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Abstract

The (α, β) metric is a Finsler metric which is constructed from Riemannian

metric α and differential 1-form β. In this paper, we find the mean Cartan

torsion I and mean Landsberg curvature J for Kropina metric L = α2

β and also

find the neccessary and sufficient condition for J + cLI = 0.
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1. Introduction

A Finsler metric on a manifold is a family of Minkowski norms on tan-

gent spaces. There are several notions of curvatures in Finsler geometry. The

flag curvature K is an analogue of the sectional curvature in Riemannian ge-

ometry. The distortion τ is a basic invariant which characterizes Riemannian

metrics among Finsler metrics, namely, τ = 0 if and only if the Finsler metric

is Riemannian. The vertical derivative of τ on tangent spaces gives rise to the

mean Cartan torsion I. The horizontal derivative of τ along geodesics is the so

called S-curvature S. The vertical Hessian of (1/2)S on tangent spaces is called

https://doi.org/10.56424/jts.v6i01.10455



118 S. K. Narasimhamurthy, H. Anjan Kumar and Ajith Rao

the E-curvature. Thus if the S-curvature is isotropic, so is the E-curvature. The

horizontal derivative of I along geodesics is called the mean Landsberg curvature

J. Thus J/I is regarded as the relative growth rate of the mean Cartan torsion

along geodesics. We see how these quantities are generated from the distortion

except for the flag curvature K. X. Chen and Z. Shen [2] have studied spe-

cial class of Finsler metrics- Randers metrics with special curvature properties.

In this paper, we extend the above results to Kropina metric for finding mean

Cartan torsion and mean Landsberg curvature.

2. Preliminary Notes

Let L be a Finsler metric on a manifold M. In a standard local coordinate

system (xi, yi) in TM, L = L(x, y) is a function of (xi, yi). Let

gij(x, y) :=
1

2

[
L2
]
yiyj

(x, y),

and (gij) = (gij)
−1. For a non-zero vector y = yi( ∂

∂xi ) |x∈ TxM, L induces an

inner product on TxM,

gy(u, v) = gij(x, y)u
ivj ,

where u = ui( ∂
∂xi ) |x, v = vi( ∂

∂xi ) |x∈ TxM. g = {gy} is called the fundamental

metric of L. For a non-zero vector y ∈ TxM, define

hy(u, v) = gy(u, v)− L−2(y)gy(y, u)gy(y, v), u, v ∈ TxM

h = {hy} is called the angular metric of L.

The geodesics of L are characterized locally by

d2xi

ds2
+ 2Gi

(
x,

dx

ds

)
= 0

The Riemannian curvature is a family of endomorphisms Ry = Ri
kdx

k ⊗
( ∂
∂xi ) : TxM −→ TxM, defined by

(Ri
k = 2

∂Gi

∂xk
− yj

∂2Gi

∂xj∂yk
+ 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
).

L is said to be constant flag curvature K = λ, if

gy
(
Ry(u),v

)
= λL(y)2 hy(u,v),

or equivalently

Ri
k = λ

{
L2δik − LLyky

i
}
.
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There are many interesting non-Riemannian quantities in Finsler geometry

[13]. Let dVL = σ(x)dx1...dxn denote the volume form of L, where

σ(x) =
V ol(Bn(1))

V ol{(yi) ∈ Rn | L(yi( ∂
∂xi ) |x) < 1}

For a non-zero vector y ∈ TxM, the distortion τ(y) is defined by

τ(y) = ln

[√
det(gij(x, y))

σ(x)

]
The distortion characterizes Riemannian metrics among Finsler metrics, namely,

L is Riemannian if and only if τ = 0.

The mean Cartan torsion Iy = Ii(x, y)dx
i : TxM −→ R is defined as the

vertical derivative of τ on TxM,

Ii =
∂τ

∂yi
=

1

4
gjk[L2]yiyjyk . (2.1)

The S-curvature S is defined as the horizontal derivative of τ along geodesics,

S(y) =
d

dt
[τ (ċ(t))] |t=o,

where c(t) is the geodesic with c(0) = x and ċ(0) = y ∈ TxM. A direction

computation yields

S(y) =
∂Gi

∂yi
(x, y)− yi

σ(x)

∂σ

∂xi
(x). (2.2)

For a non-zero y ∈ TxM, the E-curvature Ey = Eij(x, y)dx
i ⊗ dxj : TxM×

TxM −→ R is defined as the vertical Hessian of (1/2)S on TxM,

Eij =
1

2
Syiyj =

1

2

∂3Gm

∂ym∂yi∂yj
(x, y). (2.3)

L is said to be weakly Berwaldian if E = 0.

For a non-zero vector y ∈ TxM, the mean Landsberg curvature

Jy = Ji(x, y)dx
i : TxM −→ R is defined as the horizontal derivative of I along

geodesics

Ji = yj
∂Ii
∂xi

− Ij
∂Gj

∂yi
− 2Gj ∂Ii

∂yj
= −1

2
LLylg

jk ∂3Gl

∂yi∂yj∂yk
, (2.4)

L is said to be weakly Landsbergian if J = 0.
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The above mentioned geometric quantities are computable for Randers met-

rics. Consider a Randers metric L = α + β be a Randers metric on a manifold

M, where

α(y) =
√

aijyiyj , β(y) = bi(x)y
i,

with ∥β∥x := supy∈TxMβ(y)/α(y) < 1. An easy computation yields

gij =
L

α

(
aij −

yi
α

yj
α

)
+
(yi
α

+ bi

)(yj
α

+ bj

)
, (2.5)

where yi = aijy
j . By an elementary argument in linear algebra, we obtain

det(gjk) =

(
L

α

)n+1

det(aij). (2.6)

Define bi\j by

bi\jθ
j = dbi − bjθ

j
i ,

where θi = dxi and θji = Γ̃j
ikdx

k denote the Levi-Civita connection forms of α.

Let

rij =
1

2

(
bi\j + bj\i

)
, sij =

1

2

(
bi\j − bj\i

)
,

sij = aihshj , sj = bis
i
j , eij = rij + bisj + bjsi.

Then the geodesics coefficients Gi are given by

Gi = Ḡi +
e00
2L

yi − s0y
i + αsi0, (2.7)

where Ḡi denote the geodesics coefficients of α, e00 = eijy
iyj , s0 = siy

i and

si0 = sijy
j [3].

3. Mean Cartan torsion I and mean Landsberg curvature J for Kropina

metric

In this section, we determine the mean Cartan torsion I and mean Lands-

berg curvature for Kropina metric.

Theorem 3.1. For a Kropina metric L = α2

β , the mean Cartan torsion I = Iidx
i

and the mean Landsberg curvature J = Jidx
i are given by

Ii =
1

2
(n+ 1)L−1α−2β−2

{
β(2− α2)yi − α4bi

}
, (3.1)



Projectively Flat Finsler Metric with Special Curvature Properties 121

Ji =
1

4
(n+ 1)L−2α−2β−4

[
α6 {β(4βsi − 4s0 − si0)− 2e00bi + 2e00 − βei0}

−α2β2 {(5e00yi + 2βei0 + 2e00bi) + (2αs00yi + 6s0yi + 8yi)}
+α4β {β(e00bi + βei0) + 2β(2si − 3s0yi) + 4yi(β + s0) + 2e00yi}
+2β2e00yi(5β + 2)− 2α7βsi

+2α3
{
βs0yi(3α

2 − 4) + 2s0yi(α
2 + 2)− (5α2 + 6)β2si0

}
+ 4αβ {7βs00yi − 2αs0yi}] . (3.2)

Proof. First substituting (2.6) into (2.1).

⇒ Ii =
∂

∂yi

(
1

2
log

(√
det(gij(x, y))

)
− log(σ(x))

)
,

=
1

2

∂

∂yi

(
log

(
L

α

)n+1
)
,

differentiating the above equation we get (3.1). Now we are going to compute

Ji.

Let

Hi =
e00
2L

yi − s0y
i + αsi0.

We can rewrite (2.4) as follows

Ji = yjIi\j − IjH
j
.i − 2HjIi.j , (3.3)

where Hj
.i =

∂Hj

∂yi
, Ii.j =

∂Ii
∂yj

and Ii\j are defined by

dIi − Ij
∂Ḡj

∂yi∂yk
dxk = Ii\jdx

j + Ii.j

(
dyj +

∂Ḡj

∂yk
dxk
)
.

By a direct computation, we obtain

Ii.j = −(n+ 1)

2
L−2α−2β−4

{
β2(4− 2α2)yiyj + β(α2 − 2)bjyi

− 2α4βbiyj + α6bibj
}
− (n+ 1)L−1α−4β−2yj

{
2βyi − α2βyi − α4bi

}
+
(n+ 1)

2
L−1α−2β−3

{
(α2 − 2)bjyi + β2(2− α2)aij

− 2β2yiyj + 2α4bibj − 4βα2biyj
}
,

Hj
.i =

e00
2L

δji +
ei0
2L

yj − e00

2L2β2
yj
(
2βyi − α2bi

)
−siy

j − s0δ
j
i + αsji + α−1sj0yi ,
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where bi\0 = bi\jy
j and b0\0 = bi\jy

iyj . Observe that

bi\j = rij + sij = eij − bisj − bjsi + sij .

We have

bi\0 = ei0 − bis0 − siβ + si0, b0\0 = e00 − 2s0β.

By these identities, we obtain

yjIi\j =
1

2
(n+ 1)L−2β−2b0\0

{
β(2− α2)yi − α4bi

}
+

1

2
(n+ 1)L−1α−2β−2

{
α2b0\0yi − 2b0\0yi

}
+

1

2
(n+ 1)L−1β−3

{
2α2b0\0 − α2βbi\0

}
=

1

2
(n+ 1)L−2β−2 (e00 − 2s0β)

{
β(2− α2)yi − α4bi

}
+

1

2
(n+ 1)L−1α−2β−2

{
(α2 − 2)(e00 − 2s0β)yi

}
+

1

2
(n+ 1)L−1β−3{α2(2e00 − βei0) + α2βs0(bi − 4) + α2β(siβ − si0)}.

Plugging for HjIi.j , IjH
j
.i, yjIi\j into (3.3) yields (3.2).

Remark 1. If Ii = 0 i.e., distortion τ is independent of yi or τ is constant.

⇒ Ii =
1

2
(n+ 1)L−1α−2β−2

{
β(2− α2)yi − α4bi

}
= 0

⇒ biL
2 −

(
1− 2

α2

)
yiL = 0,

a quadratic equation in L. Solving for L, we get the metric in the form L =(
2
α2 − 1

) yi
bi
.

Theorem 3.2. If the Kropina metric L = α2/β is projectively flat, then mean

Landsberg curvature reduces to

Ji =
(n+ 1)

4
L−2α−2β−4

[
α6{−2e00bi + 2e00 − βei0}

− α2β2{5e00yi + 2βei0 + 2e00bi + 8yi}
+ α4β{β(e00bi + βei0) + 4βyi + 2e00yi}
+ 2β2e00yi(5β + 2)

]
. (3.4)
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4. Kropina Metric with J+ cLI = 0

As we know, the mean Landsberg curvature J can be expressed in terms of

α and β. But the formula (3.2) is very complicated. So the equation J+cLI = 0

is complicated too. In this section, we are going to find a simpler necessary and

sufficient condition for J + cLI = 0.

Theorem 4.3. Let L = α2/β be a Kropina metric on a manifold M. For a

scalar function c = c(x) on M, the following are equivalent

(a) J+ cLI = 0

(b) e00 = ξα4β − 2c(α2 − β2), where ξ = 60/ω and β is closed.

Proof. Let fij = eij − 2c(aij − bibj) and fi0 = fijy
j , f00 = fijy

iyj .

We have

α6 (2e00 − 2e00bi − βei0)− α2β2 (5e00yi + 2βei0 + 2e00bi)

+α4β2 (e00bi + βei0) + 2α4βe00yi + 2β2e00yi (5β + 2)

= α6 (2f00 − 2f00bi − βfi0)− α2β2 (5f00yi + 2βfi0 + 2f00bi)

+α4β2 (f00bi + βfi0) + 2α4βf00yi + 2β2f00yi (5β + 2)

+2c(α2 − β2)
[
2α2 +

(
α2β2 + 2β2 − 2

) (
α2bi + βyi

)
+ βyi

(
10β2 − 5α2β + 2α4 + 4β + 1

)]
.

Substituting above equation into (3.2), we see that J+ cLI = 0 if and only if

β2 (4βsi − 4s0 − si0)− α2β2 (2αs00yi + 2s0yi + 8yi)

+4α4βyi (β + s0)− 2α7βsi + 2α3βs0yi
(
3α2 − 4

)
+4α3s0yi

(
α2 + 2

)
+ 4αβ (7βs00yi − 2αs0yi) + α6 (−2f00bi + 2f00 − βfi0)

−2α2β2f00bi + α4β2 (f00bi + βfi0) + 2α4βf00yi + 2β2f00yi (5β + 2)

+(α2 − β2)
[
4cα2 + 2cα2bi

(
2β2 − α2 − 2

)]
− 2cα4β4bi

+2cβyi(α
2 − β2)

(
12β2 + α4 − 5α2β + 4β − 1

)
+2cα2βyi

(
2α2 − β4

)
= 0, (4.1)

2α2β2 (2si − 3s0yi)− 2αβ2si0
(
5α2 + 6

)
− β2 (5f00yi + 2βfi0) = 0,

⇒ 2α2 (2si − 3s0yi)− 2αsi0
(
5α2 + 6

)
− (5f00yi + 2βfi0) = 0. (4.2)

Differentiating (4.2) with respect to yj , yk and yl, we obtain

0 =− 12β (blbjfik + bkblfij + bkbjfil)

− 12bjbkblfi0 − 10β [fk0 (blaij + bjail) + fl0 (bkaij + bjaik)
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+ fj0 (blaik + b− kail)]− 5β [fjk (2yibl + βail)

+ fkl (2bjyi + βaij) + fjl (2bkyi + βaik)]

−10f00 (bkblaij + bjblaik + bjbkail)

−10yi (bkblfj0 + bjblfk0 + bjbkfl0) . (4.3)

Contracting (3.4) with akl yields

ωfij + 15β
(
4α2 + λβ

)
aij + 20α (3n+ 10) sij

+12(n+ 4) [siyj + sjyi] + 24siyj = 0, (4.4)

where ω = 94β2 + 20α2 + 24β, λ = aklfkl. It follows from (4.4) that

fij =
−15β(4α2 + λβ)aij

ω
− 12

(2n+ 5)

ω
[siyj + sjyi] , (4.5)

20α(3n+ 10)sij = 12n(siyj + sjyi)− 12(siyj − sjyi). (4.6)

Contracting (4.6) with bi = bra
ri yields

sj = 0.

Substituting sj = 0 into (4.6) we obtain that

sij = 0,

and

fij =
−15β(4α2 + λβ)

ω
aij , where ω = 94β2 + 24β + 20α2. (4.7)

Now equation (3.3) simplifies to

λ [µbi + ςyi + p] = 0, (4.8)

where

µ =
[
15α4β2

(
3α4 − 2α2β2 + 2β2

)
+
1

λ

{
60α6β

(
3α4 − 2α2β2 + 2β2

)
−8cα4

(
6β − 5α2

) (
α2 + 2

)
+ 4α2β4

(
94− 27α2

)
+ 4cα2β3

(
2− α2

) (
12 + 47β3 + 12β2

)
− 4cα6β2

(
17 + 10β2

)}]
,

ς =
[
30α2β3

(
α4 − 5β2 − 2β

)
+

1

λ
{120α4β2

(
α4 − 5β2 − 2β

)
− 4cβ5

(
1 + 133α2 − 57α4

)
+ 4cβ4

(
12 + 160α2 − 297α4

)
+ 4cα2β3

(
44α2 + 37α4 − 11

)
+ 8cα2β2

(
32α2 − 19α4 − 6

)
− 16

(
166 + 3α2

)
cβ6 + 4cβ7

(
564− 47α2

)
+ 40cα2β

(
α2 + 2

)
− 940cα6β6}

]
,
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and

p =
1

λ

[
120α10β + 4cω

(
α2 − β2

)
α2
]
− 30α8β2.

Taking yi = bi in (4.8), we obtain

λ (µ+ ς + q) bi = 0. (4.9)

Assume that β ̸= 0. It follows from (4.9) that λ = 0. From (4.7), we conclude

that fij = −ξα2βaij where ξ = 60/ω. Substituting this in (), we obtain

eij = ξα2βaij − 2c (aij − bibj) ,

e00 = ξα4β − 2c
(
α2 − β2

)
,

where ξ = 60
ω , with ω = 94β2 + 20α2 + 24β.

Conversely, we suppose that e00 = ξα4β − 2c(α2 − β2). Then

ei0 = ξα2βyi − 2c(yi − biβ),

e00 = ξα4β − 2c(α2 − β2).

Considering eij terms of (3.2) we get

−2e00bi + 2e00 − βei0 = bi
[
4c
(
α2 − β2

)
− 2cβ2 − 2ξα4β

]
+yi

(
2cβ − ξα2β

)
+ 2

[
ξα4β − 2c

(
α2 − β2

)]
, (4.10)

5e00yi + 2βei0 + 2e00bi = bi
[
4cβ2 + 2ξα4β − 4c

(
α2 − β2

)]
+yi

[
5ξα4β − 10c

(
α2 − β2

)
+ 2ξα2β2 − 4cβ

]
, (4.11)

βe00bi + β2ei0 + 2e00yi = bi
[
ξα4β2 − 2cβ

(
α2 − β2

)
+ 2cβ3

]
+yi

[
ξα2β3 − 2cβ2 + 2ξα4β − 4c

(
α2 − β2

)]
. (4.12)

Substituting them into (3.2) yields

Ji =
(n+ 1)

2
L−2β−4

[
−c
[
2bi
{
2α4β2 + 2β4 − α6 − α2β2 − α2β4

}
−2α−2βyi

{
α4β2 − α6 +

(
α2 − β2

) (
5α2β − 10β2 − 4β

)}
+ 2α4

(
α2 − β2

)]
+ ξα4β

bi
2

{
α2β2 − 2α4 − 2β2

}
−α2β2 yi

2

{
ξα6 + 5ξα4β − 8ξα2β2 − ξα4β2 − 2ξα4 − 4ξα2β − 4α2 − 8

}
+ξα8β + α2βsi

{
2α2β − α3 − β

}
− s0yi

{
2α4β + 3α2β2 − 2α2β

− αβ
(
3α2 − 4

)
− 2α

(
α2 + 2

)
+ 4β

}
+ αβ

si0
2

{
28β − α3 − 12α2β − 12β

}]
. (4.13)
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Further, suppose that β is closed, hence sij = 0. From (3.1) and (4.13), we

obtain

Ji = −1

2
(n+ 1)cL−2β−4

{
α2β(2− α2)yi − α6bi

}
= −cLIi.

This proves the theorem.
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