometric conformal transformation.

4. Quasi- conformally flat K-contact manifold

Let \bar{M} be a $(2n + 1)$ -dimensional quasi-conformally flat K-contact manifold, then we have from equation (1.1)

$$\begin{aligned} aR(X, Y)Z &= -b[S(Y, Z)X - S(X, Z)Y + g(Y, Z)QX - g(X, Z)QY] \\ &\quad + \frac{r}{(2n+1)} \left[\frac{a}{2n} + 2b \right] [g(Y, Z)X - g(X, Z)Y], \\ 'R(X, Y, Z, W) &= \frac{b}{a} [S(X, Z)g(Y, W) - S(Y, Z)g(X, W) + g(X, Z) \\ &\quad S(Y, W) - g(Y, Z)S(X, W)] + \frac{r}{(2n+1)a} \left[\frac{a}{2n} + 2b \right] \\ &\quad [g(Y, Z)g(X, W) - g(X, Z)g(Y, W)], \end{aligned} \quad (4.1)$$

where a and b are constants and

$$'R(X, Y, Z, W) = g(R(X, Y)Z, W).$$

On putting $Z = \xi$ in equation (4.1), we get

$$\begin{aligned} 'R(X, Y, \xi, W) &= \frac{b}{a} [S(X, \xi)g(Y, W) - S(Y, \xi)g(X, W) + S(Y, W)g(X, \xi) \\ &\quad - g(Y, \xi)S(X, W)] + \frac{r}{(2n+1)a} \left[\frac{a}{2n} + 2b \right] \\ &\quad [g(Y, \xi)g(X, W) - g(X, \xi)g(Y, W)], \end{aligned}$$

using equation (2.1), (2.3) and (2.9), we get

$$\begin{aligned} g(R(X, Y)\xi, W) &= \frac{b}{a} [2n\eta(X)g(Y, W) - 2n\eta(Y)g(X, W) + S(Y, W) \\ &\quad \eta(X) - S(X, W)\eta(Y)] + \frac{r}{(2n+1)a} \left(\frac{a}{2n} + 2b \right) \\ &\quad [\eta(Y)g(X, W) - \eta(X)g(Y, W)]. \end{aligned} \quad (4.2)$$

Again putting $X = \xi$ in equation (4.2) and using (2.1), (2.3) and (2.9), we get

$$\begin{aligned} S(Y, W) &= \left[-\frac{a}{b} - 2n + \frac{r}{(2n+1)b} \left(\frac{a}{2n} + 2b \right) \right] g(Y, W) \\ &\quad + \left[\frac{a}{b} + 4n - \frac{r}{(2n+1)b} \left(\frac{a}{2n} + 2b \right) \right] \eta(Y)\eta(W), \end{aligned} \quad (4.3)$$

equation (4.3) reduces to

$$S(Y, W) = Ag(Y, W) + B\eta(Y)\eta(W), \quad (4.4)$$

where,

$$A = \left[-\frac{a}{b} - 2n + \frac{r}{(2n+1)b} \left(\frac{a}{2n} + 2b \right) \right], \quad (4.5)$$

$$B = \left[\frac{a}{b} + 4n - \frac{r}{(2n+1)b} \left(\frac{a}{2n} + 2b \right) \right]. \quad (4.6)$$

Here $A + B = 2n$. Hence the manifold is an η -Einstein manifold. This leads to the following theorem:

Theorem 4.1. A compact orientable quasi-conformally flat K-contact manifold can not admit a nonisometric conformal transformation.

Using equation (4.4) in equation (4.1), we get

$$\begin{aligned} 'R(X, Y, Z, W) &= \frac{b}{a} [Ag(X, Z)g(Y, W) + B\eta(X)\eta(Z)g(Y, W) \\ &\quad - Ag(Y, Z)g(X, W) - B\eta(Y)\eta(Z)g(X, W) + Ag(Y, W)g(X, Z) \\ &\quad + B\eta(Y)\eta(W)g(X, Z) - Ag(X, W)g(Y, Z) - B\eta(X)\eta(W)g(Y, Z)] \\ &\quad + \frac{r}{(2n+1)a} \left(\frac{a}{2n} + 2b \right) [g(Y, Z)g(X, W) - g(X, Z)g(Y, W)]. \end{aligned}$$

Putting the value of $'R(X, Y, Z, W)$ in equation (1.1) with the help of equation (4.5) and (4.6), we get

$$'C(X, Y, Z, W) = 0.$$

Hence

$$\tilde{C}(X, Y)Z = 0.$$

This leads to the following theorem:

Theorem 4.2. A K- Contact manifold is quasi-conformally flat if and only if

$$\begin{aligned} {}'R(X, Y, Z, W) = & \left[2 + \frac{4nb}{a} - \frac{r}{(2n+1)a} \left(\frac{a}{2n} + 2b \right) \right] [g(Y, Z)g(X, W) - g(X, Z) \\ & g(Y, W)] + \left[1 + \frac{4nb}{a} - \frac{r}{(2n+1)a} \left(\frac{a}{2n} + 2b \right) \right] [\eta(X)\eta(Z) \\ & g(Y, W) - \eta(Y)\eta(Z)g(X, W) \\ & + \eta(Y)\eta(W)g(X, Z) - \eta(X)\eta(W)g(Y, Z)]. \end{aligned}$$

5. K-contact manifold satisfying $R(X, Y)\tilde{C} = 0$

We consider $(2n+1)$ -dimensional K-contact manifold \bar{M} , satisfying the condition

$$R(X, Y)\tilde{C} = 0. \quad (5.1)$$

In virtue of above equation we get

$$\begin{aligned} R(X, Y)\tilde{C}(U, V)W - \tilde{C}(R(X, Y)U, V)W - \tilde{C}(U, R(X, Y)V)W \\ - \tilde{C}(U, V)R(X, Y)W = 0. \end{aligned} \quad (5.2)$$

Taking $X = \xi$, we have

$$\begin{aligned} R(\xi, Y)\tilde{C}(U, V)W - \tilde{C}(R(\xi, Y)U, V)W - \tilde{C}(U, R(\xi, Y)V)W \\ - \tilde{C}(U, V)R(\xi, Y)W = 0, \end{aligned} \quad (5.3)$$

which implies that

$$\begin{aligned} {}'\tilde{C}(U, V, W, Y) - \eta(Y)\eta(\tilde{C}(U, V)W) + \eta(U)\eta(\tilde{C}(Y, V)W) \\ + \eta(V)\eta(\tilde{C}(U, Y)W) + \eta(W)\eta(\tilde{C}(U, V)Y) - g(Y, U)\eta(\tilde{C}(\xi, V)W) \\ - \tilde{C}(U, V)R(\xi, Y) = 0. \end{aligned} \quad (5.4)$$

From Equation (1.1) we get

$$\begin{aligned} \eta(\tilde{C}(X, Y)Z) = & a\eta(R(X, Y)Z) + b[S(Y, Z)\eta(X) \\ & - S(X, Z)\eta(Y) + g(Y, Z)\eta(QX) - g(X, Z)\eta(QY)] \\ & - \frac{r}{(2n+1)} \left(\frac{a}{2n} + 2b \right) [g(Y, Z)\eta(X) - g(X, Z)\eta(Y)], \end{aligned} \quad (5.5)$$

hence

$$\eta(\tilde{C}(X, Y)\xi) = 0, \quad (5.6)$$

putting $X = \xi$, we get

$$\begin{aligned} \eta(\tilde{C}(\xi, Y)Z) = & \left[a + 2nb - \frac{r}{(2n+1)} \left(\frac{a}{2n} + 2b \right) \right] [g(Y, Z)\eta(\xi) - g(\xi, Z)\eta(Y)] \\ & + [S(Y, Z)\eta(\xi) - S(\xi, Z)\eta(Y)], \end{aligned}$$

$$\begin{aligned}\eta(\tilde{C}(\xi, Y)Z) = & \left[a + 2nb - \frac{r}{2n+1} \left(\frac{a}{2n} + 2b \right) \right] [g(Y, Z) - \eta(Y)\eta(Z)] \\ & + b [S(Y, Z) - 2n\eta(Z)\eta(Y)],\end{aligned}\quad (5.7)$$

putting $U = Y$ in equation(5.4) with the help of (5.5) and (5.6) we get

$$\begin{aligned}'\tilde{C}(U, V, W, U) + \eta(\tilde{C}(U, V)U) - g(U, U)\eta(\tilde{C}(\xi, V)W) \\ - g(U, V)\eta(\tilde{C}(\xi, V)W) = 0.\end{aligned}\quad (5.8)$$

Again putting $U = e_i$ and taking summation over i , $1 \leq i \leq 2n + 1$ and using equation (5.5) and (5.7), we get

$$S(V, W) = \lambda g(V, W) + \mu \eta(V) \eta(W), \quad (5.9)$$

where

$$\lambda = \frac{-br + 4n^2b + 2na}{a - b}, \quad (5.10)$$

$$\mu = \frac{b[r - 2n(2n + 1)]}{a - b} \quad (5.11)$$

Hence

$$\lambda + \mu = 2n. \quad (5.12)$$

Equation (5.9) leads to the theorem;

Theorem 5.1. A quasi conformally semi-symmetric K-Contact manifold is an η -Einstein manifold.

Putting $V = W = e_i$ in equation (5.9) and taking summation over i , $1 \leq i \leq 2n + 1$, we get

$$[a + (2n - 1)b][r - 2n(2n + 1)] = 0, \quad (5.13)$$

therefore, either

$$b = \frac{a}{2n - 1}, \quad (5.14)$$

or

$$r = 2n(2n + 1), \quad (5.15)$$

hence

$$\lambda = 2n, \quad (5.16)$$

$$\mu = 0. \quad (5.17)$$

from equation (5.9) with the help of above equations

$$S(V, W) = 2ng(V, W). \quad (5.18)$$

Therefore the manifold is Einstein.

Also from equation (5.5) and (5.7) with the help of equations (5.16), (5.17) and (5.18).

$$\begin{aligned}\eta(\tilde{C}(V, U)W) &= 0, \\ \eta(\tilde{C}(\xi, U)W) &= 0.\end{aligned}$$

From equation (5.4), we get

$$\tilde{C}(U, V, W, Y) = 0.$$

Therefore \bar{M} is quasi-conformally flat. Then it is trivially quasi-conformally semi-symmetric. So we have the following result:

Theorem 5.2. Let \bar{M} be a K-contact manifold of dimension ≥ 5 , Then \bar{M} is quasi-conformally flat if and only if it is quasi-conformally semi-symmetric.

6. K-contact manifolds satisfying $\tilde{C} \cdot S = 0$

Let us consider a K-contact manifold \bar{M} of dimension $(2n + 1)$ satisfying the condition

$$\tilde{C}(X, Y)S = 0, \quad (6.1)$$

which implies

$$S(\bar{C}(X, Y)Z, W) + S(Z, \bar{C}(X, Y)W) = 0. \quad (6.2)$$

For $X = W = \xi$, we get

$$S(\bar{C}(\xi, Y)Z, \xi) + S(Z, \bar{C}(\xi, Y)\xi) = 0. \quad (6.3)$$

Now taking $X = \xi$, in equation (1.1)

$$\begin{aligned}\tilde{C}(\xi, Y)Z &= a[g(Y, Z)\xi - \eta(Z)Y] + b[S(Y, Z)\xi - 4n\eta(Z)Y + g(Y, Z)2n\xi] \\ &\quad - \frac{r}{2n+1}\left(\frac{a}{2n} + 2b\right)[g(Y, Z)\xi - \eta(Z)Y].\end{aligned} \quad (6.4)$$

Putting $X = \xi$ in equation (6.4)

$$\tilde{C}(\xi, Y)\xi = \left[(a + 4nb) - \frac{r}{2n+1}\left(\frac{a}{2n} + 2b\right)\right][\eta(Y)\xi - Y]. \quad (6.5)$$

In view of equation (6.4)

$$\begin{aligned}S(\tilde{C}(\xi, Y)Z, \xi) &= a[2ng(Y, Z) - \eta(Y)\eta(Z)] \\ &\quad + b[2nS(Y, Z) - 8n^2\eta(Z)\eta(Y) + 4n^2g(Y, Z)] \\ &\quad - \frac{r}{2n+1}\left(\frac{a}{2n} + 2b\right)2n[g(Y, Z) - \eta(Y)\eta(Z)],\end{aligned} \quad (6.6)$$

$$S(\tilde{C}(\xi, Y)\xi, Z) = \left[(a + 4nb) - \frac{r}{(2n+1)} \left(\frac{a}{2n} + 2b \right) \right] 2n[\eta(Y)\eta(Z) - S(Y, Z)]. \quad (6.7)$$

From equation (6.3), we get

$$S(Y, Z) = Cg(Y, Z) + D\eta(Y)\eta(Z).$$

where

$$C = \frac{2n \left[a + 2nb \frac{r}{2n+1} \left(\frac{a}{2n} + 2b \right) \right]}{2na - 2nb + 8n^2b - \frac{r}{2n+1} \left(\frac{a}{2n} + 2b \right) 2n}, \quad (6.8)$$

$$D = \frac{(2n-1)a}{2na - 2nb + 8n^2b - \frac{r}{2n+1} \left(\frac{a}{2n} + 2b \right) 2n}. \quad (6.9)$$

This leads to the following theorem:

Theorem 6.1. A K-Contact manifold with the condition $\tilde{C} \cdot S = 0$ is η -Einstein.

REFERENCES

- [1] Blair, D.E. : Contact manifolds in Riemannian Geometry ,Lecture Notes in Mathematics, 509, Springer-Verlag Berlin, (1976).
- [2] Eisenhart, L. P. : Riemannian Geometry, Princeton University Press, Princeton, N.J., (1949)
- [3] Szabo, Z. I. : Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R = 0$, The local version, J. Differential Geom. 17 no. 4 (1982), 531-582.
- [4] Szabo, Z. I. : Classification and Contact of Complete Hypersurfaces Satisfying $R(X, Y) \cdot R = 0$, Acta Sci. Math., 7 (1984), 321-34.
- [5] Hatakeyama, Y., Ogawa, Y. and Yano, S. : Some properties of manifolds with contact metric structures, Tohoku Math. J., 15 (1963), 42-48.
- [6] Yano, K. : Integral Formulas in Reimannian Geometry, Pure and Applied Mathematics, no.1 Marcel Dekker, Inc., New York, (1970)
- [7] Amur, K. and Maralabhavi, Y. B. : On quasi-conformally flat spaces, Tensor (N.S.), 31 no.2 (1977), 194-198
- [8] Blair, D. E. : Two remarks on contact metric structures, Tohoku Math. J., 29 (1977), 319-324.
- [9] Takahashi, T. and Tanno, S. : K-Contact Riemannian Manifolds isometrically immersed in a space of constant curvature, Tohoku Math. J., 23 (1971), 535-539.
- [10] Yano, K. and Sawaki, S. : Riemannian manifolds admitting a conformal transformation group, J. Differential Geometry 2 (1968), 161-184.