

J. T. S.

Vol. 6 No.1 (2012), pp.93-103

On Conservative C-Bochner Curvature Tensor in trans-Sasakian Manifold admitting Semi-symmetric metric Connection

Venkatesha, C. S. Bagewadi, K. T. Pradeep Kumar and S. Lokesh

Department of Mathematics
Kuvempu University, Shankaraghata - 577 451,
Shimoga, Karnataka, INDIA
e-mail:vensmath@gmail.com
(Received: 4 May, 2011)

(Dedicated to Prof. K. S. Amur on his 80th birth year)

Abstract

The paper deals with the study on conservative C-Bochner curvature tensor in a trans-Sasakian manifold admitting semi-symmetric metric connection.

Key Words : Conservative, trans-Sasakian manifold, Einstein.

2000 AMS Subject Classification : 53C05, 53C20, 53C25.

1. Introduction

In 1924, Friedman and Schouten [8] introduced the notion of semi-symmetric linear connection on a differentiable manifold. Then in 1932, Hayden [10] introduced the idea of metric connection with a torsion on a Riemannain manifold. A systematic study of semi-symmetric metric connection on a Riemannain manifold has been given by Yano [14] in 1970 and later studied by K.S.Amur and S.S.Pujar, [1] C.S.Bagewadi, [2] U.C.De et al, [7] Sharafuddin and Hussain [13] and others.

The authors U.C.De and Absos Ali Shaikh, [7] C.S.Bagewadi and Venkatesha, [4] have obtained results on the conservativeness of different curvature tensors like projective, pseudo projective, conformal in K - contact and trans-Sasakian manifolds. The authors C.S. Bagewadi, D.G. Prakasha and Venkatesha [3] have extended the above study to trans-Sasakian manifolds admitting semi-symmetric metric connection.

In this paper we study conservative C-Bochner curvature tensor in a trans-Sasakian manifold admitting semi-symmetric metric connection and obtain some results.

2. Preliminaries

Let M^n be an almost contact metric manifold [5] with an almost contact metric structure (ϕ, ξ, η, g) , where ϕ is a $(1, 1)$ tensor field, ξ is a vector field, η is a 1-form and g is a compatible Riemannian metric such that

$$\phi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad \phi(\xi) = 0, \quad \eta \cdot \phi = 0, \quad (2.1)$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad (2.2)$$

$$g(X, \phi Y) = -g(\phi X, Y), \quad g(X, \xi) = \eta(X), \quad (2.3)$$

for all $X, Y \in TM^n$.

An almost contact metric structure (ϕ, ξ, η, g) on M^n is called a trans-Sasakian structure [11] if $(M^n \times R, J, G)$ belongs to the class w_4 , [9] where J is the almost complex structure on $M^n \times R$ defined by $J(X, \lambda d/dt) = (\phi X - \lambda \xi, \eta(X)d/dt)$ for all vector fields X on M^n and smooth functions λ on $M^n \times R$ and G is the product metric on $M^n \times R$. This may be expressed by the condition [6]

$$(\nabla_X \phi)Y = \alpha(g(X, Y)\xi - \eta(Y)X) + \beta(g(\phi X, Y)\xi - \eta(Y)\phi X), \quad (2.4)$$

for some smooth functions α and β on M^n , and we say that the trans-Sasakian structure is of type (α, β) .

Let M^n be a trans-Sasakian manifold. From (2.4) it is easy to see that

$$\nabla_X \xi = -\alpha \phi X + \beta(X - \eta(X)\xi), \quad (2.5)$$

$$(\nabla_X \eta)Y = -\alpha g(\phi X, Y) + \beta g(\phi X, \phi Y). \quad (2.6)$$

In an n -dimensional trans-Sasakian manifold, we have

$$R(\xi, X)\xi = (\alpha^2 - \beta^2 - \xi\beta)(\eta(X)\xi - X), \quad (2.7)$$

$$2\alpha\beta + \xi\alpha = 0, \quad (2.8)$$

$$S(X, \xi) = ((n-1)(\alpha^2 - \beta^2) - \xi\beta)\eta(X) - (n-2)X\beta - (\phi X)\alpha. \quad (2.9)$$

Further in a trans-Sasakian manifold of type (α, β) we have

$$\phi(grad\alpha) = (n-2)grad\beta. \quad (2.10)$$

Using (2.10) the equations (2.7) and (2.9) reduces to

$$R(\xi, X)\xi = (\alpha^2 - \beta^2)(\eta(X)\xi - X), \quad (2.11)$$

$$S(X, \xi) = (n - 1)(\alpha^2 - \beta^2)\eta(X). \quad (2.12)$$

In this paper we study trans-Sasakian manifold under the condition (2.10).

Let (M^n, g) be an n -dimensional Riemannian manifold of class C^∞ with metric tensor g and ∇ be the Levi-Civita connection on M^n . A linear connection $\tilde{\nabla}$ on (M^n, g) is said to be semi-symmetric [14] if the torsion tensor T of the connection $\tilde{\nabla}$ satisfies

$$T(X, Y) = \pi(Y)X - \pi(X)Y, \quad (2.13)$$

where π is a 1-form on M^n with the associated vector field ρ , i.e. $\pi(X) = g(X, \rho)$ for any differentiable vector field X on M^n .

A semi-symmetric connection $\tilde{\nabla}$ is called semi-symmetric metric connection [10] if $\tilde{\nabla}g = 0$.

In an almost contact manifold, semi-symmetric metric connection is defined by identifying the 1-form π of (2.13) with the contact form η , i.e. by setting [13]

$$T(X, Y) = \eta(Y)X - \eta(X)Y, \quad (2.14)$$

with ξ as associated vector field. i.e., $g(X, \xi) = \eta(X)$.

The relation between the semi-symmetric metric connection $\tilde{\nabla}$ and the Levi-Civita connection ∇ of M^n has been obtained by K.Yano, [14] which is given by

$$\tilde{\nabla}_X Y = \nabla_X Y + \eta(Y)X - g(X, Y)\xi. \quad (2.15)$$

Further a relation between the curvature tensor R and \tilde{R} of type $(1, 3)$ of the connections ∇ and $\tilde{\nabla}$ respectively are given by

$$\begin{aligned} \tilde{R}(X, Y)Z &= R(X, Y)Z - \tilde{\alpha}(Y, Z)X + \tilde{\alpha}(X, Z)Y \\ &\quad - g(Y, Z)FX + g(X, Z)FY, \end{aligned} \quad (2.16)$$

where $\tilde{\alpha}$ is a tensor field of type $(0, 2)$ defined by

$$\begin{aligned} \tilde{\alpha}(Y, Z) &= g(FY, Z) = (\nabla_Y \eta)(Z) - \eta(Y)\eta(Z) + \frac{1}{2}\eta(\xi)g(Y, Z), \\ &= (\tilde{\nabla}_Y \eta)(Z) - \frac{1}{2}\eta(\xi)g(Y, Z), \end{aligned} \quad (2.17)$$

for any vector fields Y, Z and for a tensor field F of type $(1, 1)$.

From (2.16), it follows that

$$\tilde{S}(Y, Z) = S(Y, Z) - (n-2)\tilde{\alpha}(Y, Z) - \tilde{A} \cdot g(Y, Z), \quad (2.18)$$

where \tilde{S} denotes the Ricci tensor with respect to $\tilde{\nabla}$, $\tilde{A} = \text{Tr} \cdot \tilde{\alpha}$.

Differentiating (2.18) covariantly with respect to X , we obtain

$$\begin{aligned} (\tilde{\nabla}_X \tilde{S})(Y, Z) &= (\nabla_X S)(Y, Z) - (n-2)(\nabla_X \tilde{\alpha})(Y, Z) - \eta(Y)S(X, Z) \\ &\quad + (n-2)\eta(Y)\tilde{\alpha}(X, Z) + g(X, Y)S(\xi, Z) - (n-2)g(X, Y)\tilde{\alpha}(\xi, Z) \\ &\quad - \eta(Z)S(X, Y) + (n-2)\eta(Z)\tilde{\alpha}(Y, X) + g(X, Z)S(Y, \xi) \\ &\quad - (n-2)g(X, Z)\tilde{\alpha}(Y, \xi). \end{aligned} \quad (2.19)$$

From (2.19), it follows that

$$\tilde{\nabla}_X \tilde{r} = d\tilde{r}(X) = \nabla_X r - (n-2)(\nabla_X \tilde{A}). \quad (2.20)$$

3. Some Basic Results

Theorem 3.1. For a trans-Sasakian manifold M^n , $n > 1$ under the condition (2.10), we have

$$\begin{aligned} [(\nabla_\xi S)(Y, Z) - (\nabla_Y S)(\xi, Z)] &= \beta S(Y, Z) - (n-1)(\alpha^2 - \beta^2)\beta g(Y, Z) \\ &\quad - (n-1)(\alpha^2 - \beta^2)\alpha g(Y, \phi Z) + \alpha S(Y, \phi Z). \end{aligned} \quad (3.1)$$

Proof. For a symmetric endomorphism Q of the tangent space at a point of M^n , we express the Ricci tensor S as

$$S(X, Y) = g(QX, Y). \quad (3.2)$$

Further, it is known that [6]

$$(L_\xi g)(X, Y) = 2\beta[g(X, Y) - \eta(X)\eta(Y)], \quad (3.3)$$

for all X and Y , where L is the Lie derivation.

In a trans-Sasakian manifold, from (3.2) and (3.3) we have

$$(L_\xi S)(X, Y) = 2\beta S(X, Y) - 2\beta(n-1)(\alpha^2 - \beta^2)\eta(X)\eta(Y), \quad (3.4)$$

$$(L_\xi \tilde{\alpha})(X, Y) = 2\beta \tilde{\alpha}(X, Y) + \beta \eta(X)\eta(Y). \quad (3.5)$$

Consider

$$\begin{aligned} (\nabla_\xi S)(Y, Z) &= \xi S(Y, Z) - S(\nabla_\xi Y, Z) - S(Y, \nabla_\xi Z) \\ &= (L_\xi S)(Y, Z) - S(\nabla_Y \xi, Z) - S(Y, \nabla_Z \xi). \end{aligned}$$

Using (2.5), (2.12) and (3.4) in the above equation, we obtain

$$(\nabla_\xi S)(Y, Z) = 0. \quad (3.6)$$

Consequently,

$$(\nabla_\xi r)(Y, Z) = dr(\xi) = 0. \quad (3.7)$$

Also, we know that

$$(\nabla_Y S)(\xi, Z) = YS(\xi, Z) - S(\nabla_Y \xi, Z) - S(\xi, \nabla_Y Z).$$

By virtue of (2.5) and (2.12), then using (2.6) above equation takes the form

$$\begin{aligned} (\nabla_Y S)(\xi, Z) &= (n-1)(\alpha^2 - \beta^2)\beta g(Y, Z) - \beta S(Y, Z) \\ &\quad + (n-1)(\alpha^2 - \beta^2)\alpha g(Y, \phi Z) - \alpha S(Y, \phi Z). \end{aligned} \quad (3.8)$$

We have

$$\begin{aligned} (\nabla_\xi \tilde{\alpha})(Y, Z) &= \xi \tilde{\alpha}(Y, Z) - \tilde{\alpha}(\nabla_\xi Y, Z) - \tilde{\alpha}(Y, \nabla_\xi Z) \\ &= (L_\xi \tilde{\alpha})(Y, Z) - \tilde{\alpha}(\nabla_Y \xi, Z) - \tilde{\alpha}(Y, \nabla_Z \xi). \end{aligned}$$

Using (2.17) and (3.5) in above equation, we obtain

$$(\nabla_\xi \tilde{\alpha})(Y, Z) = 0. \quad (3.9)$$

Consequently,

$$(\nabla_\xi \tilde{A})(Y, Z) = d\tilde{A}(\xi) = 0. \quad (3.10)$$

We know that

$$(\nabla_Y \tilde{\alpha})(\xi, Z) = Y\tilde{\alpha}(\xi, Z) - \tilde{\alpha}(\nabla_Y \xi, Z) - \tilde{\alpha}(\xi, \nabla_Y \xi).$$

Using (2.17) in the above equation and simplifying we get

$$\begin{aligned} (\nabla_Y \tilde{\alpha})(\xi, Z) &= \alpha g(\phi Y, Z) + 2\alpha\beta g(\phi Y, Z) + [\alpha^2 - \beta(\beta + 1)](g(Y, Z) \\ &\quad - \eta(Y)\eta(Z)). \end{aligned} \quad (3.11)$$

4. Trans-Sasakian Manifold Admitting a Semi-symmetric metric Connection with $\text{Div } \tilde{B} = 0$

The C-Bochner curvature tensor with respect to semi-symmetric metric connection is given by

$$\begin{aligned}
\tilde{B}(X, Y)Z &= \tilde{R}(X, Y)Z + \frac{1}{n+3}[g(X, Z)\tilde{Q}Y - \tilde{S}(Y, Z)X - g(Y, Z)\tilde{Q}X \\
&\quad + \tilde{S}(X, Z)Y + g(\phi X, Z)\tilde{Q}\phi Y - \tilde{S}(\phi Y, Z)\phi X - g(\phi Y, Z)\tilde{Q}\phi X \\
&\quad + \tilde{S}(\phi X, Z)\phi Y + 2\tilde{S}(\phi X, Y)\phi Z + 2g(\phi X, Y)\tilde{Q}\phi Z + \eta(Y)\eta(Z)\tilde{Q}X \\
&\quad - \eta(Y)\tilde{S}(X, Z)\xi + \eta(X)\tilde{S}(Y, Z)\xi - \eta(X)\eta(Z)\tilde{Q}Y] \\
&\quad - \frac{\tilde{D} + n - 1}{n+3}[g(\phi X, Z)\phi Y - g(\phi Y, Z)\phi X + 2g(\phi X, Y)\phi Z] \\
&\quad + \frac{\tilde{D}}{n+3}[\eta(Y)g(X, Z)\xi - \eta(Y)\eta(Z)X + \eta(X)\eta(Z)Y \\
&\quad - \eta(X)g(Y, Z)\xi] - \frac{\tilde{D} - 4}{n+3}[g(X, Z)Y - g(Y, Z)X], \tag{4.1}
\end{aligned}$$

where, $\tilde{D} = \frac{(n-1+\tilde{r})}{(n+1)}$

Differentiating (4.1) covariantly followed by contraction and simplification we get $\text{div}\tilde{B}$. By virtue of conservativeness of \tilde{B} i.e. $\text{div}\tilde{B} = 0$ and using (2.17), (2.18), (2.19) and (2.20)

we obtain,

$$\begin{aligned}
&\frac{n+2}{n+3}[(\nabla_X S)(Y, Z) - (\nabla_Y S)(X, Z) - (n-2)(\nabla_X \tilde{\alpha})(Y, Z) - \eta(Y)S(X, Z)] \\
&- (n-2)\eta(Y)\alpha g(\phi X, Z) + (n-2)\eta(Y)\beta g(\phi X, \phi Z) \\
&+ 2(n-2)\eta(Z)\alpha g(\phi X, Y) + g(X, Z)S(Y, \xi) \\
&+ (n-2)\eta(Y)g(X, Z) + (n-2)(\nabla_Y \tilde{\alpha})(X, Z) + \eta(X)S(Y, Z) \\
&+ (n-2)\eta(X)\alpha g(\phi Y, Z) - (n-2)\eta(X)\beta g(\phi Y, \phi Z) - g(Y, Z)S(X, \xi) \\
&- (n-2)\eta(X)g(Y, Z)] + \frac{1}{n+3}\left[\frac{1}{2}g(X, Z)\nabla_Y r - \frac{n-2}{2}g(X, Z)(\nabla_Y \tilde{A})\right. \\
&\quad \left.- \frac{1}{2}g(Y, Z)\nabla_X r + \frac{n-2}{2}g(Y, Z)(\nabla_X \tilde{A}) - g(\phi X, Z)(\nabla_{\phi Y} r)\right. \\
&\quad \left.+ (n-2)g(\phi X, Z)(\nabla_{\phi Y} \tilde{A}) - (\nabla_{\phi X} S)(\phi Y, Z) + (n-2)(\nabla_{\phi X} \tilde{\alpha})(\phi Y, Z)\right. \\
&\quad \left.+ (n-2)\eta(Z)\alpha g(\phi^2 Y, \phi X) - g(\phi X, Z)S(\phi Y, \xi) - g(\phi Y, Z)(\nabla_{\phi X} r)\right. \\
&\quad \left.+ (n-2)g(\phi Y, Z)(\nabla_{\phi X} \tilde{A}) + (\nabla_{\phi Y} S)(\phi X, Z)\right. \\
&\quad \left.- (n-2)(\nabla_{\phi Y} \tilde{\alpha})(\phi X, Z) - (n-2)\eta(Z)\alpha g(\phi^2 X, Y) + g(\phi Y, Z)S(\phi X, \xi)\right. \\
&\quad \left.+ 2(\nabla_{\phi Z} S)(\phi X, Y) - 2(n-2)(\nabla_{\phi Z} \tilde{\alpha})(\phi X, Y) + 2g(\phi Z, \phi X)S(\xi, Y)\right. \\
&\quad \left.+ 2(n-2)\eta(Y)g(\phi Z, \phi X) - 2\eta(Y)S(\phi Z, \phi X) - 2(n-2)\eta(Y)g(\phi^2 X, \phi Z)\right]
\end{aligned}$$

$$\begin{aligned}
& + 2(n-2)\eta(Y)\beta g(\phi^2 X, \phi^2 Z) + 2g(\phi Z, Y)S(\phi X, \xi) - 2g(\phi X, Y)(\nabla_{\phi Z} r) \\
& + (n-2)2g(\phi X, Y)(\nabla_{\phi Z} \tilde{A}) - (\nabla_{\xi} S)(X, Z)\eta(Y) + (n-2)(\nabla_{\xi} \tilde{\alpha})(X, Z)\eta(Y) \\
& + \frac{1}{2}\eta(Y)\eta(Z)\nabla_X r - \frac{n-2}{2}\eta(Y)\eta(Z)(\nabla_X \tilde{A}) + \eta(X)(\nabla_{\xi} S)(Y, Z) \\
& - (n-2)(\nabla_{\xi} \tilde{\alpha})(Y, Z)\eta(X) - \frac{1}{2}\eta(X)\eta(Z)\nabla_Y r + \frac{n-2}{2}\eta(X)\eta(Z)(\nabla_Y \tilde{A}) \\
& + \frac{1}{(n+1)(n+3)}[g(\phi X, Z)(\nabla_{\phi Y} r) - (n-2)g(\phi X, Z)(\nabla_{\phi Y} \tilde{A}) \\
& - g(\phi Y, Z)(\nabla_{\phi X} r) + (n-2)g(\phi Y, Z)(\nabla_{\phi X} \tilde{A}) + 2g(\phi X, Y)(\nabla_{\phi Z} r) \\
& - (n-2)2g(\phi X, Y)(\nabla_{\phi Z} \tilde{A})] + \frac{(\tilde{r}+n-1)}{(n+1)(n+3)}[\alpha g(Y, \phi X)\eta(Z) \\
& + \alpha g(Z, \phi X)\eta(Y) - \beta g(Z, X)\eta(Y) - g(Z, X)\eta(Y) - \alpha g(X, \phi Y)\eta(Z) \\
& - \alpha g(Z, \phi Y)\eta(X) + \beta g(Z, Y)\eta(X) + g(Z, Y)\eta(X)] \\
& + \frac{1}{(n+1)(n+3)}[g(X, Z)\eta(Y)(\nabla_{\xi} r) - (n-2)g(X, Z)\eta(Y)(\nabla_{\xi} \tilde{A}) \\
& - \eta(Y)\eta(Z)(\nabla_X r) + (n-2)\eta(Y)\eta(Z)(\nabla_X \tilde{A}) + \eta(X)\eta(Z)(\nabla_Y r) \\
& - (n-2)\eta(X)\eta(Z)(\nabla_Y \tilde{A}) - g(Y, Z)\eta(X)(\nabla_{\xi} r) + (n-2)g(Y, Z)\eta(X)(\nabla_{\xi} \tilde{A})] \\
& - \frac{1}{(n+1)(n+3)}[g(X, Z)(\nabla_Y r) - (n-2)g(X, Z)(\nabla_Y \tilde{A}) \\
& - g(Y, Z)(\nabla_X r) + (n-2)g(Y, Z)(\nabla_X \tilde{A})] = 0.
\end{aligned}$$

Now putting $X = \xi$ in the above equation and using (2.12), (3.6), (3.8), (3.9) and (3.11)

and on simplification we obtain

$$\begin{aligned}
& \frac{n+2}{n+3}[(n-2)\eta(Y)\eta(Z) - (n-1)(\alpha^2 - \beta^2)\beta g(Y, Z) + \beta S(Y, Z) \\
& - (n-1)(\alpha^2 - \beta^2)\alpha g(Y, \phi Z) + \alpha S(Y, \phi Z) + 2(n-2)\alpha g(\phi Y, Z) \\
& + 2(n-2)\alpha\beta g(\phi Y, Z) + (n-2)[\alpha^2 - \beta(\beta+1)](g(Y, Z) - \eta(Y)\eta(Z)) \quad (4.2) \\
& + S(Y, Z) - (n-2)\beta g(\phi Y, \phi Z) - (n-1)(\alpha^2 - \beta^2)g(Y, Z) - (n-2)g(Y, Z)] \\
& + \frac{(\tilde{r}+n-1)}{(n+1)(n+3)}[(\beta+1)(g(Y, Z) - \eta(Y)\eta(Z)) - \alpha g(Z, \phi Y)] = 0.
\end{aligned}$$

Replacing Z by ϕZ in (4.2) and on simplification we get

$$\begin{aligned}
& \frac{n+2}{n+3}[-(n-1)(\alpha^2 - \beta^2)\beta g(Y, \phi Z) + \beta S(Y, \phi Z) \\
& - (n-1)(\alpha^2 - \beta^2)\alpha g(Y, \phi^2 Z) + \alpha S(Y, \phi^2 Z) + 2(n-2)\alpha g(\phi Y, \phi Z)
\end{aligned}$$

$$\begin{aligned}
& +2(n-2)\alpha\beta g(\phi Y, \phi Z) + (n-2)[\alpha^2 - \beta(\beta+1)](g(Y, \phi Z)) + S(Y, \phi Z) \\
& -(n-2)\beta g(\phi Y, \phi^2 Z) - (n-1)(\alpha^2 - \beta^2)g(Y, \phi Z) - (n-2)g(Y, \phi Z)] \\
& + \frac{(\tilde{r}+n-1)}{(n+1)(n+3)}[(\beta+1)(g(Y, \phi Z) - \alpha g(\phi Y, \phi Z))] = 0. \tag{4.3}
\end{aligned}$$

Again replace Z by Y and Y by Z in (4.3), we get

$$\begin{aligned}
& \frac{n+2}{n+3}[-(n-1)(\alpha^2 - \beta^2)\beta g(Z, \phi Y) + \beta S(Z, \phi Y) \\
& -(n-1)(\alpha^2 - \beta^2)\alpha g(Z, \phi^2 Y) + \alpha S(Z, \phi^2 Y) + 2(n-2)\alpha g(\phi Z, \phi Y) \\
& + 2(n-2)\alpha\beta g(\phi Z, \phi Y) + (n-2)[\alpha^2 - \beta(\beta+1)](g(Z, \phi Y)) + S(Z, \phi Y) \\
& -(n-2)\beta g(\phi Z, \phi^2 Y) - (n-1)(\alpha^2 - \beta^2)g(Z, \phi Y) - (n-2)g(Z, \phi Y)] \\
& + \frac{(\tilde{r}+n-1)}{(n+1)(n+3)}[(\beta+1)(g(Z, \phi Y) - \alpha g(\phi Z, \phi Y))] = 0. \tag{4.4}
\end{aligned}$$

Now adding equations (4.3) and (4.4) and on simplification we have

$$\begin{aligned}
S(Y, Z) &= \left[(n-1)(\alpha^2 - \beta^2) + 2(n-2)(1+\beta) \right. \\
&- \left\{ \frac{(n-2)\{-2(n-1)\beta - n+2\} - 2n(\tilde{A}-1) + 2(\tilde{r}-1)}{2(n+1)(n+2)} \right\} g(Y, Z) \\
&+ \left[-2(n-2)(1+\beta) + \left\{ \frac{(n-2)\{-2(n-1)\beta - n+2\}}{2(n+1)(n+2)} \right. \right. \\
&\left. \left. - \frac{2n(\tilde{A}-1) + 2(\tilde{r}-1)}{2(n+1)(n+2)} \right\} \right] \eta(Y)\eta(Z).
\end{aligned}$$

This equation is of the form

$$S(Y, Z) = ag(Y, Z) + b\eta(Y)\eta(Z).$$

From this it follows that

$$\begin{aligned}
r_1 &= n(n-1)(\alpha^2 - \beta^2) + 2(n-2)(1+\beta)(n-1) \\
&- \left\{ \frac{(n-2)\{-2(n-1)\beta - n+2\} - 2n(\tilde{A}-1) + 2(\tilde{r}-1)}{2(n+1)(n+2)} \right\} (n-1) \tag{4.5}
\end{aligned}$$

$$\text{where } \tilde{r} = r - (n-1)(n-2)\beta - \left\{ \frac{n(n-2)}{2} \right\} + (n-2) - \tilde{A}n.$$

Theorem 4.2. If M^n be a trans-Sasakian manifold with the condition (2.10) admit semi-symmetric metric connection and let \tilde{B} denote C-Bochner curvature tensor with respect to this connection and $\text{div } \tilde{B} = 0$. Then the manifold is η -Einstein with respect to Levi-Civita connection.

5. Example

We consider 3-dimensional manifold $M = \{(x, y, z) \in R^3; z \neq 0\}$, where (x, y, z) are the standard co-ordinates in R^3 . Let $\{E_1, E_2, E_3\}$ be linearly independent global frame field on M given by

$$E_1 = z\left(\frac{\partial}{\partial x} + y\frac{\partial}{\partial z}\right), \quad E_2 = z\frac{\partial}{\partial y}, \quad E_3 = \frac{\partial}{\partial z}. \quad (5.1)$$

Let g be the Riemannian metric defined by $g = \frac{1}{z^2}[(1 - y^2 z^2)dx \otimes dx + dy \otimes dy + z^2 dz \otimes dz]$. Then (ϕ, ξ, η) is given by

$$\begin{aligned} \eta &= dz - ydx, \quad \xi = E_3 = \frac{\partial}{\partial z}, \\ \phi E_1 &= E_2, \quad \phi E_2 = -E_1, \quad \phi E_3 = 0. \end{aligned}$$

By definition of Lie bracket we have

$$[E_1, E_2] = yE_2 - z^2 E_3, \quad [E_1, E_3] = -\frac{1}{z}E_1, \quad [E_2, E_3] = -\frac{1}{z}E_2. \quad (5.2)$$

Let ∇ be the Levi-Civita connection with respect to the above metric g given by Koszula formula

$$\begin{aligned} 2g(\nabla_X Y, Z) &= X(g(Y, Z)) + Y(g(Z, X)) - Z(g(X, Y)) \\ &\quad - g(X, [Y, Z]) - g(Y, [X, Z]) + g(Z, [X, Y]). \end{aligned}$$

Then

$$\begin{aligned} \nabla_{E_1} E_3 &= -\frac{1}{z}E_1 + \frac{1}{2}z^2 E_2, \quad \nabla_{E_3} E_3 = 0, \quad \nabla_{E_2} E_3 = -\frac{1}{z}E_2 - \frac{1}{2}z^2 E_1, \\ \nabla_{E_2} E_2 &= yE_1 + \frac{1}{z}E_3, \quad \nabla_{E_1} E_2 = -\frac{1}{2}z^2 E_3, \quad \nabla_{E_2} E_1 = \frac{1}{2}z^2 E_3 - yE_2, \\ \nabla_{E_1} E_1 &= \frac{1}{z}E_3, \quad \nabla_{E_3} E_2 = -\frac{1}{2}z^2 E_1, \quad \nabla_{E_3} E_1 = \frac{1}{2}z^2 E_2. \end{aligned} \quad (5.3)$$

The tangent vectors X and Y to M are expressed as linear combination of E_1, E_2, E_3 , i.e., $X = a_1 E_1 + a_2 E_2 + a_3 E_3$ and $Y = b_1 E_1 + b_2 E_2 + b_3 E_3$, a_i, b_i are scalars. Clearly ϕ, ξ, η, g and X, Y satisfy equations (2.1), (2.2), (2.3) and (2.5) with $\alpha = -\frac{1}{2}z^2 \neq 0$ and $\beta = -\frac{1}{z} \neq 0$. Thus M is a trans-Sasakian manifold.

The Ricci tensor $S(X, Y)$ is given by

$$\begin{aligned} S(X, Y) &= \sum_{i=1}^3 g(R(X, E_i)E_i, Y) \\ &= g(R(X, E_1)E_1, Y) + g(R(X, E_2)E_2, Y) \\ &\quad + g(R(X, E_3)E_3, Y). \end{aligned} \quad (5.4)$$

The non vanishing components of the curvature tensors by virtue of (5.3) are given by

$$\begin{aligned}
 R(E_2, E_1)E_1 &= -\left(\frac{3}{4}z^4 + \frac{1}{z^2} + y^2\right)E_2 - yz^2E_3, \\
 R(E_3, E_1)E_1 &= -yz^2E_2 - \left(\frac{2}{z^2} - \frac{1}{4}z^4\right)E_3, \\
 R(E_1, E_2)E_2 &= -\left(\frac{3}{4}z^4 + \frac{1}{z^2} + y^2\right)E_1 - \frac{y}{z}E_3, \\
 R(E_3, E_2)E_2 &= -\frac{y}{z}E_1 - \left(\frac{2}{z^2} - \frac{1}{4}z^4\right)E_3, \\
 R(E_1, E_3)E_3 &= \left(\frac{1}{4}z^4 - \frac{2}{z^2}\right)E_1, \\
 R(E_2, E_3)E_3 &= -\left(\frac{2}{z^2} - \frac{1}{4}z^4\right)E_2.
 \end{aligned}$$

Using these in (5.4), we have

$$\begin{aligned}
 S(X, Y) &= -\left(\frac{1}{2}z^4 + \frac{2}{z^2} + y^2\right)g(X, Y) + \left(z^4 - \frac{1}{z^2} + y^2\right)\eta(X)\eta(Y) \\
 &\quad - [g(X, E_2)\eta(Y) + g(Y, E_2)\eta(X)]yz^2 - [g(X, E_1)\eta(Y) + g(Y, E_1)\eta(X)]\frac{y}{z}.
 \end{aligned}$$

Now using $X = E_1$, $Y = E_2$ and $Z = E_3$ in $\text{div}\tilde{B}$ we have

$$\begin{aligned}
 (\text{div}\tilde{B})(E_1, E_2)E_3 &= \frac{5}{6}\left[4y^2z^2 + z^6 + \frac{z^2}{4} + \frac{z}{2} + 2\alpha - \frac{7}{2}\right] \\
 &\quad + \frac{1}{6}\left[2y^2z^2 - z^6 - z^2 - \frac{y}{z^2} - \alpha + 2\right] + \frac{(r - \frac{2}{z} + \frac{3}{2} - 3\tilde{A})\alpha}{12}
 \end{aligned}$$

i.e. $(\text{div}\tilde{B})(E_1, E_2)E_3 \neq 0$, since the component $(\text{div}\tilde{B})(E_1, E_2)E_3$ of $(\text{div}\tilde{B})(X, Y)Z$, where $X = \sum_{i=1}^3 a_i E_i$, $Y = \sum_{j=1}^3 b_j E_j$ and $Z = \sum_{k=1}^3 c_k E_k$ is not zero.

Hence it is shown that if M is a generalized η -Einstein with respect to Levi-Civita connection then it is not C-Bochner conservative with respect to semi-symmetric metric connection. Hence the converse of Theorem 4.2 is not true.

REFERENCES

[1] Amur, K. S. and Pujar, S. S. : On Submanifolds of a Riemannian manifold admitting a metric Semi-symmetric connection, Tensor, N.S., 32 (1978), 35-38.

- [2] Bagewadi, C. S. : On totally real submanifolds of a Kahlerian manifold admitting Semi symmetric metric F-connection, Indian. J. Pure. Appl. Math., 13(5) (1982), 528-536.
- [3] Bagewadi, C. S., Prakasha, D. G. and Venkatesha : Conservative Projective Curvature Tensor On Trans-sasakian Manifolds With Respect To Semi-symmetric Metric Connection, An. *Şt. Univ. Ovidius Constanța*, 15(2) (2007), 5-18.
- [4] Bagewadi, C. S. and Venkatesha : Some curvature tensors on trans-Sasakian manifolds, *Turk. J. Math.*, 30 (2007), 1-11.
- [5] Blair, D. E. and Oubina, J. A. : Conformal and related changes of metric on the product of two almost contact metric manifolds, *Publ. Mat.* 34(1) (1990), 199-207.
- [6] Blair, D. E. : Contact manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509, Springer-Verlag, Berlin, 1976.
- [7] De, U. C. and Shaikh, Absos Ali : K -contact and Sasakian manifolds with conservative quasi-conformal curvature tensor, *Bull. Cal. Math. Soc.*, 89 (1997), 349-354.
- [8] Friedmann, A. and Schouten, J. A. : Über die geometric der holbsymmetrischen Übertragungen, *Math. Zeitschr.*, 21 (1924), 211-233.
- [9] Gray, A. and Hervella, L. M. : The sixteen classes of almost Hermitian manifolds and their linear invariants, *Ann. Mat. Pura Appl.*, 123(4) (1980), 35-58.
- [10] Hayden, H. A. : Subspaces of space with torsion, *Proc. Lon. Math. Soc.*, 34 (1932), 27-50.
- [11] Oubina, J. A. : New classes of almost contact metric structures, *Publ. Math. Debrecen.*, 32(3-4) (1985), 187-193.
- [12] Shaikh, A. A., Baishya, K. K. and Eysamin, S. : On D-homothetic deformation of trans-Sasakian manifolds, *Demonstratio Mathematica.*, 41(1) (2008), 171-188.
- [13] Sharfuddin, A. and Husain, S. I. : Semi-symmetric metric connections in almost contact manifolds, *Tensor, N. S.*, 30 (1976), 133-139.
- [14] Yano, K. : On Semi-symmetric metric connections, *Revue Roumaine de Math. Pures et Appliques*, 15 (1970), 1579-1586.