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Abstract

In the present paper, we study torse-forming projective motion in an NP —
F,,. We obtain the necessary and sufficient condition for the torse-forming pro-
jective motion in an NP — F, to be an affine motion. We deduce a neces-
sary condition for the torse-forming projective motion to be an N-curvature
collineation. Further, we study contra affine motion, concurrent affine motion
and special concircular affine motion in an N P — F;,. We show that every contra
as well as concurrent vector field generates an affine motion but a special concir-
cular vector field does not. We deduce that every contra vector field as well as
concurrent vector field generates projective motion and N-curvature collineation
inan NP — F,.

Keywords : Torse-forming projective motion, N-curvature collineation, contra
affine motion, concurrent affine motion and special concircular affine motion.
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1. Introduction

P. N. Pandey [1-6] discussed the infinitesimal transformation generated by
contra vector field, concurrent vector field, special concircular vector field, con-
circular vector field, torse-forming vector field and birecurrent vector field in a
Finsler space. In these papers, he established that a contra vector field as well
a concurrent vector field always generates an affine motion but a special concir-
cular vector field cannot generate an affine motion in a general Finsler space.
He further obtained the necessary and sufficient condition for the concircular
vector field, torse-forming vector field and birecurrent vector field to generate
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an affine motion. Since every affine motion is curvature collineatiion, the contra
vector field and the concurrent vector field generate a curvature collineation. P.
N. Pandey and V. J. Dwivedi [7] proved that a transformation is an N-curvature
collineation if and only if it is a curvature collineation. Therefore, we may say
that the contra vector field and the concurrent vector field generate N- curvature
collineation. Also, every affine motion is a projective motion; therefore contra
vector field and concurrent vector field generate curvature collineation as well
as projective motion.

Let F,, be an n-dimensional Finsler manifold of class at least C® equipped
with a metric function F satisfying the requisite conditions [8]. Let g;;, Gék
and H;k ,, be the components of the corresponding metric tensor, Berwald’s con-
nection parameters and components of Berwald curvature tensor respectively.
The curvature tensor HJz i, 18 skew-symmetric in its first two lower indices and
positively homogeneous of degree zero in #". From this tensor we deduce the
following tensor and vector fields:

(C) Hkh = H?kh’ (d) Hk = H’;Lk‘

1

(1.1)

The Berwald covariant derivative of an arbitrary tensor sz for Berwald’s con-
nection parameters is defined as

ByT! = OxT! — (0, T))Gr i+ T] Gl — TiGh ., O = aik’ Oy = air‘ (1.2)
The covariant derivative gives rise to the following commutation formulae

B;ByT}, — ByB;T}, = Ty Hiy.,. — TiH .y — (0,T5)HJ ., (1.3)

0;BT;, — Broj T, = T3 Gy — T,GY o (1.4)

where G; Eh = 5hG§ - The partial derivatives of Berwald’s connection parame-
ters G’; ;. are the components of a tensor and satisfy

Glpi = 0. (1.5)

Yano [9] defined normal projective connection coefficients H};h by

i;’l

I}, = Giy, — mGZhr- (1.6)
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The partial derivative of H};h with respect to &7, being denoted by H;kh, consti-
tutes a tensor which satisfies the following;:

(a) Hé‘kh = Héhkz? (b) Hém = G;kw (c) I, @7 =0, (L)
(d) I, = n—‘rlekh’ (e) 1T khi - nﬁ-l }”m-

The normal projective covariant derivative of a vector field X? defined by

0

VX' = 9, X7 — (&Xi) " + XMy 0= 5. (1.8)

gives rise to the following commutation formulae
ViViX' = ViV, X7 = XTNY, — (a X ) NI, (1.9)
OVipX' — Vidi X' = XTI, — (a'TXi) Iy ", (1.10)

where N ;kh are components of the normal projective curvature tensor. This ten-
sor is skew-symmetric in its first two lower indices and positively homogeneous
of degree zero in &". The tensor Ny, defined by

Nin = Niys (1.11)
satisfies
(@) Njy=—Ngj,=—Njn,
(b) N;kl = Nij — Nji, (1.12)

(¢) Nippi = Hip.
P. N. Pandey [10] established the following relationship between the normal
projective curvature tensor NV Zkh and the Berwald curvature tensor H

i

Nl:kh = Hlkh 8h

; i (1.13)

jkT

The normal projective covariant derlvatlve and Berwald covariant derivative of
a vector field X* are related as

ViX' = Bp X' — X' — G,m (1.14)

The space F;,, with normal projective connection Hkh is called normal projective
Finsler space or NP-Finsler space which is denoted by NP — F,.

Let us consider an infinitesimal transformation
= o'+ ev'(z?), (1.15)

where v*. is a contravariant vector field and € is an infinitesimal constant.
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The Lie-derivative of an arbitrary tensor T; and the connection coefficients
H;-k for the above transformation are respectively given by

£T! = "V, T} — Tyl + TV + (9,THV'd® (1.16)
and
LT, = V; Vo' + Njjo" + 10, Vo'l (1.17)
The operator £ commutes with the operators V; and ) according as
(£V1=Vi£) T}y, = (£10y) Tjy, — (£105) Ty, — (£103) T, (1.18)
OLQ— £,Q =0, (1.19)

where () is any geometrical object such as vector, tensor, scalar or connection
coeflicients.

The Lie-derivative of the normal projective curvature tensor N;k », expressed
in the form

Vi (£115,) = V; (£10,) = £Nip, + (£10,,) &1L, — (£105,,) &y, (1.20)

In an NP —F,,, the vector field v* is called contra, concurrent, torse forming
and special concircular according as it satisfies

(a) Vo' =0,
(b) V' = edi,

. . . . 1.21
(c) Vo' = pgv' + pdy, p=pz) (1.21)
(d) Viv' = pdy, p = p(z")

respectively, where ¢ is a constant and uy, are components of a non-zero covariant
vector field.

In a Finsler space F,,, the vector field v* is called contra, concurrent, torse
forming and special concircular according as it satisfies

(a) Bpv' =0,
(b) B = cdi,

. L . 1.22
(©) Bu' =i+ o8 p=pla) (1.22)
(d) Byv' = pdy, p=p(z')

respectively, where ¢ and pj are the same as discussed above.
2. Projective Motion

The infinitesimal transformation (1.15) is called a projective motion if it
satisfies
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L1015, = il + p;oj., (2.1)
where, p; = ) ;ip, p being a scalar function positively homogeneous of degree one
in ©%’s. Due to the homogeneity of p in &'’s, we have

pjd’ =p. (2.2)
The transformation (1.15) is called an affine motion if and only if
£115), = 0. (2.3)

Thus, a projective motion is an affine motion if p vanishes.
3. Curvature Collineation

An infinitesimal transformation is said to be a curvature collineation or
Ricci curvature collineation if
£HY, =0, (3.1)
or
£Hy, = 0. (3.2)
U. P. Singh and A. K. Singh [11] defined the N-curvature collineation as an infin-

itesimal transformation with respect to which the normal projective curvature
tensor N]’:kh is Lie-invariant, i.e.

£N} = 0. (3.3)
They [12] also defined N-Ricci curvature collineation which is characterized by
£LNpp = 0. (3.4)

P. N. Pandey and V. J. Dwivedi [7] proved that an infinitesimal transformation
is an N-curvature collineation if and only if it is a curvature collineation.

4. Torse Forming Projective Motion in an NP — F,

Let us consider a torse forming vector field v*(2/) in an NP — F,,. Then it
satisfies (1.21c). If we differentiate (1.21 c) partially with respect to 2" and use
the commutation formula (1.10), we have

V' g = (3huk> o', (4.1)
Transvecting (4.1) by #* and using (1.7a) and (1.7¢), we obtain

UTG?Llrm X A ki
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P. N. Pandey [4] proved a Lemma which states that av’ + bi' = 0 implies
a =b=0. In view of this Lemma, the last expression provides

"G . )
(a) 7}”"17" =0 and (b) (O ) 2F = 0. (4.2)

(4.2b) leads to Oy = pn, where p = pgi®.
Using (1.14) for v® in (1.21c), we get
Byv' — vrmem = ppv" + pdy. (4.3)
Transvecting (4.3) by #* and using (1.5), we have
Bpv'i* = ' + pil. (4.4)

Differentiating (4.4) partially with respect to 2" and using (1.4) and (1.5), gives
(1.22¢). Thus (1.21c) implies (1.22¢).

Conversely, if v¢(z7) is a torse forming vector field in a Finsler space Fj,
then it satisfies (1.22c). Differentiating (1.22 ¢) partially with respect to & and
using the commutation formula (1.10), we have

0" Gl = (3hﬂk> v (4.5)
Transvecting (4.5) by ©* and using the fact that v’ # 0, we obtain
(Bni) 3 =0,
which leads to
Ontt = ih, (4.6)
where p = psa®.
Thus, we may write
Onttke = Hh k- (4.7)
In view of (4.7), (4.5) takes the form
V Gl = pini0". (4.8)

Using (4.8) in (1.14) for v*, we get
. . 'i
Vit = Byv' — 0" —— i,

n+1
which in view of (1.22¢), gives
Viv' = ' 0y, — —— " 4.9
WU = V" PO — kv (4.9)
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Since p,, # 0, in general, we may say that

Theorem 4.1. A torse forming vector field v'(27) in an NP — F, remains
torse-forming in a Finsler space but converse is not true in general.

Let us consider an NP — F), admitting a projective motion generated by a
torse forming vector field v* characterized by (1.21c).

Operating the equation (1.21c) by the operator£, and noting that the
vector field v* is Lie-invariant with respect to the infinitesimal transformation
generated by it, we find

LVt = (£ pg) v' + £ pdi. (4.10)

In view of equation (1.18) and (2.1), the equation (4.10) may be written as
V" (pkdy + prdy) = (£ i) v' + £ pd. (4.11)
Transvecting (4.11) by 2, we have
(Lp=p)v' +(£Lp—po")i' =0, (4.12)
where p1 = psi®. Since av® + bi’ = 0 implies a = b = 0 (see [4]), (4.12) gives
(@) £u=p, (b) £p=p" (4.13)
This leads to

Theorem 4.2. The condition (4.13 a) and (4.13 b) are true in an NP — F,,
admitting a torse forming projective motion characterized by (1.15), (2.1) and
(1.21c).

We know that a projective motion is an affine motion if and only if the
scalar function p vanishes identically. Therefore, in view of (4.13 a), we may
conclude that £ p = 0 is necessary and sufficient for a torse forming projective
motion to be an affine motion in an NP — F,,. Differentiating (1.21 c) partially
with respect to i/ and using the commutation formula (1.18), we get

V"I, = (39‘/%) o'+ (@‘P) 3 (4.14)
Transvecting (4.14) by #* and using (1.7 a) and (1.7¢), we have
"GP

(H@M)M+<@p—7Hﬂﬁ>ﬁ:0. (4.15)
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Since av® + bi’ = 0 implies [4] a = b = 0, (4.15) gives
s . un G
(a) "0jpur =0, (b) Ojp= 1 (4.16)
Equation (4.16 a) implies 3]'# = pj, where p = pe®. In view of (4.2a),
(4.16b) implies that 3j p =0, i.e. the scalar p is at most a function of position
coordinates only. Since the operator £ and , are commutative, £ g = 0 implies
£ = 0. Also the transvection of £ pj, = 0 by @* implies £y = 0. Thus, the
condition £ pu = 0 and £ pp = 0 are equivalent. Therefore £ py = 0 is necessary
and sufficient for the torse forming projective motion to be an affine motion.
This leads to

Theorem 4.3. The condition £ up = 0 is necessary and sufficient for the torse
forming projective motion in an NP — F,, to be an affine motion.

Since every affine motion is curvature collineation and every curvature
collineation is N- curvature collineation [7], we have

Corollary 4.1. The condition £ u; = 0 is necessary for the torse forming
projective motion in an NP — F;, to be an N- curvature collineation.

5. Some Lemmas

In this section, we shall show that the notions of Contra and Concurrent
vector fields in a Finsler space are equivalent to the notions of those in an
NP - F,.

Lemma 5.1. The vector field v*(27) is a contra vector field in a Finsler space
F,, if and only if it is a contra vector field in an NP — F),, i.e. (1.21 a) < (1.22

a).

Proof. Let vi(z/) is a contra vector field in an NP — F},, then it satisfies
Equation (1.21 a). Using Equation (1.21 a) in (1.14) for v*(z7), we get

o2

nL_HGgm"l'

Transvecting this by ©* and using (1.5), we have i*Byv’ = 0. Differentiating
¥ Byv' = 0 partially with respect to &" and using the commutation formula
(1.4), we have (1.22 a).

Byvt = o"

Conversely, suppose that v’(z7) is a contra vector field in a Finsler space, then it
satisfies (1.22a). Differentiating partially (1.22 a) with respect to & and using
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the commutation formula (1.4), we get v"GY,;, = 0. Using this and (1.22 a) in
(1.14) for v*(27), we have (1.21 a).

Lemma 5.2. The vector field v*(27) is a concurrent vector field in a Finsler
space F,, if and only if it is a concurrent vector field in an NP — F,,, i.e. (1.21
b) < (1.22 b).

Proof. Let v'(27) is a concurrent vector field in an NP — F,,, then it satisfies
Equation (1.21b). Using Equation (1.21 b) in (1.14) for v*(27), we get

A
z !

céy, = Bpv' —o"
n

Transvecting this by &* and using (1.5), we have ci’ = 2% Byv’. Differentiating
ci' = &% Byv' partially with respect to #" and using the commutation formula
(1.4), we have (1.22 b).

Conversely, suppose that v*(z’) is a concurrent vector field in a Finsler
space, then it satisfies (1.22 b). Differentiating partially (1.22 b) with respect
to 2" and using the commutation formula (1.4), we get v" Gl = 0. Using this
and (1.22 b) in (1.14) for v’(z7), we have (1.21 b).

6(a) Contra Affine Motion in an NP — F,

Let us consider an infinitesimal transformation generated by contra vector
field v'(27) characterized by (1.21 a). By Lemma 5.1, Equation (1.21 a) implies
(1.22a). Differentiating (1.22a) covariantly with respect to 7, we have

B;Bv' = 0. (6.1)
Taking skew-symmetric part of (6.1) and using (1.3), we have

Hip o™ =0. (6.2)

P. N. Pandey [1] proved that H;krv’” = 0 and Hﬁjkv’” = 0 are equivalent.
Therefore, Equation (6.2) implies

L = 0. (6.3)
Transvecting (1.13) by v" and using (6.3), we get
N} o™ =0. (6.4)

Now, differentiating (1.21 a) covariantly with respect to i/, we have

V;Viv' = 0. (6.5)
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Using (1.21 a), (6.4) and (6.5) in (1.17), we get £H§-k = 0. Hence the infinites-
imal transformation considered is an affine motion in an NP — F,,. Thus, we
obtain

Theorem 6.1. Every contra vector generates an affine motion in an NP — F,,.

Every affine motion is a projective motion and by Theorem 6.1, every contra
vector field generates an affine motion. Thus, we have

Corollary 6.1. Every contra vector field generates a projective motion in an
NP - F,.

Every contra vector field generates an affine motion i.e. £H;.k = 0. This
implies ,,€N,ijh =0, by (1.20). Thus, we may conclude

Corollary 6.2. Every contra vector field generates N- curvature collineation
inanNP — F,.

6.(b) Concurrent Affine Motion in an NP — F,

Let us consider an infinitesimal transformation generated by concurrent
vector field v'(27) characterized by (1.21 b). By Lemma 5.2, Equation (1.21
b) implies (1.22b). Differentiating (1.22 b) covariantly with respect to i/, we
have (6.1). Taking skew-symmetric part of (6.1) and using (1.3), we have (6.2)
and hence (6.3) as H}krv’" = 0 and Hijkvr = 0 are equivalent [1]. Therefore,
Equation (6.2) implies (6.3). Transvecting (1.13) by v" and using (6.3), we get
(6.4). Now, differentiating (1.21 b) covariantly with respect to i yields (6.5).
Using (1.7c), (1.21b), (6.4) and (6.5) in (1.17), we get £H§-k = 0. Hence the
infinitesimal transformation considered is an affine motion in an N P— F,,. Thus,
we have

Theorem 6.2. Every concurrent vector field generates an affine motion in an
NP — F,.

Every affine motion is a projective motion and by Theorem 6.2, every con-
current vector field generates an affine motion. Thus, we have

Corollary 6.3. Every concurrent vector field generates a projective motion.

Every concurrent vector field generates an affine motion i.e. .£H§k = 0.
This implies ’ENlijh =0, by (1.20). Thus, we may conclude
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Corollary 6.4. Every concurrent vector field generates N-curvature collineation
inan NP — F,.

6.(c) Special Concircular Affine Motion in an NP — F,

Let us consider an NP — F,, admitting an infinitesimal transformation
generated by a special concircular vector field characterized by (1.21d). If this
transformation is an affine motion, we have £H§.k = 0, which by (1.17) and
(1.21d) gives

V;pdi + Nj o™ =0. (6.6)
Transvecting (6.6) by #* and using (1.12c), we have
V;pi' + Hj " =0. (6.7)

Transvecting (6.7) by y; and using i'y; = F? and H}Uyl = 0, we have F2Vp =
0, which implies Vjp = 0. Thus we get a contradiction. Hence, we obtain

Theorem 6.3. An infinitesimal transformation generated by a special concir-
cular vector field cannot be an affine motion in an NP — F,,.
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