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Abstract

The (o, 8) metric is a Finsler metric which is constructed from Riemannian
metric « and differential 1-form S. In this paper, we find the mean Cartan
torsion I and mean Landsberg curvature J for Kropina metric L = O‘Tf and also

find the neccessary and sufficient condition for J + c¢LI = 0.
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1. Introduction

A Finsler metric on a manifold is a family of Minkowski norms on tan-
gent spaces. There are several notions of curvatures in Finsler geometry. The
flag curvature K is an analogue of the sectional curvature in Riemannian ge-
ometry. The distortion 7 is a basic invariant which characterizes Riemannian
metrics among Finsler metrics, namely, 7 = 0 if and only if the Finsler metric
is Riemannian. The vertical derivative of 7 on tangent spaces gives rise to the
mean Cartan torsion I. The horizontal derivative of 7 along geodesics is the so
called S-curvature S. The vertical Hessian of (1/2)S on tangent spaces is called
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the E-curvature. Thus if the S-curvature is isotropic, so is the E-curvature. The
horizontal derivative of I along geodesics is called the mean Landsberg curvature
J. Thus J/I is regarded as the relative growth rate of the mean Cartan torsion
along geodesics. We see how these quantities are generated from the distortion
except for the flag curvature K. X. Chen and Z. Shen [2] have studied spe-
cial class of Finsler metrics- Randers metrics with special curvature properties.
In this paper, we extend the above results to Kropina metric for finding mean
Cartan torsion and mean Landsberg curvature.

2. Preliminary Notes

Let L be a Finsler metric on a manifold M. In a standard local coordinate
system (z%,y') in TM, L = L(z,y) is a function of (x%,3"). Let

9ij(z,y) = 1[LZ]

B j(xay)7

yly
and (¢*) = (gi;)~!. For a non-zero vector y = yi(%) l2€ TpM, L induces an
inner product on T, M,

gy(uv ’U) = Gij (‘T’ y)uivjv

where u = u"(%) |2y v = vi(%) |z€ TpoM. g = {gy} is called the fundamental

metric of L. For a non-zero vector y € T, M, define
hy(uv /U) = gy(ua U) - L_2(Y)gy(yv U)gy(y, 7)), u,ve TIM
h = {hy} is called the angular metric of L.

The geodesics of L are characterized locally by

d?a 4 dx
CT Lo (2,2 ) =0
sz <$’ ds>

The Riemannian curvature is a family of endomorphisms Ry = Rik di* ®

(3%) : ToM — T, M, defined by

oG PG, PG oG aGJ‘)
ok 7 9xidyk yidyk Byl ayk

L is said to be constant flag curvature K = A, if

9y (Ry(U)’V) = AL(y)? hy(u,v),

(R}, =2

or equivalently
Ry = ML}, — LLxy'} .
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There are many interesting non-Riemannian quantities in Finsler geometry
[13]. Let dVy = o(z)dz'...d2"™ denote the volume form of L, where

() = Vol(B"(1))
Vol{(y') € R" | L(y'(5%) o) < 1}

For a non-zero vector y € T, M, the distortion 7(y) is defined by

_ 1 | Vet (,))

The distortion characterizes Riemannian metrics among Finsler metrics, namely,
L is Riemannian if and only if 7 = 0.

The mean Cartan torsion Iy, = Ij(z,y)ds" : T,M — R is defined as the
vertical derivative of 7 on T, M,
or
i = oy
The S-curvature S is defined as the horizontal derivative of 7 along geodesics,
S(y) = [+ (e(1))] |
y) = dt TC t=o0
where ¢(t) is the geodesic with ¢(0) = z and ¢(0) =y € T,M. A direction
computation yields

(2.1)

1 .
B Zgjk[LQ]yiyjy’“'

IG! y' 0o
S = — ——— —(x). 2.2
¥) = Gor @) = 15 22 (2.9
For a non-zero y € T, M, the E-curvature Ey = E;;(z,y) dd @ da’ + Ty M x
T:M — R is defined as the vertical Hessian of (1/2)S on T, M,
I, _1_oGr
27V T 9 GymAyioyi
L is said to be weakly Berwaldian if E = 0.

Bij = (). (2.3)

For a non-zero vector y € T, M, the mean Landsberg curvature
Jy = Ji(z,y)ds’ : TuM — R is defined as the horizontal derivative of I along

geodesics

I; g 0L 1 i O°G
oL jaﬁ. ol _ Loy lgﬂ’“.aiq,
oxt oyt Oy 27V Qyloy Oyk

L is said to be weakly Landsbergian if J = 0.

(2.4)

Ji=y
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The above mentioned geometric quantities are computable for Randers met-
rics. Consider a Randers metric L = o + 8 be a Randers metric on a manifold

M, where
aly) = \agy'y' ,  Bly) =bi(x)y',

with || 8|l := supyer, MB(y)/a(y) < 1. An easy computation yields
L Yi Yj Yi Yi
bt BB ) e

where y; = aijyj. By an elementary argument in linear algebra, we obtain

n+1
det(ap) = (£) det(on) 26)

Deﬁne bz\] by
by ;07 = db; — b;6?,

where 0 = dz’ and 0{ = f‘zk d2* denote the Levi-Civita connection forms of a.
Let

1 1
rij = 5 (g T o) sis = 5 (b = bja)

st = alhshj, sj = b;s

j €ij = Tij + biSj + bjsz-.

i
e
Then the geodesics coefficients G* are given by

. _. €00 . .
G'=G"+ ﬁy’ — spy' + asy, (2.7)

where G* denote the geodesics coefficients of a, egy = e,-jyiyj , so = s;9' and
sh = séyj [3].

3. Mean Cartan torsion I and mean Landsberg curvature J for Kropina
metric

In this section, we determine the mean Cartan torsion I and mean Lands-
berg curvature for Kropina metric.

Theorem 3.1. For a Kropina metric L = QT;’ the mean Cartan torsion I = I;da’

and the mean Landsberg curvature J = J;da' are given by

I = %(n + 1)L a8 2{B(2 — a?)y; — a'b; }, (3.1)
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1
J;, = Z(n + 1)L_204_25_4 [066 {5(4[382 — 480 — 31’0) — 2600172‘ + 2ego — ,361'0}
—a2/6’2 {(56003}1‘ + 2Be;0 + Qeoobi) + (2@800% + 6s0y; + 8yi)}
+a'B{B(eoob; + Bein) + 28(2s; — 3s0yi) + 4yi(B + s0) + 2e00y; }

+252€00yi(55 + 2) — 20[7,881‘
+20” {Bsoyi(3a? — 4) + 2s0yi(a® + 2) — (5a* 4 6)5%si0 }

+ 4aB {7Bso0yi — 2as0yi}] - (3.2)
Proof. First substituting (2.6) into (2.1).

=5 = o (g1on (el - ostot@) .

B 16 | £ n+1
20yt ¢\ '

differentiating the above equation we get (3.1). Now we are going to compute
J;.

Let
= ZLLOZ/i — sy’ + asp,

We can rewrite (2.4) as follows

J = — I H” L, (3.3)
where ng %ZIZ c L= —"- and Ii\j are defined by
al; — fjaaf; —doF = I jda) + I (dy7 +— oG dlf“) :
By a direct computation, we obtain
L, = (n; 1)13_2 28B4 — 207)yiy; + B(a® — 2)bjy;
— 20 Bbiy; + a®bib;} — (n+ 1)L a8 %y; {28y — o Bys — o*b; }
+m;lea2ﬁ3 {(a2 — 2)bjyi + B*(2 — a)aij
- 252yiyj + 2a4b-b- — 4Ba*by;}
S o

_Siy] - 805f + Ozsi +a Soym
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where by = bi\jyj and bo\o = bi\jyiyj. Observe that
bpj = Tij + sij = €ij — bisj — bjs; + sij.
We have
bivo = €io — biso — i + sio, bovo = €00 — 25003

By these identities, we obtain
, 1 L
ROVES §(n +1)L7%B 2bO\o {B(2- a?)y; — Oé4bi}

1 1 9,
+ §(n +1)L la=2p72 {Oézbo\oyi - 2b0\0yi}

+ %(n + 1) L7372 {2a%bg\o — a®Bbyo }
= %(n + 1)L72ﬁ*2 (ego — 2s0/3) {5(2 — az)yi — a4bi}

+ %(n + 1)L_1a_2ﬁ_2 {(a2 —2)(ego — 2505)?/1‘}

+ %(TL + 1)L_lﬂ_3{042(2€00 — ﬁeio) + Oé2ﬁ80(bi — 4) + OZ2B($¢B — Sio)}.

Plugging for H7 I, j, IjH_ji, y' Iy j into (3.3) yields (3.2).
Remark 1. If I; = 0 i.e., distortion 7 is independent of 4* or 7 is constant.

= I = %(n + DL a7 {B2 - a®)yi —a'hi} = 0

2
= biL2* (1 042) yzL = 0,

a quadratic equation in L. Solving for L, we get the metric in the form L =

2 i
(az —1) &
Theorem 3.2. If the Kropina metric L = o2/ is projectively flat, then mean
Landsberg curvature reduces to

n+1l) o 5. _
Ji = wL 2(1 25 4 [046{—2600()1' + 2egg — 5@0}
— o?B*{beooy: + 2Beio + 2eq0b; + 8y}

o*B{B(eqobi + Bew) + 4By: + 2e00yi }

+  28%00yi(58 +2)] - (3.4)

+
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4. Kropina Metric with J 4+ cLI =0

As we know, the mean Landsberg curvature J can be expressed in terms of
a and 5. But the formula (3.2) is very complicated. So the equation J+cLI =0
is complicated too. In this section, we are going to find a simpler necessary and
sufficient condition for J + cLI = 0.

Theorem 4.3. Let L = o2/ be a Kropina metric on a manifold M. For a
scalar function ¢ = ¢(x) on M, the following are equivalent

(a) J+cLI=0

(b) ego = atB — 2¢(a? — B?), where € = 60/w and f3 is closed.

Proof. Let fij = e;; —2c(a;; —bibj) and fio = fijy?, foo = fijy'y’.
We have
a® (2e00 — 2e00b; — Bein) — B2 (5eooys + 2Bein + 2e00b;)
+a* 8 (eqobi + Bein) + 20" Beooys + 287 eooyi (58 + 2)
= a®(2fo0 — 2foobi — Bfio) — & B (5.fooyi + 2B fio + 2fo0bi)
+a' 8 (foobi + Bfio) + 20 B fooyi + 26% fooyi (58 + 2)
+2c(a® — %) [20® + (a®B% + 287 - 2) (a®b; + By;)
+ Byi (108% — 5028 + 20 + 48 + 1)] .
Substituting above equation into (3.2), we see that J + ¢LI = 0 if and only if
B2 (4Bs; — 4sg — si0) — &> 82 (2as00s + 250Ys + Sys)
+40* By; (B + s0) — 20" Bs; + 2a° Bsoy; (3a” — 4)
+4a®soy; (0 + 2) + 4B (7Bs0oys — 2asoy:) + a® (—2foobi + 2fo0 — Bfio)
—20B foobs + o B (foobi + Bfio) + 20 B fooyi + 267 fooyi (58 + 2)
+(a? - %) [40042 + 2¢a’®b; (262 —a? - 2)] — 2ca* B,
+2cBy;(a® — B°) (1287 + a* — 5a?B + 48 — 1)
+2ca’ By; (2042 — 64) =0, (4.1)

2028% (2s; — 3soys) — 2a%si0 (5a° + 6) — B2 (5fooyi + 2Bfwn) = 0,
= 207 (2s; — 3s0y;) — 2asio (50° 4+ 6) — (5fooy; +2Bfi0) = 0. (4.2)
Differentiating (4.2) with respect to 37, y* and 3, we obtain
0 = — 128 (bib; fir, + bibyfi; + bibjfu)
— 12b;byby fio — 1083 [ fro (braij + bjaq) + fio (braij + bjaix)
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+ fjo (biaik + b — kay)] — 58 [fir (2yibi + Baa)

+ [ (2bjyi + Bais) + fi1 (2bkyi + Bair)]

—10foo (brbiaij + bjbaix + bjbrai)

—10y; (brbifjo + bjbifro + bjb fio) - (4.3)
Contracting (3.4) with a* yields

wfij + 155 (4a2 + )\ﬂ) a;j + 200 (3n + 10) s45

+12(n +4) [siy; + sjys] + 24s;y; = 0, (4.4)
where w = 9482 + 2002 + 248, A = a¥ fi;. Tt follows from (4.4) that

—155(402 + \B)ai; 2n+5
fij = ( - Jaij _ 12( " ) [siy; + sjyi], (4.5)
20a(3n +10)s;; = 12n(sy; + sjyi) — 12(s:y; — Sjyi)- (4.6)

Contracting (4.6) with b* = b,.a™ yields

S5 = 0.
Substituting s; = 0 into (4.6) we obtain that
Sij = 0,

and
—153(4a? + \B)
w

fij = aij, where w = 945% 4+ 2483 + 200> (4.7)
Now equation (3.3) simplifies to
Alpb; + syi +p] =0, (4.8)
where
po= [15a*p% (30 — 202757 +25?)
+§ {60a°8 (30* — 20%5% + 2%
—8ca’ (68 — 5a%) (o +2) + 408" (94 — 27a°)
+ 4ca®B (2 — o?) (12 + 478% + 126%) — 4ca®B* (17 +105%) }] ,
= [300%° ("~ 5% - 28) + { (1200"5" (o - 55° - 29)
— 4ef® (1413302 — 57a*) + 4cp* (12 + 160a* — 297a*)
+4ca’®B? (440” + 37" — 11) + 8ca?B? (3207 — 190" — 6)
— 16 (166 + 30%) ¢8° + 4¢B” (564 — 470”) + 40ca”B (o + 2) — 940ca’B°}],
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and
p= % [12004106 + dcw (a2 — ﬂQ) a2] —30a832.
Taking y; = b; in (4.8), we obtain
Ap+s+q) b =0. (4.9)

Assume that 8 # 0. It follows from (4.9) that A = 0. From (4.7), we conclude
that f;; = —€a?Ba;; where £ = 60/w. Substituting this in (), we obtain

eij = :fazﬁaij — 2¢ (a5 — bibj),

eoo = &atB—2c(a? - p?),
where € = 89 with w = 9442 + 2002 + 248.

Conversely, we suppose that egy = £ — 2¢(a? — 5?). Then
eio = &a’By; — 2c(y; — bif),
en = &atf—2c(a” - 7).
Considering e;; terms of (3.2) we get
—2eqob; + 2eq9 — Beig = b; [40 (a2 — 52) —2e¢6% — 250445]
+y; (205 — 50426) +2 [ﬁo/lﬁ —2c (a2 — B2)] , (4.10)
5eqoyi + 20ei0 + 2ep0b; = b; [4cﬁ2 + 2608 — 4e (ag — ﬁQ)}
+y; [56a’B — 10c (o — B2) +26a°B* — 4cB],  (4.11)
Begobi + B2ein + 2e00y; = bi [€a’B® — 2¢B (o — B2) + 2¢57]

+y; [504263 — 2062 + 250446 —4c (a2 — 62)] ) (4.12)
Substituting them into (3.2) yields
1
Ji = (";)L—QW [—c[20; {20762 +28* — a® — a2 — 25"}

20728y, {2 — a8 + (a® - 52) (5025 — 1052 — 48)}

+2a* (o - B%)] + ga%% {a?B? - 2a* — 28%}

a2 {ga® + 5eatp — 866" — €alf? — 26a? — 4ga?F — 40’ — 8
+ea®B+ a?fsi {2078 — o — B} — soyi {205 + 30787 — 2753

—aB (3a® —4) — 2a (a? +2) + 48}

+ aﬁi;o {288 — o® — 12025 — 125}] . (4.13)
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Further, suppose that  is closed, hence s;; = 0. From (3.1) and (4.13), we
obtain

1
Ji = —i(n + 1)L 264 {a25(2 —a?)y; — aﬁbi} = —cLI;.

This proves the theorem.

REFERENCES

Berwald, L. : Two-dimesional Finsler space with rectilinear extermals, Annals of Mathe-
matics, 42 no. 1, January-1941.

Chen, X. and Shen, Z. : Randers metric with special curvature properties, Osaka J. Math.,
40 (2003), 87-101.

Park, H. S. and Choi, E. S. : Finsler space with the second approximate matsumoto metric,
Bull. Korean Math. Soc., 39 (2002), 153-163.

Park, H. S., Park, H. Y., Kim, B. D. and Choi, E. S. : Projectively flat Finsler space with
certain (o, f)—metric, Bull. Korean Math. Soc., 40 (2003), 649-661.

Berwald, L. : Uber Finsler and Cartansche geometric IV, Projective Krummung allege-
meiner affiner Raume and Finslercher Raume shalerer Krummung, Ann. of Math., 48
(1947), 755-781.

Hashiguchi, M. and Ichijyo, Y. : Randers space with Rectillinear geodesics, Rep. Fac. Sci.
Kagoshima Univ.(Math., Phys., Chem.), 13 (1980), 33-40.

Matsumoto, M. : Projective changes of Finsler metrics and projectively flat Finsler spaces,
Tensor, N. S., 34 (1980), 305-315.

Antonelli, P. L., Ingarden, R. S. and Matsumoto, M. : The theory of sprays and Finsler
space with applications in physics and biology, FTPH 58, Kluwer Academic Publishers,
(1993).

Narasimhamurthy, S. K. and Vasant, D. M. : Projective change between two Finsler spaces
with (a, 8)—metrics, Acepted in KYUNGPOOK Math. Journal.

Narasimhamurthy, S. K. and Lath Kumari : Projectively flat kropina metric with K=0,
Applied Mathamtical Science, 15 no. 12 (2011), 585-593.

Chen, X., Mo, X. and Shen, Z. : On the flag curvature of Finsler metrics of scalar curvature,
J. London Math. Soc., 68 (2003), 762-780.

Shen, Z. and Yildirim, G. C. : A Characterization of Randers metrics of Scalar Flag
curvature, preprint.

Shen, Z. : Differential Geometry of Spray and Finsler Space, Kluwer Academic Publihers,
Dordrecht,(2001).





