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Abstract

The geometry of laminar flow of an unsteady viscous liquid with uniform

distribution of dust particles through a channel having triangular cross-section

under the influence of time dependent pressure gradient has been considered.

The intrinsic decomposition of flow equations are carried out in Frenet frame

field system. Initially the fluid and dust particles are assumed to be at rest.

The exact solutions for velocities of fluid and dust particles are obtained using

variable separable and Laplace transform techniques. Further the skin friction at

the boundary plates are also calculated, and the changes in the velocity profiles

with s and n are shown graphically.

Key Words : Frenet frame field system; triangular cross-section, channel, lam-

inar flow, dusty fluid; velocity of dust phase and fluid phase.
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1. Introduction

Studies on the influence of the dust particles on viscous fluid flows are

of great technical importance in the fields of fluidization, electrostatic precip-

itation, polymer technology, combustion, use of dust in gas cooling systems,

centrifugal separation of matter from fluid, petroleum industry, purification of

crude oil and in the engineering problems concerned with atmospheric fallout,
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dust collection, nuclear reactor cooling, powder technology, acoustics, sedimen-

tation, performance of solid fuel rock nozzles, batch settling, rain erosion, guided

missiles and paint spraying etc.

The study of the motion of dusty viscous fluids has recently attracted by

many researchers, who has influenced by the publication of P.G.Saffman [14]

investigations, which reveal the effect of stability of the laminar flow of a dusty

gas in which the dust particles are uniformly distributed. Further, G. Rad-

hakrishnama Charya [11] has studied about the pulsatile flow of a dusty fluid

through a constricted channel. Michael et al. [9] investigated the motion of

dusty gas with uniform distribution of the dust particles occupied in the semi-

infinite space above a rigid plane boundary. C.B.Singh et al. [15] have discussed

the unsteady flow of an electrically conducting dusty viscous liquid through a

channel. E.Rukmangadachari et al. [12] have illustrated the solutions of dusty

viscous flow through a cylinder of rectangular cross-section under time depen-

dent pressure gradient and also [13] investigated dusty viscous flow through a

cylinder of triangular cross-section. Jagjit Pal Kaur et al. [7] have studied

an unsteady porous channel flow of a conducting fluid with suspended parti-

cles. N.C.Ghosh et al. [16] have obtained the analytical solutions for the dusty

visco-elastic fluid between two infinite parallel plates under the influence of time

dependent pressure gradient, using appropriate boundary conditions.

Frenet frames are a central construction in modern differential geometry,

in which structure is described with respect to an object of interest rather than

with respect to external coordinate systems. Some researchers like Kanwal [8],

Truesdell [17], Indrasena [6], Purushotham et al. [10], Bagewadi et al. [1],[2]

have applied differential geometry techniques to study the fluid flow. Further,

the authors [1], [2] have studied two-dimensional dusty fluid flow in Frenet frame

field system, which is one of the moving frame. Recently Gireesha et al. [4],[5]

have studied the flow of unsteady dusty fluid in different regions under varying

time dependent pressure gradients. The present work deals with the study of

flow of an unsteady dusty fluid through a channel having triangular cross-section

under the influence of pulsatile pressure gradient in frenet frame field system.

By considering the fluid and dust particles to be at rest initially, the analytical

expressions are obtained for velocities of both fluid and dust particles. Further

the skin friction at the boundary is calculated. The velocity profiles of both

fluid and dust phase are shown graphically for different time t.
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2. Equations of Motion

The equations of motion of unsteady viscous incompressible fluid with uni-

form distribution of dust particles are given by [14]:

For fluid phase

∇ · −→u = 0, (Continuity) (2.1)

∂−→u
∂t

+ (−→u · ∇)−→u = −1

ρ
∇p+ ν∇2−→u +

kN

ρ
(−→v −−→u ), (2.2)

(Linear Momentum)

For dust phase

∇ · −→v = 0, (Continuity) (2.3)

∂−→v
∂t

+ (−→v · ∇)−→v =
k

m
(−→u −−→v ) (Linear Momentum) (2.4)

We have following nomenclature:

−→u−velocity of the fluid phase, −→v −velocity of dust phase, ρ−density of the

gas, p−pressure of the fluid, N−number density of dust particles, ν−kinematic

viscosity, k = 6πaµ−Stoke’s resistance (drag coefficient), a−spherical radius of

dust particle, m−mass of the dust particle, µ−the co-efficient of viscosity of

fluid particles, t−time.

3. Franet frame field system

Let −→s ,−→n ,
−→
b be triply orthogonal unit vectors tangent, principal normal,

binormal respectively to the spatial curves of congruences formed by fluid phase

velocity and dusty phase velocity lines respectively as shown in the Figure-1.

Figure 1. Frenet Frame Field System



54 B. J. Gireesha, G. K. Ramesh, C. S. Bagewadi and Mahesha

Geometrical relations are given by Frenet formulae [3]

i)
∂−→s
∂s

= ks
−→n ,

∂−→n
∂s

= τs
−→
b − ks

−→s , ∂
−→
b

∂s
= −τs

−→n

ii)
∂−→n
∂n

= k′n
−→s , ∂

−→
b

∂n
= −σ′

n
−→s , ∂−→s

∂n
= σ′

n

−→
b − k′n

−→n

iii)
∂
−→
b

∂b
= k′′b

−→s , ∂−→n
∂b

= −σ′′
b
−→s , ∂−→s

∂b
= σ′′

b
−→n − k′′b

−→
b

iv) ∇.−→s = θns + θbs; ∇.−→n = θbn − ks; ∇.
−→
b = θnb (3.1)

where ∂/∂s, ∂/∂n and ∂/∂b are the intrinsic differential operators along fluid

phase velocity (or dust phase velocity ) lines, tangential, principal normal and

binormal. The functions (ks, k
′
n, k

′′
b ) and (τs, σ

′
n, σ

′′
b ) are the curvatures and

torsions of the above curves and θns and θbs are normal deformations of these

spatial curves along their principal normal and binormal respectively.

4. Formulation and Solution of the Problem

Let us consider an unsteady flow of an incompressible viscous fluid with

uniform distribution of dust particles through a channel having triangular cross

section. The flow is only due to the influence of pulsatile pressure gradient. Both

the fluid and the dust particle clouds are suppose to be static at the beginning.

The dust particles are assumed to be spherical in shape and uniform in size.

Figure 2. Geometry of the Flow.

The number density of the dust particles is taken as a constant throughout the

flow. As Figure-2 shows, the axis of the channel is along binormal direction and

the velocity components of both fluid and dust particles are respectively given

by:

−→u = ub
−→
b , −→v = vb

−→
b , (4.1)
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where (us, un, ub) and (vs, vn, vb) are velocity components of fluid and dust par-

ticles respectively.

By virtue of system of equations (3.1) the intrinsic decomposition of equa-

tions (2.2) and (2.4) using equation (4.1) give the following forms:

0 = −1

ρ

∂p

∂s
+ ν

(
τsksub − 2σ′

n

∂ub
∂n

)
(4.2)

0 = −1

ρ

∂p

∂n
+ ν

(
σ′
nk

′
nub − 2τs

∂ub
∂s

)
(4.3)

∂ub
∂t

= −1

ρ

∂p

∂b
+ ν

[
∂2ub
∂s2

+
∂2ub
∂n2

− Crub

]
+

kN

ρ
(vb − ub) (4.4)

∂vb
∂t

=
k

m
(ub − vb) (4.5)

v2bk
′′
b = 0 (4.6)

where Cr = (τ2s + σ′2
n + k′′2b) is called curvature number [2].

From equation (4.6) we see that v2bk
′′
b = 0 which implies either vb = 0 or

k′′b = 0. The choice of vb = 0 is impossible, since if it happens, then ub = 0, which

shows that the flow doesn’t exist. Hence k′′b = 0, it suggests that the curvature

of the streamline along binormal direction is zero. Thus no radial flow exists.

Since we have assumed that the pulsatile pressure gradient to be impressed

on the system for t > 0, we can write

−1

ρ

∂p

∂b
= c1 + c2 cos t (4.7)

where c1 and c2 are constants.

Equation (4.4) and (4.5) are to be solved subject to the initial and boundary

conditions:
Initial condition; at t = 0; ub = 0, vb = 0

Boundary condition; for t > 0;ub = 0 at s = h & s = −h,

and ub = 0 at n = h & n = −h

 (4.8)

Let Ub and Vb are given by

Ub =

∞∫
0

e−xtubdt and Vb =

∞∫
0

e−xtvbdt (4.9)

denote the Laplace transforms of ub and vb respectively.
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Using relations (4.7) and (4.9) in equations (4.4), (4.5) and (4.8) one can

obtain the following:

xUb =
c1
x

+
c2x

(x2 + 1)
+ ν

(
∂2Ub

∂s2
+

∂2Ub

∂n2
− CrUb

)
+

l

τ
(Vb − Ub) (4.10)

Vb =
Ub

(1 + xτ)
(4.11)

Ub = 0 at s = h & s = −h and Ub = 0 at n = h & n = −h, (4.12)

where l = mN
ρ and τ = m

k .

From equations (4.10) and (4.11) we obtain, the following equation

∂2Ub

∂s2
+

∂2Ub

∂n2
−Q2Ub +R = 0 (4.13)

where

Q2 =

(
Cr +

x

ν
+

xl

ν(1 + xτ)

)
and R =

1

ν

[
c1
x

+
c2x

x2 + 1

]
To solve equation (4.10) we assume the solution in the following form [18]

Ub(s, n) = w1(s, n) + w2(s) (4.14)

Substitution of Ub(s, n) in equation (4.13) yields

∂2w1

∂s2
+

∂2w2

∂s2
+

∂2w1

∂n2
−Q2(w1 + w2) +R = 0

so that if w2 satisfies
∂2w2

∂s2
−Q2w2 +R = 0

then
∂2w1

∂s2
+

∂2w1

∂n2
−Q2w1 = 0 (4.15)

In similar manner if Ub(s, n) is inserted in no slip boundary conditions, one

can obtain{
Ub(h, n) = w1(h, n) + w2(h) = 0, Ub(−h, n) = w1(−h, n) + w2(−h) = 0,

Ub(s, h) = w1(s, h) + w2(s) = 0, Ub(s,−h) = w1(s,−h) + w2(s) = 0

}
By solving the problem

∂2w2

∂s2
−Q2w2 +R = 0, w2(h) = 0, w2(−h) = 0

we obtain the solution in the form

w2(s) =
R

Q2

(
cosh(Qh)− cos(Qs)

cos(Qh)

)
(4.16)
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Using variable separable method, the solution of the problem (4.15) with the

conditions

w1(h, n) = 0, w1(−h, n) = 0, w1(s, h) = −w2(s), w1(s,−h) = −w2(s)

is obtained in the form

w1(s, n) =
∞∑

r1=0

sin
(r1π

h
s
) (

cr1e
An +Dr1e

−An
)

(4.17)

where A =

√
Q2h2+r21π

2

h2

Now by substituting (4.16) and (4.17) in (4.14) we have

Ub(s, n) =
R

Q2

(
cosh(Qh)− cosh(Qs)

cosh(Qh)

)
+
2R

Q2

∞∑
r1=0

sin
(r1π

h
s
){

(−1)r1Q2

A2r1π
+

r1π

A2h2 cosh(Qh)
− 1

r1π

}
cosh(An)

cosh(Ah)
.

Using Ub in equation (4.11) one can see that

Vb(s, n) =
R

Q2(1 + xτ)

(
cosh(Qh)− cosh(Qs)

cosh(Qh)

)
+

2R

Q2(1 + xτ)

∞∑
r1=0

sin
(r1π

h
s
)

×
{
(−1)r1Q2

A2r1π
+

r1π

A2h2 cosh(Qh)
− 1

r1π

}
cosh(An)

cosh(Ah)

By taking inverse Laplace transformation to Ub and Vb, we obtain ub and

vb as follows:

ub(s, n, t) =
c1

νX2

[
cosh(Xh)− cosh(Xs)

cosh(Xh)

]
+

c2
ν

[
k1 cos t+ k2 sin t

(y21 + z21)(C
2 +D2)

]
+

4

π

∞∑
r2=0

(−1)r2

(2r2 + 1)
cos

[
(2r2 + 1)π

2h
s

] [
ex3t(1 + x3τ)

2

[l + (1 + x3τ)2]

× c1(x
2
3 + 1) + c2x

2
3

x1(x23 + 1)
+

ex4t(1 + x4τ)
2

[l + (1 + x4τ)2]

c1(x
2
4 + 1) + c2x

2
4

x2(x24 + 1)

]
+

2

π

∞∑
r1=0

(−1)r1

r1
sin

(r1π
h

s
){

c1
νY 2

cosh(Y n)

cosh(Y h)
+

c2
ν

k3 cos t+ k4 sin t

(s21 + t21)(G
2 +H2)

+
1

ν(x5 − x6)

[
ex5tc1(x

2
5 + 1) + c2x

2
5

x5(x25 + 1)
− ex6tc1(x

2
6 + 1) + c2x

2
6

x6(x26 + 1)

]
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− 4

π

∞∑
r2=0

(−1)r2

(2r2 + 1)
cos

[
(2r2 + 1)π

2h
n

] [
ex7t(1 + x7τ)

2

[l + (1 + x7τ)2]

× c1(x
2
7 + 1) + c2x

2
7

x7(x27 + 1)
+

ex8t(1 + x8τ)
2

[l + (1 + x8τ)2]

c1(x
2
8 + 1) + c2x

2
8

x8(x28 + 1)

]}
+

2π

h2

∞∑
r1=0

r1 sin
(r1π

h
s
){

c1
νX2Y 2

cosh(Y n)

cosh(Xh) cosh(Y h)

+
c2
ν

L5 cos t+ L6 sin t

(y21 + z21)(s
2
1 + t21)(G

2 +H2)(C2 +D2)
+

1

ν(x1 − x2)

×
[
ex1tc1(x

2
1 + 1) + c2x

2
1

x1(x21 + 1)
− ex2tc1(x

2
2 + 1) + c2x

2
2

x2(x22 + 1)

]
cosh(αn)

α2 cosh(αh)

− 4

π

∞∑
r2=0

(−1)r2

(2r2 + 1)

cosh(βn)

β2 cosh(βh)

[
ex3t(1 + x3τ)

2

[l + (1 + x3τ)2]

c1(x
2
3 + 1) + c2x

2
3

x1(x23 + 1)

+
ex4t(1 + x4τ)

2

[l + (1 + x4tau)2]

c1(x
2
4 + 1) + c2x

2
4

x4(x24 + 1)

]
+

(−1)r1

νΓ2(x5 − x6)

×
[
ex5tc1(x

2
5 + 1) + c2x

2
5

x5(x25 + 1)
− ex6tc1(x

2
6 + 1) + c2x

2
6

x6(x26 + 1)

]
− 4

π

∞∑
r2=0

(−1)r2

(2r2 + 1)

×
cos

[
(2r2+1)π

2h n
]

α2 cos(α1h)

[
ex7t(1 + x7τ)

2

[l + (1 + x7τ)2]

c1(x
2
7 + 1) + c2x

2
7

x7(x27 + 1)
+

ex8t(1 + x8τ)
2

[l + (1 + x8τ)2]

× c1(x
2
8 + 1) + c2x

2
8

x8(x28 + 1)

]}
− 2

π

∞∑
r1=0

1

r1
sin

(r1π
h

s
){

c1
νX2

cosh(Y n)

cosh(Y h)

+
c2
ν

k11 cos t+ k12 sin t

(y21 + z21)(G
2 +H2)

+
1

ν(x1 − x2)

[
ex1tc1(x

2
1 + 1) + c2x

2
1

x1(x21 + 1)

−ex2tc1(x
2
2 + 1) + c2x

2
2

x2(x22 + 1)

]
cosh(αn)

cosh(αh)
+

π

h2

∞∑
r2=0

(−1)r2(2r2 + 1)

α2
1

× cos

[
(2r2 + 1)π

2h
n

] [
ex7t(1 + x7τ)

2

[l + (1 + x7τ)2]

c1(x
2
7 + 1) + c2x

2
7

x7(x27 + 1)

+
ex8t(1 + x8τ)

2

[l + (1 + x8τ)2]

c1(x
2
8 + 1) + c2x

2
8

x8(x28 + 1)

]}

vb(s, n, t)=
c1

νX2

[
cosh(Xh)− cosh(Xs)

cosh(Xh)

]
+

c2
ν

[
M1 cos t+M2 sin t

(y21 + z21)(C
2 +D2)(1 + τ2)

]
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+
4

π

∞∑
r2=0

(−1)r2

(2r2 + 1)
cos

[
(2r2 + 1)π

2h
s

] [
ex3t(1 + x3τ)

[l + (1 + x3τ)2]

c1(x
2
3 + 1) + c2x

2
3

x3(x23 + 1)

+
ex4t(1 + x4τ)

[l + (1 + x4τ)2]

c1(x
2
4 + 1) + c2x

2
4

x4(x24 + 1)

]
+

2

π

∞∑
r1=0

(−1)r1

r1
sin

(r1π
h

s
)

×
{

c1
νY 2

cosh(Y n)

cosh(Y h)
+

c2
ν

M3 cos t+M4 sin t

(s21 + t21)(G
2 +H2)(1 + τ2)

+
1

ν(x5 − x6)

[
ex5tc1(x

2
5 + 1) + c2x

2
5

x1(x25 + 1)
− ex6tc1(x

2
6 + 1) + c2x

2
6

x2(x26 + 1)

]
− 4

π

∞∑
r2=0

(−1)r2

(2r2 + 1)
cos

[
(2r2 + 1)π

2h
n

] [
ex7t(1 + x7τ)

[l + (1 + x7τ)2]

c1(x
2
7 + 1) + c2x

2
7

x7(x27 + 1)

+
ex8t(1 + x8τ)

[l + (1 + x8τ)2]

c1(x
2
8 + 1) + c2x

2
8

x4(x28 + 1)

]}
+
2π

h2

∞∑
r1=0

(−1)r1

r1
sin

(r1π
h

s
){

c1
νX2Y 2

cosh(Y n)

cosh(Xh) cosh(Y h)

+
c2
ν

M5 cos t+M6 sin t

(y21 + z21)(s
2
1 + t21)(G

2 +H2)(C2 +D2)(1 + τ2)

+
1

ν(x1 − x2)

[
ex1tc1(x

2
1 + 1) + c2x

2
1

x1(x21 + 1)
− ex2tc1(x

2
2 + 1) + c2x

2
2

x2(x22 + 1)

]
cosh(αn)

α2 cosh(αh)

− 4

π

∞∑
r2=0

(−1)r2

(2r2 + 1)

cosh(βn)

β2 cosh(βh)

[
ex3t(1 + x3τ)

[l + (1 + x3τ)2]

c1(x
2
3 + 1) + c2x

2
3

x3(x23 + 1)

+
ex4t(1 + x4τ)

[l + (1 + x4τ)2]

c1(x
2
4 + 1) + c2x

2
4

x4(x24 + 1)

]
+

(−1)r1

Γ2ν(x5 − x6)

[
ex5tc1(x

2
5 + 1) + c2x

2
5

x5(x25 + 1)

− ex6tc1(x
2
6 + 1) + c2x

2
6

x6(x26 + 1)

]
− 4

π

∞∑
r2=0

(−1)r2

(2r2 + 1)

cos
[
(2r2+1)π

2h n
]

α2 cos(α1h)

×
[

ex7t(1 + x7τ)

[l + (1 + x7τ)2]

c1(x
2
7 + 1) + c2x

2
7

x7(x27 + 1)
+

ex8t(1 + x8τ)

[l + (1 + x8τ)2]

c1(x
2
8 + 1) + c2x

2
8

x8(x28 + 1)

]}
− 2

π

∞∑
r1=0

1

r1
sin

(r1π
h

s
){

c1
νX2

cosh(Y n)

cosh(Y h)
+

c2
ν

M7 cos t+M8 sin t

(y21 + z21)(G
2 +H2)(1 + τ2)

+
1

ν(x1 − x2)

[
ex1tc1(x

2
1 + 1) + c2x

2
1

x1(x21 + 1)
− ex2tc1(x

2
2 + 1) + c2x

2
2

x2(x22 + 1)

]
cosh(αn)

cosh(αh)
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+
π

h2

∞∑
r2=0

(−1)r2(2r2 + 1)

α2
cos

[
(2r2 + 1)π

2h
n

]

×
[

ex7t(1 + x7τ)

[l + (1 + x7τ)2]

c1(x
2
7 + 1) + c2x

2
7

x7(x27 + 1)
+

ex8t(1 + x8τ)

[l + (1 + x8τ)2]

c1(x
2
8 + 1) + c2x

2
8

x8(x28 + 1)

]}

Shearing Stress (Skin Friction). The Shear stress at the boundaries s =

h, s = −h and n = h, n = −h are given by

Dh,n =
c1µ

νX

sinh(Xh)

cosh(Xh)
− c2µ

ν(y21 + z21)(C
2 +D2)

[cos t(Q1P1 +Q2P2) + sin t(Q1P2

−Q2P2)] +
2µ

h

[
ex1t(1 + x1τ)

2

[l + (1 + x1τ)2]

c1(x
2
1 + 1) + c2x

2
1

x1(x21 + 1)
+

ex2t(1 + x2τ)
2

[l + (1 + x2τ)2]

×c1(x
2
2 + 1) + c2x

2
2

x2(x22 + 1)

]
− 2µ

h

{
c1
νY 2

cosh(Y n)

cosh(Y h)
+

c2
ν

k3 cos t+ k4 sin t

(s21 + t21)(G
2 +H2)

− 4

π

∞∑
r2=0

(−1)r2

(2r2 + 1)
cos

[
(2r2 + 1)π

2h
n

] [
ex3t(1 + x3τ)

2

[l + (1 + x3τ)2]

×c1(x
2
3 + 1) + c2x

2
3

x3(x23 + 1)
+

ex4t(1 + x4τ)
2

[l + (1 + x4τ)2]

c1(x
2
4 + 1) + c2x

2
4

x4(x24 + 1)

]}
− 2π2µ

h3

∞∑
r1=0

(−1)r1r1
2

{
c1

νX2Y 2

cosh(Y n)

cosh(Xh) cosh(Y h)
+

c2
ν

× L5 cos t+ L6 sin t

(y21 + z21)(s
2
1 + t21)(G

2 +H2)(C2 +D2)
− 4

π

∞∑
r2=0

(−1)r2

(2r2 + 1)

cosh(βn)

β2 cosh(βh)

×
[
ex1t(1 + x1τ)

2

[l + (1 + x1τ)2]

c1(x
2
1 + 1) + c2x

2
1

x1(x21 + 1)
+

ex2t(1 + x2τ)
2

[l + (1 + x2τ)2]

c1(x
2
2 + 1) + c2x

2
2

x2(x22 + 1)

]

− 4

π

∞∑
r2=0

(−1)r2

(2r2 + 1)

cos
[
(2r2+1)π

2h n
]

α2 cos(α1r)

[
ex3t(1 + x3τ)

2

[l + (1 + x3τ)2]

c1(x
2
3 + 1) + c2x

2
3

x3(x23 + 1)

+
ex4t(1 + x4τ)

2

[l + (1 + x4τ)2]

c1(x
2
4 + 1) + c2x

2
4

x4(x24 + 1)

]}
− 2µ

h

∞∑
r1=0

(−1)r1
{

c1
νX2

cosh(Y n)

cosh(Y h)

+
c2
ν

k11 cos t+ k12 sin t

(y21 + z21)(G
2 +H2)

+
π

h2

∞∑
r2=0

(−1)r2(2r2 + 1) cos

[
(2r2 + 1)π

2h
n

]

×
[
ex3t(1 + x3τ)

2

[l + (1 + x3τ)2]

c1(x
2
3 + 1) + c2x

2
3

x3(x23 + 1)
+

ex4t(1 + x4τ)
2

[l + (1 + x4τ)2]

c1(x
2
4 + 1) + c2x

2
4

x4(x24 + 1)

]}
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D−h,n = −c1µ

νX

sinh(Xh)

cosh(Xh)
− c2µ

ν(y21 + z21)(C
2 +D2)

[cos t(−Q1P1 −Q2P2)

+ sin t(−Q1P2 +Q2P1)]−
2µ

h

[
ex1t(1 + x1τ)

2

[l + (1 + x1τ)2]

c1(x
2
1 + 1) + c2x

2
1

x1(x21 + 1)

+
ex2t(1 + x2τ)

2

[l + (1 + x2τ)2]

c1(x
2
2 + 1) + c2x

2
2

x2(x22 + 1)

]
− 2µ

h

{
c1
νY 2

cosh(Y n)

cosh(Y h)

+
c2
ν

k3 cos t+ k4 sin t

(s21 + t21)(G
2 +H2)

− 4

π

∞∑
r2=0

(−1)r2

(2r2 + 1)
cos

[
(2r2 + 1)π

2h
n

]

×
[
ex3t(1 + x3τ)

2

[l + (1 + x3τ)2]

c1(x
2
3 + 1) + c2x

2
3

x3(x23 + 1)
+

ex4t(1 + x4τ)
2

[l + (1 + x4τ)2]
×

c1(x
2
4 + 1) + c2x

2
4

x4(x24 + 1)

]}
− 2π2µ

h3

∞∑
r1=0

(−1)r1r1
2

{
c1

νX2Y 2

cosh(Y n)

cosh(Xh) cosh(Y h)

+
c2
ν

L5 cos t+ L6 sin t

(y21 + z21)(s
2
1 + t21)(G

2 +H2)(C2 +D2)
− 4

π

∞∑
r2=0

(−1)r2

(2r2 + 1)

× cosh(βn)

β2 cosh(βh)

[
ex1t(1 + x1τ)

2

[l + (1 + x1τ)2]

c1(x
2
1 + 1) + c2x

2
1

x1(x21 + 1)
+

ex2t(1 + x2τ)
2

[l + (1 + x2τ)2]

× c1(x
2
2 + 1) + c2x

2
2

x2(x22 + 1)

]
− 4

π

∞∑
r2=0

(−1)r2

(2r2 + 1)

cos
[
(2r2+1)π

2r n
]

α2 cos(α1r)

[
ex3t(1 + x3τ)

2

[l + (1 + x3τ)2]

×c1(x
2
3 + 1) + c2x

2
3

x3(x23 + 1)
+

ex4t(1 + x4τ)
2

[l + (1 + x4τ)2]

c1(x
2
4 + 1) + c2x

2
4

x4(x24 + 1)

]}
+
2µ

h

∞∑
r1=0

(−1)r1
{

c1
νX2

cosh(Y n)

cosh(Y h)
+

c2
ν

k11 cos t+ k12 sin t

(y21 + z21)(G
2 +H2)

+
π

h2

∞∑
r2=0

(−1)r2(2r2 + 1) cos

[
(2r2 + 1)π

2h
n

] [
ex3t(1 + x3τ)

2

[l + (1 + x3τ)2]

× c1(x
2
3 + 1) + c2x

2
3

x3(x23 + 1)
+

ex4t(1 + x4τ)
2

[l + (1 + x4τ)2]

c1(x
2
4 + 1) + c2x

2
4

x4(x24 + 1)

]}

Ds,h =
2µ

π

∞∑
r1=0

(−1)r1

r1
sin

(r1π
h

s
){

c1
νY

sinh(Y h)

cosh(Y h)
+

c2
ν(s21 + t21)(G

2 +H2)

× [cos t(q1O1 + q2O2) + sin t(q1O2 − q2O1)]

+
2

h

[
ex3t(1 + x3τ)

2

[l + (1 + x3τ)2]

c1(x
2
3 + 1) + c2x

2
3

x3(x23 + 1)
+

ex4t(1 + x4τ)
2

[l + (1 + x4τ)2]
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× c1(x
2
4 + 1) + c2x

2
4

x4(x24 + 1)

]}
+

2πµ

h2

∞∑
r1=0

r1 sin
(r1π

h
s
)

×
{

c1
νX2Y

sinh(Y h)

cosh(Xh) cosh(Y h)
+

c2
ν(y21 + z21)(s

2
1 + t21)(C

2 +D2)(G2 +H2)

×[cos t(c11O1 + d11O2) + sin t(c11O2 + d11O1)]−
4

π

∞∑
r2=0

(−1)r2

(2r2 + 1)

sinh(βh)

β cosh(βh)

×
[
ex1t(1 + x1τ)

2

[l + (1 + x1τ)2]

c1(x
2
1 + 1) + c2x

2
1

x1(x21 + 1)
+

ex2t(1 + x2τ)
2

[l + (1 + x2τ)2]

c1(x
2
2 + 1) + c2x

2
2

x2(x22 + 1)

]
+

2

hα2 cos(α1h)

[
ex3t(1 + x3τ)

2

[l + (1 + x3τ)2]

c1(x
2
3 + 1) + c2x

2
3

x3(x23 + 1)
+

ex4t(1 + x4τ)
2

[l + (1 + x4τ)2]

× c1(x
2
4 + 1) + c2x

2
4

x4(x24 + 1)

]}
− 2µ

π

∞∑
r1=0

1

r1
sin

(r1π
h

s
){

c1Y

νX2

sinh(Y h)

cosh(Y h)

+
c2

ν(y21 + z21)(G
2 +H2)

[cos t(u1O1 + u2O2) + sin t(u1O2 − u2O1)]

− π2

2h3

∞∑
r2=0

(2r2 + 1)2
[
ex3t(1 + x3τ)

2

[l + (1 + x3τ)2]

c1(x
2
3 + 1) + c2x

2
3

x3(x23 + 1)
+

ex4t(1 + x4τ)
2

[l + (1 + x4τ)2]

× c1(x
2
4 + 1) + c2x

2
4

x4(x24 + 1)

]}
+

c1µ

νX

sinh(Xs)

cosh(Xh)
− c2µ

ν(y21 + z21)(C
2 +D2)

[cos t(Q1v1

+Q2v2) + sin t(Q1v2 −Q2v1)] +
2µ

h

∞∑
r2=0

(−1)r2 sin

[
(2r2 + 1)π

2h
s

]

×
[
ex1t(1 + x1τ)

2

[l + (1 + x1τ)2]

c1(x
2
1 + 1) + c2x

2
1

x1(x21 + 1)
+

ex2t(1 + x2τ)
2

[l + (1 + x2τ)2]

c1(x
2
2 + 1) + c2x

2
2

x2(x22 + 1)

]
− 2µ

h

∞∑
r1=0

(−1)r1 cos
(r1π

h
s
){

c1
νY 2

+
c2

ν(s21 + t21)(G
2 +H2)

[cos t(q1O1

+ q2O2) + sin t(q1O2 − q2O1)]

}
− 2π2µ

h3

∞∑
r1=0

r1
2 cos

(r1π
h

s
)

×
{

c1
νX2Y 2 cosh(Xr)

+
c2
ν

cos t(c11O1 + d11O2) + sin t(c11O2 − d11O1)

(y21 + z21)(s
2
1 + t21)(C

2 +D2)(G2 +H2)

+
4

π

∞∑
r2=0

(−1)r2

(2r2 + 1)β2

[
ex1t(1 + x1τ)

2

[l + (1 + x1τ)2]

c1(x
2
1 + 1) + c2x

2
1

x1(x21 + 1)

+
ex2t(1 + x2τ)

2

[l + (1 + x2τ)2]

c1(x
2
2 + 1) + c2x

2
2

x2(x22 + 1)

]}
+

2µ

h

∞∑
r1=0

cos
(r1π

h
s
)
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×
{

c1
νX2

+
c2
ν

cos t(u1O1 + u2O2) + sin t(u1O2 − u2O1)

(y21 + z21)(G
2 +H2)

}

Ds,−h =
2µ

π

∞∑
r1=0

(−1)r1

r1
sin

(r1π
h

s
){

− c1
νY

sinh(Y h)

cosh(Y h)
+

c2
ν(s21 + t21)(G

2 +H2)

× [− cos t(q1O1 + q2O2)− sin t(q1O2 − q2O1)]−
2

h

[
ex3t(1 + x3τ)

2

[l + (1 + x3τ)2]

× c1(x
2
3 + 1) + c2x

2
3

x3(x23 + 1)
+

ex4t(1 + x4τ)
2

[l + (1 + x4τ)2]

c1(x
2
4 + 1) + c2x

2
4

x4(x24 + 1)

]}
+

2πµ

h2

∞∑
r1=0

r1 sin
(r1π

h
s
){

− c1
νX2Y

sinh(Y h)

cosh(Xh) cosh(Y h)

+
c2

ν(y21 + z21)(s
2
1 + t21)(C

2 +D2)(G2 +H2)
[− cos t(c11O1 + d11O2)

− sin t(c11O2 − d11O1)] +
4

π

∞∑
r2=0

(−1)r2

(2r2 + 1)

sinh(βh)

β cosh(βh)

[
ex1t(1 + x1τ)

2

[l + (1 + x1τ)2]

× c1(x
2
1 + 1) + c2x

2
1

x1(x21 + 1)
+

ex2t(1 + x2τ)
2

[l + (1 + x2τ)2]

c1(x
2
2 + 1) + c2x

2
2

x2(x22 + 1)

]
− 2

hα2 cos(α1h)

[
ex3t(1 + x3τ)

2

[l + (1 + x3τ)2]

c1(x
2
3 + 1) + c2x

2
3

x3(x23 + 1)
+

ex4t(1 + x4τ)
2

[l + (1 + x4τ)2]

× c1(x
2
4 + 1) + c2x

2
4

x4(x24 + 1)

]}
− 2µ

π

∞∑
r1=0

1

r1
sin

(r1π
h

s
){

− c1Y

νX2

sinh(Y h)

cosh(Y h)

+
c2

ν(y21 + z21)(G
2 +H2)

[− cos t(u1O1 + u2O2)− sin t(u1O2 − u2O1)]

+
π2

2h3

∞∑
r2=0

(2r2 + 1)2
[
ex3t(1 + x3τ)

2

[l + (1 + x3τ)2]

c1(x
2
3 + 1) + c2x

2
3

x3(x23 + 1)
+

ex4t(1 + x4τ)
2

[l + (1 + x4τ)2]

× c1(x
2
4 + 1) + c2x

2
4

x4(x24 + 1)

]}
+

c1µ

νX

sinh(Xs)

cosh(Xh)
− c2µ

ν(y21 + z21)(C
2 +D2)

[cos t(Q1v1

+Q2v2) + sin t(Q1v2 −Q2v1)] +
2µ

h

∞∑
r2=0

(−1)r2 sin

[
(2r2 + 1)π

2h
s

]

×
[
ex1t(1 + x1τ)

2

[l + (1 + x1τ)2]

c1(x
2
1 + 1) + c2x

2
1

x1(x21 + 1)
+

ex2t(1 + x2τ)
2

[l + (1 + x2τ)2]

c1(x
2
2 + 1) + c2x

2
2

x2(x22 + 1)

]
−2µ

h

∞∑
r1=0

(−1)r1 cos
(r1π

h
s
){

c1
νY 2

+
c2

ν(s21 + t21)(G
2 +H2)

[− cos t(q1O1
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+ q2O2)− sin t(q1O2 − q2O1)]} −
2π2µ

h3

∞∑
r1=0

r1
2 cos

(r1π
h

s
)

×
{

c1
νX2Y 2 cosh(Xh)

+
c2
ν

− cos t(c11O1 + d11O2)− sin t(c11O2 − d11O1)

(y21 + z21)(s
2
1 + t21)(C

2 +D2)(G2 +H2)

+
4

π

∞∑
r2=0

(−1)r2

(2r2 + 1)β2

[
ex1t(1 + x1τ)

2

[l + (1 + x1τ)2]

c1(x
2
1 + 1) + c2x

2
1

x1(x21 + 1)

+
ex2t(1 + x2τ)

2

[l + (1 + x2τ)2]

c1(x
2
2 + 1) + c2x

2
2

x2(x22 + 1)

]}
+

2µ

h

∞∑
r1=0

cos
(r1π

h
s
)

×
{

c1
νX2

+
c2
ν

[− cos t(u1O1 + u2O2)− sin t(u1O2 − u2O1)]

(y21 + z21)(G
2 +H2)

}
where

A = cosh(y2h) cos(z2h)− cosh(y2s) cos(z2s),

B = sinh(y2h) sin(z2h)− sinh(y2s) sin(z2s),

C = cosh(y2h) cos(z2h), D = sinh(y2h) sin(z2h), E = cosh(s2n) cos(t2n),

F = sinh(s2n) sin(t2n), G = cosh(s2h) cos(t2h), H = sinh(s2h) sin(t2h),

L1 = AC +BD, L2 = BC −AD, L3 = EG+ FH, L4 = FG− EH,

L5 = k9s1 − k10t1, L6 = k10s1 + k9t1, M1 = k1 − τk2, M2 = k2 + τk1,

M3 = k3 + τk4, M4 = k4 − τk3, M5 = L5 − τL6, M6 = L6 + τL5,

M7 = k11− τk12, M8 = k12+ τk11, O1 = s2a11− t2b11, O2 = s2b11+ t2a11,

P1 = −y2g11+z2h11, P2 = −y2h11−z2g11, Q1 = Cy1+Dz1, Q2 = Dy1−Cz1,

X =
√
Cr, Y =

√
Cr +

r21π
2

h2 , a0 = τ, a1 = 4h2τ, a2 = h2τ, a3 = 4h2τ

b0 = (Crντ + 1 + l), b1 = (Crντ + 1 + l)4h2,

b2 = (Crντ + l + 1)4h2 + (2r2 + 1)2π2ντ,

b3 = (Crντ + l + 1)4h2 + 4r21π
2ντ + (2r2 + 1)2π2ντ, c0 = Crν,

c1 = 4h2Crν + (2r2 + 1)2π2ν, c2 = Crνh
2 + r21π

2ν, c3 = 4h2Crν + 4r21π
2ν,

k1 = L1y1 − L2z1, k2 = L2y1 + L1z1, k3 = L3s1 − L4t1, k4 = L4s1 + L3t1,

k5 = CG−DH, k6 = DG+ CH, k7 = Ek5 + Fk6, k8 = Fk5 − Ek6,

k9 = k7y1−k8z1, k10 = k8y1+k7z1, k11 = L3y1−L4z1, k12 = L4y1+L3z1,
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q1 = Gs1+Ht1, q2 = Hs1−Gt1, s1 =
Crνh

2(1 + τ2) + r21π
2ν(1 + τ2) + lh2τ

νh2(1 + τ2)
,

s2 =

√
s1 +

√
s21 + t21
2

, t1 =
1 + l + τ2

ν(1 + τ2)
, t2 =

√
−s1 +

√
s21 + t21

2
,

u1 = Gy1+Hz1, u2 = Hy1−Gz1, v1 = −y2e11+z2f11, v2 = −y2f11−z2e11,

x1 =
−b0 +

√
b20 − 4a0c0
2a0

, x2 =
−b0 −

√
b20 − 4a0c0
2a0

,

x3 =
−b1 +

√
b21 − 4a1c1
2a1

, x4 =
−b1 −

√
b21 − 4a1c1
2a1

,

x5 =
−b2 +

√
b22 − 4a2c2
2a2

, x6 =
−b2 −

√
b22 − 4a2c2
2a2

,

x7 =
−b3 +

√
b23 − 4a3c3
2a3

, x8 =
−b3 −

√
b23 − 4a3c3
2a3

, y1 =
Crν(1 + τ2) + lτ

ν(1 + τ2)
,

y2 =

√
y1 +

√
y21 + z21
2

, z1 =
1 + l + τ2

ν(1 + τ2)
, z2 =

√
−y1 +

√
y21 + z21

2
,

a11 = sinh(s2h) cos(t2h), b11 = sin(t2h) cosh(s2h), h11 = cosh(y2h) sin(z2h),

c11 = (k5y1+k6z1)s1+(k6y1−k5z1)t1, d11 = (k6y1−k5z1)s1− (k5y1+k6z1)t1,

e11 = sinh(y2s) cos(z2s), f11 = cosh(y2s) sin(z2s), g11 = sinh(y2h) cos(z2h),

β =

√
4r21π

2 − (2r2 + 1)2π2

4h2
, α =

√
r21π

2

h2
, α1 =

√
4r21π

2 + (2r2 + 1)2π2

4h2
,

α2 = −
[
4r21π

2 + (2r2 + 1)2π2

4h2

]
, Γ = ir1π

h .

Conclusion

The figures 3 and 4 represents the velocity profiles for both fluid and dust

particles respectively, which are paraboloid in nature. Also the velocity of both

fluid and dust particles, move with the greater velocity nearer to the axis of

flow. Further it shows that if the dust is very fine i.e., mass of the dust parti-

cles is negligibly small then the relaxation time of dust particle decreases and

ultimately as τ → 0 the velocities of fluid and dust particles will be the same.

It can also be noticed from the figures 3 and 4 that the velocities of both fluids

and dust going to be decrease as time t increases.
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Figure 3. Variation of fluid velocity with s and n

(for t = 1.0 & t = 3.0)

Figure 4. Variation of dust velocity with s and n

(for t = 1.0 & t = 3.0 )
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