

J. T. S.

Vol. 6 No.1 (2012), pp.105-116
<https://doi.org/10.56424/jts.v6i01.10456>

Torse-forming Projective Motion in an $NP - F_n$

P. N. Pandey, Shivalika Saxena and Suresh K. Shukla

Department of Mathematics

University of Allahabad, Allahabad-211 002, INDIA

Emails: pnpiaps@gmail.com; mathshivalika@gmail.com;
shuklasureshk@gmail.com

(Received: 5 May, 2011)

(Dedicated to Prof. K. S. Amur on his 80th birth year)

Abstract

In the present paper, we study torse-forming projective motion in an $NP - F_n$. We obtain the necessary and sufficient condition for the torse-forming projective motion in an $NP - F_n$ to be an affine motion. We deduce a necessary condition for the torse-forming projective motion to be an N-curvature collineation. Further, we study contra affine motion, concurrent affine motion and special concircular affine motion in an $NP - F_n$. We show that every contra as well as concurrent vector field generates an affine motion but a special concircular vector field does not. We deduce that every contra vector field as well as concurrent vector field generates projective motion and N-curvature collineation in an $NP - F_n$.

Keywords : Torse-forming projective motion, N-curvature collineation, contra affine motion, concurrent affine motion and special concircular affine motion.

2010 AMS Subject Classification : 53B40.

1. Introduction

P. N. Pandey [1-6] discussed the infinitesimal transformation generated by contra vector field, concurrent vector field, special concircular vector field, concircular vector field, torse-forming vector field and birecurrent vector field in a Finsler space. In these papers, he established that a contra vector field as well a concurrent vector field always generates an affine motion but a special concircular vector field cannot generate an affine motion in a general Finsler space. He further obtained the necessary and sufficient condition for the concircular vector field, torse-forming vector field and birecurrent vector field to generate

an affine motion. Since every affine motion is curvature collineation, the contra vector field and the concurrent vector field generate a curvature collineation. P. N. Pandey and V. J. Dwivedi [7] proved that a transformation is an N-curvature collineation if and only if it is a curvature collineation. Therefore, we may say that the contra vector field and the concurrent vector field generate N-curvature collineation. Also, every affine motion is a projective motion; therefore contra vector field and concurrent vector field generate curvature collineation as well as projective motion.

Let F_n be an n-dimensional Finsler manifold of class at least C^6 equipped with a metric function F satisfying the requisite conditions [8]. Let g_{ij} , G_{jk}^i and H_{jkh}^i be the components of the corresponding metric tensor, Berwald's connection parameters and components of Berwald curvature tensor respectively. The curvature tensor H_{jkh}^i is skew-symmetric in its first two lower indices and positively homogeneous of degree zero in \dot{x}^h . From this tensor we deduce the following tensor and vector fields:

$$\begin{array}{ll} (a) & H_{jk}^i = H_{jkh}^i \dot{x}^h, \\ (c) & H_{kh} = H_{ikh}^i, \end{array} \quad \begin{array}{ll} (b) & H_j^i = H_{jk}^i \dot{x}^k, \\ (d) & H_k = H_{ik}^i. \end{array} \quad (1.1)$$

The Berwald covariant derivative of an arbitrary tensor T_j^i for Berwald's connection parameters is defined as

$$B_k T_j^i = \partial_k T_j^i - (\dot{\partial}_r T_j^i) G_{kh}^r \dot{x}^h + T_j^r G_{rk}^i - T_r^i G_{jk}^r, \quad \partial_k \equiv \frac{\partial}{\partial x^k}, \quad \dot{\partial}_r \equiv \frac{\partial}{\partial \dot{x}^r}. \quad (1.2)$$

The covariant derivative gives rise to the following commutation formulae

$$B_j B_k T_h^i - B_k B_j T_h^i = T_h^r H_{jkr}^i - T_r^i H_{jk}^r - (\dot{\partial}_r T_h^i) H_{jk}^r, \quad (1.3)$$

$$\dot{\partial}_j B_k T_h^i - B_k \dot{\partial}_j T_h^i = T_h^r G_{jkr}^i - T_r^i G_{jk}^r, \quad (1.4)$$

where $G_{jkh}^i = \dot{\partial}_h G_{jk}^i$. The partial derivatives of Berwald's connection parameters G_{jk}^i are the components of a tensor and satisfy

$$G_{jkh}^i \dot{x}^h = 0. \quad (1.5)$$

Yano [9] defined normal projective connection coefficients Π_{kh}^i by

$$\Pi_{kh}^i = G_{kh}^i - \frac{\dot{x}^i}{n+1} G_{khr}^r. \quad (1.6)$$

The partial derivative of Π_{kh}^i with respect to \dot{x}^j , being denoted by Π_{jkh}^i , constitutes a tensor which satisfies the following:

$$\left. \begin{array}{lll} \text{(a)} \quad \Pi_{jkh}^i = \Pi_{jhh}^i, & \text{(b)} \quad \Pi_{jki}^i = G_{jki}^i, & \text{(c)} \quad \Pi_{jkh}^i \dot{x}^j = 0, \\ \text{(d)} \quad \Pi_{ikh}^i = \frac{2}{n+1} G_{ikh}^i, & \text{(e)} \quad \Pi_{jkh}^i \dot{x}^h = \frac{\dot{x}^i}{n+1} G_{jkr}^r. \end{array} \right\} \quad (1.7)$$

The normal projective covariant derivative of a vector field X^i defined by

$$\nabla_k X^i = \partial_k X^i - \left(\dot{\partial}_r X^i \right) \Pi_{krh}^r \dot{x}^h + X^r \Pi_{kr}^i, \quad \partial_k \equiv \frac{\partial}{\partial x^k}, \quad (1.8)$$

gives rise to the following commutation formulae

$$\nabla_j \nabla_k X^i - \nabla_k \nabla_j X^i = X^r N_{jkr}^i - \left(\dot{\partial}_r X^i \right) N_{jkh}^r \dot{x}^h, \quad (1.9)$$

$$\dot{\partial}_j \nabla_k X^i - \nabla_k \dot{\partial}_j X^i = X^r \Pi_{jkr}^i - \left(\dot{\partial}_r X^i \right) \Pi_{jkh}^r \dot{x}^h, \quad (1.10)$$

where N_{jkh}^i are components of the normal projective curvature tensor. This tensor is skew-symmetric in its first two lower indices and positively homogeneous of degree zero in \dot{x}^h . The tensor N_{kh} defined by

$$N_{kh} = N_{ikh}^i, \quad (1.11)$$

satisfies

$$\left. \begin{array}{lll} \text{(a)} \quad N_{jih}^i = -N_{ijh}^i = -N_{jh}^i, \\ \text{(b)} \quad N_{jki}^i = N_{kj}^i - N_{jk}^i, \\ \text{(c)} \quad N_{jkh}^i \dot{x}^h = H_{jk}^i. \end{array} \right\} \quad (1.12)$$

P. N. Pandey [10] established the following relationship between the normal projective curvature tensor N_{jkh}^i and the Berwald curvature tensor H_{jkh}^i

$$N_{jkh}^i = H_{jkh}^i - \frac{\dot{x}^i}{n+1} \dot{\partial}_h H_{jkr}^r. \quad (1.13)$$

The normal projective covariant derivative and Berwald covariant derivative of a vector field X^i are related as

$$\nabla_k X^i = B_k X^i - X^r \frac{\dot{x}^i}{n+1} G_{krl}^r. \quad (1.14)$$

The space F_n with normal projective connection Π_{kh}^i is called normal projective Finsler space or NP-Finsler space which is denoted by $NP - F_n$.

Let us consider an infinitesimal transformation

$$\bar{x}^i = x^i + \epsilon v^i(x^j), \quad (1.15)$$

where v^i is a contravariant vector field and ϵ is an infinitesimal constant.

The Lie-derivative of an arbitrary tensor T_j^i and the connection coefficients Π_{jk}^i for the above transformation are respectively given by

$$\mathcal{L}T_j^i = v^r \nabla_r T_j^i - T_j^r \nabla_r v^i + T_r^i \nabla_j v^r + (\dot{\partial}_r T_j^i) \nabla_s v^r \dot{x}^s \quad (1.16)$$

and

$$\mathcal{L}\Pi_{jk}^i = \nabla_j \nabla_k v^i + N_{hjk}^i v^h + \Pi_{hjk}^i \nabla_l v^h \dot{x}^l. \quad (1.17)$$

The operator \mathcal{L} commutes with the operators ∇_l and $\dot{\partial}_l$ according as

$$(\mathcal{L} \nabla_l - \nabla_l \mathcal{L}) T_{jk}^i = (\mathcal{L} \Pi_{lh}^i) T_{jk}^h - (\mathcal{L} \Pi_{jl}^r) T_{rk}^i - (\mathcal{L} \Pi_{kl}^r) T_{jr}^i, \quad (1.18)$$

$$\dot{\partial}_h \mathcal{L} \Omega - \mathcal{L} \dot{\partial}_h \Omega = 0, \quad (1.19)$$

where Ω is any geometrical object such as vector, tensor, scalar or connection coefficients.

The Lie-derivative of the normal projective curvature tensor N_{jkh}^i expressed in the form

$$\nabla_k (\mathcal{L} \Pi_{jh}^i) - \nabla_j (\mathcal{L} \Pi_{kh}^i) = \mathcal{L} N_{kjh}^i + (\mathcal{L} \Pi_{km}^r) \dot{x}^m \Pi_{rjh}^i - (\mathcal{L} \Pi_{jm}^r) \dot{x}^m \Pi_{rkh}^i. \quad (1.20)$$

In an $NP-F_n$, the vector field v^i is called contra, concurrent, torse forming and special concircular according as it satisfies

$$\left. \begin{array}{ll} (a) & \nabla_k v^i = 0, \\ (b) & \nabla_k v^i = c \delta_k^i, \\ (c) & \nabla_k v^i = \mu_k v^i + \rho \delta_k^i, \quad \rho = \rho(x^i) \\ (d) & \nabla_k v^i = \rho \delta_k^i, \quad \rho = \rho(x^i) \end{array} \right\} \quad (1.21)$$

respectively, where c is a constant and μ_k are components of a non-zero covariant vector field.

In a Finsler space F_n , the vector field v^i is called contra, concurrent, torse forming and special concircular according as it satisfies

$$\left. \begin{array}{ll} (a) & B_k v^i = 0, \\ (b) & B_k v^i = c \delta_k^i, \\ (c) & B_k v^i = \mu_k v^i + \rho \delta_k^i, \quad \rho = \rho(x^i) \\ (d) & B_k v^i = \rho \delta_k^i, \quad \rho = \rho(x^i) \end{array} \right\} \quad (1.22)$$

respectively, where c and μ_k are the same as discussed above.

2. Projective Motion

The infinitesimal transformation (1.15) is called a projective motion if it satisfies

$$\mathcal{L}\Pi_{jk}^i = p_k \delta_j^i + p_j \delta_k^i, \quad (2.1)$$

where, $p_j = \dot{\partial}_j p$, p being a scalar function positively homogeneous of degree one in \dot{x}^i 's. Due to the homogeneity of p in \dot{x}^i 's, we have

$$p_j \dot{x}^j = p. \quad (2.2)$$

The transformation (1.15) is called an affine motion if and only if

$$\mathcal{L}\Pi_{jk}^i = 0. \quad (2.3)$$

Thus, a projective motion is an affine motion if p vanishes.

3. Curvature Collineation

An infinitesimal transformation is said to be a curvature collineation or Ricci curvature collineation if

$$\mathcal{L}H_{jkh}^i = 0, \quad (3.1)$$

or

$$\mathcal{L}H_{kh} = 0. \quad (3.2)$$

U. P. Singh and A. K. Singh [11] defined the N-curvature collineation as an infinitesimal transformation with respect to which the normal projective curvature tensor N_{jkh}^i is Lie-invariant, i.e.

$$\mathcal{L}N_{jkh}^i = 0. \quad (3.3)$$

They [12] also defined N-Ricci curvature collineation which is characterized by

$$\mathcal{L}N_{kh} = 0. \quad (3.4)$$

P. N. Pandey and V. J. Dwivedi [7] proved that an infinitesimal transformation is an N-curvature collineation if and only if it is a curvature collineation.

4. Torse Forming Projective Motion in an $NP - F_n$

Let us consider a torse forming vector field $v^i(x^j)$ in an $NP - F_n$. Then it satisfies (1.21c). If we differentiate (1.21c) partially with respect to \dot{x}^h and use the commutation formula (1.10), we have

$$v^r \Pi_{hkr}^i = (\dot{\partial}_h \mu_k) v^i. \quad (4.1)$$

Transvecting (4.1) by \dot{x}^k and using (1.7a) and (1.7e), we obtain

$$\left(-\frac{v^r G_{hrm}^m}{n+1} \right) \dot{x}^i + (\dot{\partial}_h \mu_k) \dot{x}^k v^i = 0.$$

P. N. Pandey [4] proved a Lemma which states that $av^i + bx^i = 0$ implies $a = b = 0$. In view of this Lemma, the last expression provides

$$(a) \quad \frac{v^r G_{hrm}^m}{n+1} = 0 \quad \text{and} \quad (b) \quad (\dot{\partial}_h \mu_k) \dot{x}^k = 0. \quad (4.2)$$

(4.2b) leads to $\dot{\partial}_h \mu = \mu_h$, where $\mu = \mu_s \dot{x}^s$.

Using (1.14) for v^i in (1.21c), we get

$$B_k v^i - v^r \frac{\dot{x}^i}{n+1} G_{krl}^l = \mu_k v^i + \rho \delta_k^i. \quad (4.3)$$

Transvecting (4.3) by \dot{x}^k and using (1.5), we have

$$B_k v^i \dot{x}^k = \mu v^i + \rho \dot{x}^i. \quad (4.4)$$

Differentiating (4.4) partially with respect to \dot{x}^h and using (1.4) and (1.5), gives (1.22c). Thus (1.21c) implies (1.22c).

Conversely, if $v^i(x^j)$ is a torse forming vector field in a Finsler space F_n , then it satisfies (1.22c). Differentiating (1.22c) partially with respect to \dot{x}^h and using the commutation formula (1.10), we have

$$v^r G_{hkr}^i = (\dot{\partial}_h \mu_k) v^i. \quad (4.5)$$

Transvecting (4.5) by \dot{x}^k and using the fact that $v^i \neq 0$, we obtain

$$(\dot{\partial}_h \mu_k) \dot{x}^k = 0,$$

which leads to

$$\dot{\partial}_h \mu = \mu_h, \quad (4.6)$$

where $\mu = \mu_s \dot{x}^s$.

Thus, we may write

$$\dot{\partial}_h \mu_k = \mu_{hk}. \quad (4.7)$$

In view of (4.7), (4.5) takes the form

$$v^r G_{hkr}^i = \mu_{hk} v^i. \quad (4.8)$$

Using (4.8) in (1.14) for v^i , we get

$$\nabla_k v^i = B_k v^i - v^r \frac{\dot{x}^i}{n+1} \mu_{rk},$$

which in view of (1.22c), gives

$$\nabla_k v^i = \mu_k v^i + \rho \delta_k^i - \frac{\dot{x}^i}{n+1} \mu_{rk} v^r. \quad (4.9)$$

Since $\mu_{rk} \neq 0$, in general, we may say that

Theorem 4.1. A torse forming vector field $v^i(x^j)$ in an $NP - F_n$ remains torse-forming in a Finsler space but converse is not true in general.

Let us consider an $NP - F_n$ admitting a projective motion generated by a torse forming vector field v^i characterized by (1.21c).

Operating the equation (1.21c) by the operator \mathcal{L} , and noting that the vector field v^i is Lie-invariant with respect to the infinitesimal transformation generated by it, we find

$$\mathcal{L} \nabla_k v^i = (\mathcal{L} \mu_k) v^i + \mathcal{L} \rho \delta_k^i. \quad (4.10)$$

In view of equation (1.18) and (2.1), the equation (4.10) may be written as

$$v^r (p_k \delta_r^i + p_r \delta_k^i) = (\mathcal{L} \mu_k) v^i + \mathcal{L} \rho \delta_k^i. \quad (4.11)$$

Transvecting (4.11) by \dot{x}^k , we have

$$(\mathcal{L} \mu - p) v^i + (\mathcal{L} \rho - p_r v^r) \dot{x}^i = 0, \quad (4.12)$$

where $\mu = \mu_s \dot{x}^s$. Since $a v^i + b \dot{x}^i = 0$ implies $a = b = 0$ (see [4]), (4.12) gives

$$(a) \mathcal{L} \mu = p, \quad (b) \mathcal{L} \rho = p_r v^r. \quad (4.13)$$

This leads to

Theorem 4.2. The condition (4.13 a) and (4.13 b) are true in an $NP - F_n$ admitting a torse forming projective motion characterized by (1.15), (2.1) and (1.21c).

We know that a projective motion is an affine motion if and only if the scalar function p vanishes identically. Therefore, in view of (4.13 a), we may conclude that $\mathcal{L} \mu = 0$ is necessary and sufficient for a torse forming projective motion to be an affine motion in an $NP - F_n$. Differentiating (1.21 c) partially with respect to \dot{x}^j and using the commutation formula (1.18), we get

$$v^r \Pi_{jkr}^i = (\dot{\partial}_j \mu_k) v^i + (\dot{\partial}_j \rho) \delta_k^i. \quad (4.14)$$

Transvecting (4.14) by \dot{x}^k and using (1.7 a) and (1.7e), we have

$$(\dot{x}^k \dot{\partial}_j \mu_k) v^i + \left(\dot{\partial}_j \rho - \frac{v^r G_{hrm}^m}{n+1} \right) \dot{x}^i = 0. \quad (4.15)$$

Since $av^i + b\dot{x}^i = 0$ implies [4] $a = b = 0$, (4.15) gives

$$(a) \dot{x}^k \dot{\partial}_j \mu_k = 0, \quad (b) \dot{\partial}_j \rho = \frac{v^r G_{hrm}^m}{n+1}. \quad (4.16)$$

Equation (4.16 a) implies $\dot{\partial}_j \mu = \mu_j$, where $\mu = \mu_s \dot{x}^s$. In view of (4.2a), (4.16b) implies that $\dot{\partial}_j \rho = 0$, i.e. the scalar ρ is at most a function of position coordinates only. Since the operator \mathcal{L} and $\dot{\partial}_l$ are commutative, $\mathcal{L} \mu = 0$ implies $\mathcal{L} \mu_k = 0$. Also the transvection of $\mathcal{L} \mu_k = 0$ by \dot{x}^k implies $\mathcal{L} \mu = 0$. Thus, the condition $\mathcal{L} \mu = 0$ and $\mathcal{L} \mu_k = 0$ are equivalent. Therefore $\mathcal{L} \mu_k = 0$ is necessary and sufficient for the torse forming projective motion to be an affine motion. This leads to

Theorem 4.3. The condition $\mathcal{L} \mu_k = 0$ is necessary and sufficient for the torse forming projective motion in an $NP - F_n$ to be an affine motion.

Since every affine motion is curvature collineation and every curvature collineation is N- curvature collineation [7], we have

Corollary 4.1. The condition $\mathcal{L} \mu_k = 0$ is necessary for the torse forming projective motion in an $NP - F_n$ to be an N- curvature collineation.

5. Some Lemmas

In this section, we shall show that the notions of Contra and Concurrent vector fields in a Finsler space are equivalent to the notions of those in an $NP - F_n$.

Lemma 5.1. The vector field $v^i(x^j)$ is a contra vector field in a Finsler space F_n if and only if it is a contra vector field in an $NP - F_n$, i.e. (1.21 a) \Leftrightarrow (1.22 a).

Proof. Let $v^i(x^j)$ is a contra vector field in an $NP - F_n$, then it satisfies Equation (1.21 a). Using Equation (1.21 a) in (1.14) for $v^i(x^j)$, we get

$$B_k v^i = v^r \frac{\dot{x}^i}{n+1} G_{krl}^l.$$

Transvecting this by \dot{x}^k and using (1.5), we have $\dot{x}^k B_k v^i = 0$. Differentiating $\dot{x}^k B_k v^i = 0$ partially with respect to \dot{x}^h and using the commutation formula (1.4), we have (1.22 a).

Conversely, suppose that $v^i(x^j)$ is a contra vector field in a Finsler space, then it satisfies (1.22a). Differentiating partially (1.22 a) with respect to \dot{x}^h and using

the commutation formula (1.4), we get $v^r G_{khr}^i = 0$. Using this and (1.22 a) in (1.14) for $v^i(x^j)$, we have (1.21 a).

Lemma 5.2. The vector field $v^i(x^j)$ is a concurrent vector field in a Finsler space F_n if and only if it is a concurrent vector field in an $NP - F_n$, i.e. (1.21 b) \Leftrightarrow (1.22 b).

Proof. Let $v^i(x^j)$ is a concurrent vector field in an $NP - F_n$, then it satisfies Equation (1.21b). Using Equation (1.21 b) in (1.14) for $v^i(x^j)$, we get

$$c\delta_k^i = B_k v^i - v^r \frac{\dot{x}^i}{n+1} G_{krl}^l.$$

Transvecting this by \dot{x}^k and using (1.5), we have $c\dot{x}^i = \dot{x}^k B_k v^i$. Differentiating $c\dot{x}^i = \dot{x}^k B_k v^i$ partially with respect to \dot{x}^h and using the commutation formula (1.4), we have (1.22 b).

Conversely, suppose that $v^i(x^j)$ is a concurrent vector field in a Finsler space, then it satisfies (1.22 b). Differentiating partially (1.22 b) with respect to \dot{x}^h and using the commutation formula (1.4), we get $v^r G_{khr}^i = 0$. Using this and (1.22 b) in (1.14) for $v^i(x^j)$, we have (1.21 b).

6(a) Contra Affine Motion in an $NP - F_n$

Let us consider an infinitesimal transformation generated by contra vector field $v^i(x^j)$ characterized by (1.21 a). By Lemma 5.1, Equation (1.21 a) implies (1.22a). Differentiating (1.22a) covariantly with respect to \dot{x}^j , we have

$$B_j B_k v^i = 0. \quad (6.1)$$

Taking skew-symmetric part of (6.1) and using (1.3), we have

$$H_{jk}^i v^r = 0. \quad (6.2)$$

P. N. Pandey [1] proved that $H_{jk}^i v^r = 0$ and $H_{rjk}^i v^r = 0$ are equivalent. Therefore, Equation (6.2) implies

$$H_{rjk}^i v^r = 0. \quad (6.3)$$

Transvecting (1.13) by v^r and using (6.3), we get

$$N_{rjk}^i v^r = 0. \quad (6.4)$$

Now, differentiating (1.21 a) covariantly with respect to \dot{x}^j , we have

$$\nabla_j \nabla_k v^i = 0. \quad (6.5)$$

Using (1.21 a), (6.4) and (6.5) in (1.17), we get $\mathcal{L}\Pi_{jk}^i = 0$. Hence the infinitesimal transformation considered is an affine motion in an $NP - F_n$. Thus, we obtain

Theorem 6.1. Every contra vector generates an affine motion in an $NP - F_n$.

Every affine motion is a projective motion and by Theorem 6.1, every contra vector field generates an affine motion. Thus, we have

Corollary 6.1. Every contra vector field generates a projective motion in an $NP - F_n$.

Every contra vector field generates an affine motion i.e. $\mathcal{L}\Pi_{jk}^i = 0$. This implies $\mathcal{L}N_{kjh}^i = 0$, by (1.20). Thus, we may conclude

Corollary 6.2. Every contra vector field generates N- curvature collineation in an $NP - F_n$.

6.(b) Concurrent Affine Motion in an $NP - F_n$

Let us consider an infinitesimal transformation generated by concurrent vector field $v^i(x^j)$ characterized by (1.21 b). By Lemma 5.2, Equation (1.21 b) implies (1.22b). Differentiating (1.22 b) covariantly with respect to \dot{x}^j , we have (6.1). Taking skew-symmetric part of (6.1) and using (1.3), we have (6.2) and hence (6.3) as $H_{jkr}^i v^r = 0$ and $H_{rjk}^i v^r = 0$ are equivalent [1]. Therefore, Equation (6.2) implies (6.3). Transvecting (1.13) by v^r and using (6.3), we get (6.4). Now, differentiating (1.21 b) covariantly with respect to \dot{x}^j yields (6.5). Using (1.7c), (1.21b), (6.4) and (6.5) in (1.17), we get $\mathcal{L}\Pi_{jk}^i = 0$. Hence the infinitesimal transformation considered is an affine motion in an $NP - F_n$. Thus, we have

Theorem 6.2. Every concurrent vector field generates an affine motion in an $NP - F_n$.

Every affine motion is a projective motion and by Theorem 6.2, every concurrent vector field generates an affine motion. Thus, we have

Corollary 6.3. Every concurrent vector field generates a projective motion.

Every concurrent vector field generates an affine motion i.e. $\mathcal{L}\Pi_{jk}^i = 0$. This implies $\mathcal{L}N_{kjh}^i = 0$, by (1.20). Thus, we may conclude

Corollary 6.4. Every concurrent vector field generates N-curvature collineation in an $NP - F_n$.

6.(c) Special Concircular Affine Motion in an $NP - F_n$

Let us consider an $NP - F_n$ admitting an infinitesimal transformation generated by a special concircular vector field characterized by (1.21d). If this transformation is an affine motion, we have $\mathcal{L}\Pi_{jk}^i = 0$, which by (1.17) and (1.21d) gives

$$\nabla_j \rho \delta_k^i + N_{hjk}^i v^h = 0. \quad (6.6)$$

Transvecting (6.6) by \dot{x}^k and using (1.12c), we have

$$\nabla_j \rho \dot{x}^i + H_{hj}^i v^h = 0. \quad (6.7)$$

Transvecting (6.7) by y_i and using $\dot{x}^i y_i = F^2$ and $H_{hj}^i y_i = 0$, we have $F^2 \nabla_j \rho = 0$, which implies $\nabla_j \rho = 0$. Thus we get a contradiction. Hence, we obtain

Theorem 6.3. An infinitesimal transformation generated by a special concircular vector field cannot be an affine motion in an $NP - F_n$.

Acknowledgements

Shivalika Saxena is financially supported by the UGC, India and Suresh K. Shukla is financially supported by the CSIR, India.

REFERENCES

- [1] Pandey, P. N. : Certain types of affine motion in a Finsler manifold I, *Colloq. Math.*, 49 (2) (1985), 243-252.
- [2] Pandey, P. N. : Certain types of affine motion in a Finsler manifold II, *Colloq. Math.*, 53 (2) (1987), 219-227.
- [3] Pandey, P. N. : Certain types of affine motion in a Finsler manifold III, *Colloq. Math.*, 56 (2) (1988), 333-340.
- [4] Pandey, P. N. : Certain types of projective motions in a Finsler manifold, *Atti Accad. Peloritana die pericolanti cl. Sci. Fis. Math. Nat.*, 60 (1982/83), 287-300.
- [5] Pandey, P. N. : Certain types of projective motions in a Finsler manifold II, *Atti della Accad. Delle Scienze di Torino*, 120 (1986), 168-178.
- [6] Pandey, P. N. : On Birecurrent affine motion in a Finsler manifold, *Acta Math. Hungar.*, 45 (34) (1985), 251-260.
- [7] Pandey, P. N. and Dwivedi, V. J. : On Curvature Collineation in an NP-Finsler space, *Proceedings of the 3rd Conference of International Academy of Physical Sciences*, (1999), 201-213.
- [8] Rund, H. : *The differential geometry of Finsler spaces*, Springer - Verlag: Berlin, (1959).

- [9] Yano, K. : Theory of Lie derivative and its applications, North-Holland Publishing co., Amsterdam, (1957).
- [10] Pandey, P. N. : On NPR-Finsler manifolds, *Ann. Fac. Sci. Univ. Nat. Zaire (Kinshasa)*, 6 (1-2) (1980), 65-77.
- [11] Singh, U. P. and Singh, A. K. : On the N-curvature collineation in Finsler space, *Annales Soc. Sci. Bruxelles*, 95 (1981), 69-77.
- [12] Singh, U. P. and Singh, A. K. : On the N-curvature collineation in Finsler space II, *Indian J. Pure Appl. Math.*, 12 (1981), 1208-1212.