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Abstract

In the present paper, we study torse-forming projective motion in an NP −
Fn. We obtain the necessary and sufficient condition for the torse-forming pro-

jective motion in an NP − Fn to be an affine motion. We deduce a neces-

sary condition for the torse-forming projective motion to be an N-curvature

collineation. Further, we study contra affine motion, concurrent affine motion

and special concircular affine motion in an NP −Fn. We show that every contra

as well as concurrent vector field generates an affine motion but a special concir-

cular vector field does not. We deduce that every contra vector field as well as

concurrent vector field generates projective motion and N-curvature collineation

in an NP − Fn.

Keywords : Torse-forming projective motion, N-curvature collineation, contra

affine motion, concurrent affine motion and special concircular affine motion.
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1. Introduction

P. N. Pandey [1-6] discussed the infinitesimal transformation generated by

contra vector field, concurrent vector field, special concircular vector field, con-

circular vector field, torse-forming vector field and birecurrent vector field in a

Finsler space. In these papers, he established that a contra vector field as well

a concurrent vector field always generates an affine motion but a special concir-

cular vector field cannot generate an affine motion in a general Finsler space.

He further obtained the necessary and sufficient condition for the concircular

vector field, torse-forming vector field and birecurrent vector field to generate
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an affine motion. Since every affine motion is curvature collineatiion, the contra

vector field and the concurrent vector field generate a curvature collineation. P.

N. Pandey and V. J. Dwivedi [7] proved that a transformation is an N-curvature

collineation if and only if it is a curvature collineation. Therefore, we may say

that the contra vector field and the concurrent vector field generate N- curvature

collineation. Also, every affine motion is a projective motion; therefore contra

vector field and concurrent vector field generate curvature collineation as well

as projective motion.

Let Fn be an n-dimensional Finsler manifold of class at least C6 equipped

with a metric function F satisfying the requisite conditions [8]. Let gij , G
i
jk

and H i
jkh be the components of the corresponding metric tensor, Berwald’s con-

nection parameters and components of Berwald curvature tensor respectively.

The curvature tensor H i
j k h is skew-symmetric in its first two lower indices and

positively homogeneous of degree zero in ẋh. From this tensor we deduce the

following tensor and vector fields:

(a) H i
j k = H i

j k hẋ
h, (b) H i

j = H i
j k ẋ

k,

(c) Hk h = H i
i k h, (d) Hk = H i

i k.
(1.1)

The Berwald covariant derivative of an arbitrary tensor T i
j for Berwald’s con-

nection parameters is defined as

BkT
i
j = ∂kT

i
j − (∂̇rT

i
j )G

r
k hẋ

h+T r
j G

i
r k−T i

rG
r
j k, ∂k ≡ ∂

∂xk
, ∂̇r ≡

∂

∂ẋr
. (1.2)

The covariant derivative gives rise to the following commutation formulae

BjBkT
i
h − BkBjT

i
h = T r

hH
i
jk r − T i

rH
r
j k h − (∂̇rT

i
h)H

r
j k, (1.3)

∂̇jBkT
i
h − Bk∂̇jT

i
h = T r

hG
i
j k r − T i

rG
r
j k h, (1.4)

where Gi
j k h = ∂̇hG

i
j k. The partial derivatives of Berwald’s connection parame-

ters Gi
j k are the components of a tensor and satisfy

Gi
jkhẋ

h = 0. (1.5)

Yano [9] defined normal projective connection coefficients Πi
kh by

Πi
kh = Gi

kh −
ẋi

n+ 1
Gr

khr. (1.6)
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The partial derivative of Πi
kh with respect to ẋj , being denoted by Πi

jkh, consti-

tutes a tensor which satisfies the following:

(a) Πi
j kh = Πi

j hk , (b) Πi
j k i = Gi

j k i, (c) Πi
j kh ẋ

j = 0,

(d) Πi
i kh = 2

n+1G
i
ikh, (e) Πi

j kh ẋ
h = ẋi

n+1G
r
jkr.

}
(1.7)

The normal projective covariant derivative of a vector field Xi defined by

∇kX
i = ∂kX

i −
(
∂̇rX

i
)
Πr

khẋ
h +XrΠi

kr, ∂k ≡ ∂

∂xk
, (1.8)

gives rise to the following commutation formulae

∇j∇kX
i −∇k∇jX

i = XrN i
jkr −

(
∂̇rX

i
)
N r

jkhẋ
h, (1.9)

∂̇j∇kX
i −∇k∂̇jX

i = XrΠi
jkr −

(
∂̇rX

i
)
Πr

jkhẋ
h, (1.10)

where N i
jkh are components of the normal projective curvature tensor. This ten-

sor is skew-symmetric in its first two lower indices and positively homogeneous

of degree zero in ẋh. The tensor Nkh defined by

Nkh = N i
ikh, (1.11)

satisfies
(a) N i

jih = −N i
ijh = −Njh,

(b) N i
jki = Nkj −Njk,

(c) N i
jkhẋ

h = H i
jk.

 (1.12)

P. N. Pandey [10] established the following relationship between the normal

projective curvature tensor N i
jkh and the Berwald curvature tensor H i

jkh

N i
jkh = H i

jkh −
ẋi

n+ 1
∂̇hH

r
jkr. (1.13)

The normal projective covariant derivative and Berwald covariant derivative of

a vector field Xi are related as

∇kX
i = BkX

i −Xr ẋi

n+ 1
Gl

krl. (1.14)

The space Fn with normal projective connection Πi
kh is called normal projective

Finsler space or NP-Finsler space which is denoted by NP − Fn.

Let us consider an infinitesimal transformation

x̄i = xi + ϵvi(xj), (1.15)

where vi. is a contravariant vector field and ϵ is an infinitesimal constant.
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The Lie-derivative of an arbitrary tensor T i
j and the connection coefficients

Πi
jk for the above transformation are respectively given by

£T i
j = vr∇rT

i
j − T r

j ∇rv
i + T i

r∇jv
r + (∂̇rT

i
j )∇sv

rẋs (1.16)

and

£Πi
jk = ∇j∇kv

i + N i
hjkv

h + Πi
hjk∇lv

hẋl. (1.17)

The operator £ commutes with the operators ∇l and ∂̇l according as

(£∇l −∇l£ )T i
jk =

(
£Πi

lh

)
T h
jk −

(
£Πr

jl

)
T i
rk − (£Πr

kl)T
i
jr, (1.18)

∂̇h£Ω−£∂̇hΩ = 0, (1.19)

where Ω is any geometrical object such as vector, tensor, scalar or connection

coefficients.

The Lie-derivative of the normal projective curvature tensor N i
jkh expressed

in the form

∇k

(
£Πi

jh

)
−∇j

(
£Πi

kh

)
= £N i

kjh+(£Πr
km) ẋmΠi

rjh−
(
£Πr

jm

)
ẋmΠi

rkh. (1.20)

In an NP−Fn, the vector field vi is called contra, concurrent, torse forming

and special concircular according as it satisfies

(a) ∇kv
i = 0,

(b) ∇kv
i = cδik,

(c) ∇kv
i = µkv

i + ρδik, ρ = ρ(xi)

(d) ∇kv
i = ρδik, ρ = ρ(xi)

 (1.21)

respectively, where c is a constant and µk are components of a non-zero covariant

vector field.

In a Finsler space Fn, the vector field vi is called contra, concurrent, torse

forming and special concircular according as it satisfies

(a) Bkv
i = 0,

(b) Bkv
i = cδik,

(c) Bkv
i = µkv

i + ρδik, ρ = ρ(xi)

(d) Bkv
i = ρδik, ρ = ρ(xi)

 (1.22)

respectively, where c and µk are the same as discussed above.

2. Projective Motion

The infinitesimal transformation (1.15) is called a projective motion if it

satisfies
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£Πi
jk = pkδ

i
j + pjδ

i
k, (2.1)

where, pj = ∂̇jp, p being a scalar function positively homogeneous of degree one

in ẋi’s. Due to the homogeneity of p in ẋi’s, we have

pj ẋ
j = p. (2.2)

The transformation (1.15) is called an affine motion if and only if

£Πi
jk = 0. (2.3)

Thus, a projective motion is an affine motion if p vanishes.

3. Curvature Collineation

An infinitesimal transformation is said to be a curvature collineation or

Ricci curvature collineation if

£H i
jkh = 0, (3.1)

or

£Hkh = 0. (3.2)

U. P. Singh and A. K. Singh [11] defined the N-curvature collineation as an infin-

itesimal transformation with respect to which the normal projective curvature

tensor N i
jkh is Lie-invariant, i.e.

£N i
jkh = 0. (3.3)

They [12] also defined N-Ricci curvature collineation which is characterized by

£Nkh = 0. (3.4)

P. N. Pandey and V. J. Dwivedi [7] proved that an infinitesimal transformation

is an N-curvature collineation if and only if it is a curvature collineation.

4. Torse Forming Projective Motion in an NP − Fn

Let us consider a torse forming vector field vi(xj) in an NP − Fn. Then it

satisfies (1.21c). If we differentiate (1.21 c) partially with respect to ẋh and use

the commutation formula (1.10), we have

vrΠi
hkr =

(
∂̇hµk

)
vi. (4.1)

Transvecting (4.1) by ẋk and using (1.7a) and (1.7e), we obtain(
−

vr Gm
hrm

n+ 1

)
ẋi + (∂̇h µk) ẋ

kvi = 0.
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P. N. Pandey [4] proved a Lemma which states that avi + bẋi = 0 implies

a = b = 0. In view of this Lemma, the last expression provides

(a)
vr Gm

hrm

n+ 1
= 0 and (b) (∂̇h µk) ẋ

k = 0. (4.2)

(4.2b) leads to ∂̇hµ = µh, where µ = µsẋ
s.

Using (1.14) for vi in (1.21c), we get

Bkv
i − vr

ẋi

n+ 1
Gl

krl = µkv
i + ρδik. (4.3)

Transvecting (4.3) by ẋk and using (1.5), we have

Bkv
iẋk = µvi + ρẋi. (4.4)

Differentiating (4.4) partially with respect to ẋh and using (1.4) and (1.5), gives

(1.22c). Thus (1.21c) implies (1.22c).

Conversely, if vi(xj) is a torse forming vector field in a Finsler space Fn,

then it satisfies (1.22c). Differentiating (1.22 c) partially with respect to ẋh and

using the commutation formula (1.10), we have

vrGi
hkr =

(
∂̇hµk

)
vi. (4.5)

Transvecting (4.5) by ẋk and using the fact that vi ̸= 0, we obtain(
∂̇hµk

)
ẋk = 0,

which leads to

∂̇hµ = µh, (4.6)

where µ = µsẋ
s.

Thus, we may write

∂̇hµk = µh k. (4.7)

In view of (4.7), (4.5) takes the form

vrGi
hkr = µhkv

i. (4.8)

Using (4.8) in (1.14) for vi, we get

∇kv
i = Bkv

i − vr
ẋi

n+ 1
µrk,

which in view of (1.22c), gives

∇kv
i = µkv

i + ρδik −
ẋi

n+ 1
µrkv

r. (4.9)
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Since µrk ̸= 0, in general, we may say that

Theorem 4.1. A torse forming vector field vi(xj) in an NP − Fn remains

torse-forming in a Finsler space but converse is not true in general.

Let us consider an NP − Fn admitting a projective motion generated by a

torse forming vector field vi characterized by (1.21c).

Operating the equation (1.21c) by the operator£ , and noting that the

vector field vi is Lie-invariant with respect to the infinitesimal transformation

generated by it, we find

£∇kv
i = (£µk) v

i +£ ρδik. (4.10)

In view of equation (1.18) and (2.1), the equation (4.10) may be written as

vr
(
pkδ

i
r + prδ

i
k

)
= (£µk) v

i +£ ρδik. (4.11)

Transvecting (4.11) by ẋk, we have

(£µ− p) vi + (£ ρ− prv
r) ẋi = 0, (4.12)

where µ = µsẋ
s. Since avi + bẋi = 0 implies a = b = 0 (see [4]), (4.12) gives

(a) £µ = p, (b) £ ρ = prv
r. (4.13)

This leads to

Theorem 4.2. The condition (4.13 a) and (4.13 b) are true in an NP − Fn

admitting a torse forming projective motion characterized by (1.15), (2.1) and

(1.21c).

We know that a projective motion is an affine motion if and only if the

scalar function p vanishes identically. Therefore, in view of (4.13 a), we may

conclude that £µ = 0 is necessary and sufficient for a torse forming projective

motion to be an affine motion in an NP −Fn. Differentiating (1.21 c) partially

with respect to ẋj and using the commutation formula (1.18), we get

vrΠi
jkr =

(
∂̇jµk

)
vi +

(
∂̇jρ

)
δik. (4.14)

Transvecting (4.14) by ẋk and using (1.7 a) and (1.7e), we have(
ẋk∂̇jµk

)
vi +

(
∂̇jρ−

vr Gm
hrm

n+ 1

)
ẋi = 0. (4.15)
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Since avi + bẋi = 0 implies [4] a = b = 0, (4.15) gives

(a) ẋk∂̇jµk = 0, (b) ∂̇jρ =
vr Gm

hrm

n+ 1
. (4.16)

Equation (4.16 a) implies ∂̇jµ = µj , where µ = µsẋ
s. In view of (4.2a),

(4.16b) implies that ∂̇jρ = 0, i.e. the scalar ρ is at most a function of position

coordinates only. Since the operator £ and ∂̇l are commutative, £µ = 0 implies

£µk = 0. Also the transvection of £µk = 0 by ẋk implies £µ = 0. Thus, the

condition £µ = 0 and £µk = 0 are equivalent. Therefore £µk = 0 is necessary

and sufficient for the torse forming projective motion to be an affine motion.

This leads to

Theorem 4.3. The condition £µk = 0 is necessary and sufficient for the torse

forming projective motion in an NP − Fn to be an affine motion.

Since every affine motion is curvature collineation and every curvature

collineation is N- curvature collineation [7], we have

Corollary 4.1. The condition £µk = 0 is necessary for the torse forming

projective motion in an NP − Fn to be an N- curvature collineation.

5. Some Lemmas

In this section, we shall show that the notions of Contra and Concurrent

vector fields in a Finsler space are equivalent to the notions of those in an

NP − Fn.

Lemma 5.1. The vector field vi(xj) is a contra vector field in a Finsler space

Fn if and only if it is a contra vector field in an NP − Fn, i.e. (1.21 a) ⇔ (1.22

a).

Proof. Let vi(xj) is a contra vector field in an NP − Fn, then it satisfies

Equation (1.21 a). Using Equation (1.21 a) in (1.14) for vi(xj), we get

Bkv
i = vr

ẋi

n+ 1
Gl

krl.

Transvecting this by ẋk and using (1.5), we have ẋkBkv
i = 0. Differentiating

ẋkBkv
i = 0 partially with respect to ẋh and using the commutation formula

(1.4), we have (1.22 a).

Conversely, suppose that vi(xj) is a contra vector field in a Finsler space, then it

satisfies (1.22a). Differentiating partially (1.22 a) with respect to ẋh and using



Torse-forming Projective Motion in an NP − Fn 113

the commutation formula (1.4), we get vrGi
khr = 0. Using this and (1.22 a) in

(1.14) for vi(xj), we have (1.21 a).

Lemma 5.2. The vector field vi(xj) is a concurrent vector field in a Finsler

space Fn if and only if it is a concurrent vector field in an NP − Fn, i.e. (1.21

b) ⇔ (1.22 b).

Proof. Let vi(xj) is a concurrent vector field in an NP − Fn, then it satisfies

Equation (1.21b). Using Equation (1.21 b) in (1.14) for vi(xj), we get

cδik = Bkv
i − vr

ẋi

n+ 1
Gl

krl.

Transvecting this by ẋk and using (1.5), we have cẋi = ẋkBkv
i. Differentiating

cẋi = ẋkBkv
i partially with respect to ẋh and using the commutation formula

(1.4), we have (1.22 b).

Conversely, suppose that vi(xj) is a concurrent vector field in a Finsler

space, then it satisfies (1.22 b). Differentiating partially (1.22 b) with respect

to ẋh and using the commutation formula (1.4), we get vrGi
khr = 0. Using this

and (1.22 b) in (1.14) for vi(xj), we have (1.21 b).

6(a) Contra Affine Motion in an NP − Fn

Let us consider an infinitesimal transformation generated by contra vector

field vi(xj) characterized by (1.21 a). By Lemma 5.1, Equation (1.21 a) implies

(1.22a). Differentiating (1.22a) covariantly with respect to ẋj , we have

BjBkv
i = 0. (6.1)

Taking skew-symmetric part of (6.1) and using (1.3), we have

H i
jk rv

r = 0. (6.2)

P. N. Pandey [1] proved that H i
jk rv

r = 0 and H i
rjkv

r = 0 are equivalent.

Therefore, Equation (6.2) implies

H i
rjkv

r = 0. (6.3)

Transvecting (1.13) by vr and using (6.3), we get

N i
rjk v

r = 0. (6.4)

Now, differentiating (1.21 a) covariantly with respect to ẋj , we have

∇j∇kv
i = 0. (6.5)



114 P. N. Pandey, Shivalika Saxena and Suresh K. Shukla

Using (1.21 a), (6.4) and (6.5) in (1.17), we get £Πi
jk = 0. Hence the infinites-

imal transformation considered is an affine motion in an NP − Fn. Thus, we

obtain

Theorem 6.1. Every contra vector generates an affine motion in an NP −Fn.

Every affine motion is a projective motion and by Theorem 6.1, every contra

vector field generates an affine motion. Thus, we have

Corollary 6.1. Every contra vector field generates a projective motion in an

NP − Fn.

Every contra vector field generates an affine motion i.e. £Πi
jk = 0. This

implies £N i
kjh = 0, by (1.20). Thus, we may conclude

Corollary 6.2. Every contra vector field generates N- curvature collineation

in anNP − Fn.

6.(b) Concurrent Affine Motion in an NP − Fn

Let us consider an infinitesimal transformation generated by concurrent

vector field vi(xj) characterized by (1.21 b). By Lemma 5.2, Equation (1.21

b) implies (1.22b). Differentiating (1.22 b) covariantly with respect to ẋj , we

have (6.1). Taking skew-symmetric part of (6.1) and using (1.3), we have (6.2)

and hence (6.3) as H i
jk rv

r = 0 and H i
rjkv

r = 0 are equivalent [1]. Therefore,

Equation (6.2) implies (6.3). Transvecting (1.13) by vr and using (6.3), we get

(6.4). Now, differentiating (1.21 b) covariantly with respect to ẋj yields (6.5).

Using (1.7c), (1.21b), (6.4) and (6.5) in (1.17), we get £Πi
jk = 0. Hence the

infinitesimal transformation considered is an affine motion in an NP−Fn. Thus,

we have

Theorem 6.2. Every concurrent vector field generates an affine motion in an

NP − Fn.

Every affine motion is a projective motion and by Theorem 6.2, every con-

current vector field generates an affine motion. Thus, we have

Corollary 6.3. Every concurrent vector field generates a projective motion.

Every concurrent vector field generates an affine motion i.e. £Πi
jk = 0.

This implies £N i
kjh = 0, by (1.20). Thus, we may conclude
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Corollary 6.4. Every concurrent vector field generates N-curvature collineation

in an NP − Fn.

6.(c) Special Concircular Affine Motion in an NP − Fn

Let us consider an NP − Fn admitting an infinitesimal transformation

generated by a special concircular vector field characterized by (1.21d). If this

transformation is an affine motion, we have £Πi
jk = 0, which by (1.17) and

(1.21d) gives

∇jρδ
i
k + N i

hjkv
h = 0. (6.6)

Transvecting (6.6) by ẋk and using (1.12c), we have

∇jρẋ
i + H i

hjv
h = 0. (6.7)

Transvecting (6.7) by yi and using ẋiyi = F 2 and H i
h jyi = 0, we have F 2∇jρ =

0, which implies ∇jρ = 0. Thus we get a contradiction. Hence, we obtain

Theorem 6.3. An infinitesimal transformation generated by a special concir-

cular vector field cannot be an affine motion in an NP − Fn.
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