Vol. 4 (2010), pp.41-48 https://doi.org/10.56424/jts.v4i01.10425

On Cartan Spaces with Generalized (α, β) -metric

Gauree Shanker

Department of Mathematics and Statistics, Banasthali University, Banasthali, Rajasthan-304022, India E-mail: grshnkr2007@gmail.com (Received: July 23, 2009)

Abstract

In 1933 E.Cartan [1] introduced a new space known as Cartan space. It is considered as dual of Finsler space. H.Rund [4] , F.Brickell [2] and others studied the relation between these two spaces. The theory of Hamilton spaces was introduced and studied by R. Miron ([6], [7]). T.Igrashi ([10], [11]) introduced the notion of (α, β) -metric in Cartan spaces and obtained the metric tensor and the invariants ρ and σ which characterize the special classes of Cartan spaces with (α, β) -metric. Later on H.G.Nagaraja [3] studied Cartan spaces with Generalized (α, β) -metric admitting h-metrical d-connection. The conditions for these spaces to be locally Minkowaski and conformally flat have been obtained.

Keywords and Phrases : Cartan spaces, Generalized (α, β) -metric, h-metrical d-connection, locally Minkowski and conformally flat spaces. **2000 AMS Subject Classification :** 53C60, 53B40.

1. Introduction

In 1978, M.Matsumoto and H.Shimada [5] introduced the concept of 1-form metric $L(\beta_{\lambda})$, where $L(\beta_{\lambda})$ is positively homogeneous function of degree one in n-arguments $\beta_{\lambda}(x,y)$, where $\beta_{\lambda}(x,y) = b_{(\lambda)i}(x)y^{i}$, $1 \leq \lambda \leq n$, are n-linearly independent 1-forms. In this paper we consider a Cartan metric

(1.1)
$$K = K(\alpha, \beta^{(1)}, \beta^{(2)}, ..., \beta^{(\lambda)}), \quad 1 \le \lambda \le n,$$

where (1.1) is a p-homogeneous function with respect to $\alpha, \beta^{(1)}, \beta^{(2)}, ..., \beta^{(\lambda)}$ and $\alpha(x, p) = (a^{ij}p_ip_j)^{\frac{1}{2}}$ together with $\beta^{(r)}(x, p) = b^{(r)i}(x)p_i, r = 1, ..., \lambda$, which

are λ – linearly independent 1-forms. For $\lambda = 1$ this metric is nothing but (α, β) -metric.

Let M be a real smooth manifold and (T M, π , M) its cotangent bundle. Let $C^n = (M, K(x, p))$, where $K : T^*M \longrightarrow R$ is a scalar function which is differentiable on $T^*M=TM-\{0\}$ and is homogeneous on fibres of T^*M . The hessian of K^2 i.e., $g^{ij}(x,p) = \frac{1}{2}\partial^{i}\partial^{j}K^2$, where $\partial^{i} = \frac{\partial}{\partial p^i}$, is positively homogeneous on T^*M . Here C^n is called the Cartan space and the functions K(x,p) and $g^{ij}(x,p)$ are called, respectively, the fundamental function and the metric tensor of the Cartan space C^n . The reciprocal $g_{ij}(x,p)$ of $g^{ij}(x,p)$ is given by $g_{ij}(x,p)g^{ik}(x,p) = \delta^k_j$, where $g_{ij}(x,p)$ and $g^{ij}(x,p)$ are both symmetric and homogeneous of order 0 in p_j .

A Cartan space $C^n=(M,K(x,p))$ is said to be with generalized (α,β) -metric if K(x,p) is a function of the variables $\alpha(x,p)=\left(a^{ij}p_ip_j\right)^{\frac{1}{2}},\beta^{(r)}(x,p)=b^{(r)i}(x)p_i, r=1,...,\lambda$, where $a^{ij}(x)$ is a Riemannian metric and $b^{(r)i}(x)$ is a vector field depending only on x. Clearly, K must satisfy the conditions imposed to the fundamental functions of a Caratn space.

2. Generalized (α, β) -metric

Definition (2.1). A Cartan metric $K = K(\alpha, \beta^{(1)}, \beta^{(2)}, ..., \beta^{(\lambda)})$ is called Generalized (α, β) -metric.

In this paper we consider the Cartan spaces with generalized (α, β) -metric admitting h-metrical d-connection and their conformal change. To find the angular metric tensor g^{ij} of $C^n = (M, K(x, p))$ we use the following results:

(2.1)
$$\partial^{\cdot i} \alpha = \frac{p^i}{\alpha}, \partial^{\cdot i} \beta^{(r)} = b^{(r)i}, \partial^{\cdot i} K = l^i, \partial^{\cdot j} l^i = \frac{1}{K} h^{ij},$$

where

$$\partial^{\cdot i} = \frac{\partial}{\partial p^i}, \quad h^{ij} = g^{ij} - l^i l^j = K \frac{\partial^2 K}{\partial p_i \partial p_j} \text{ and } p^i = a^{ij} p_j.$$

The successive differentiation of (1.1) with respect to p_i and p_j gives

(2.2)
$$l^{i} = K_{\alpha} \frac{p^{i}}{\alpha} + \sum_{r=1}^{\lambda} K_{\beta(r)} b^{(r)i}$$

$$(2.3) h^{ij} = \frac{KK_{\alpha\alpha}p^ip^j}{\alpha^2} + \sum_{r=1}^{\lambda} \frac{KK_{\alpha\beta^{(r)}}}{\alpha} \left(b^{(r)i}p^j + b^{(r)j}p^i \right) + \frac{KK_{\alpha}}{\alpha}a^{ij}$$

$$-\frac{KK_{\alpha}}{\alpha^3}p^ip^j+\sum_{r=1}^{\lambda}\sum_{s=1}^{\lambda}KK_{\beta^{(r)}\beta^{(s)}}b^{(r)i}b^{(s)j},$$

where

$$K_{\alpha} = \frac{\partial K}{\partial \alpha}, \qquad K_{\beta^{(r)}} = \frac{\partial K}{\partial \beta^{(r)}}, \qquad K_{\alpha\alpha} = \frac{\partial^2 K}{\partial \alpha^2}, \qquad K_{\alpha\beta^{(r)}} = \frac{\partial^2 K}{\partial \alpha \partial \beta^{(r)}},$$
$$K_{\beta^{(r)}\beta^{(s)}} = \frac{\partial^2 K}{\partial \beta^{(r)} \partial \beta^{(s)}}.$$

From (2.2) and (2.3), we get the metric tensor of C^n , given by

$$(2.4) g^{ij} = \rho a^{ij} + \sum_{r=1}^{\lambda} \sum_{s=1}^{\lambda} \rho^{rs} b^{(r)i} b^{(s)j} + \sum_{r=1}^{\lambda} \rho^{r} \left(b^{(r)i} p^{j} + b^{(r)j} p^{i} \right) + \sigma p^{i} p^{j},$$

where ρ^{rs} , ρ^{r} and σ are functions of α and $\beta^{(r)}$, given by

(2.5)
$$\rho = \frac{KK_{\alpha}}{\alpha}, \quad \rho^{rs} = KK_{\beta^{(r)}\beta^{(s)}} + K_{\beta^{(r)}}K_{\beta^{(s)}}, \\ \rho^{r} = \frac{KK_{\alpha\beta^{(r)}} + K_{\alpha}K_{\beta^{(r)}}}{\alpha}$$

and

$$\sigma = \frac{KK_{\alpha\alpha} - \alpha^{-1}KK_{\alpha} + K_{\alpha}^{2}}{\alpha^{2}}.$$

The homogeneity of K in α and $\beta^{(1)}, \beta^{(2)}, ..., \beta^{(\lambda)}$ gives the identity

(2.6)
$$\sum_{r=1}^{\lambda} \rho^{rs} \beta^{(r)} + \rho^{s} \alpha^{2} = KK_{\beta^{(s)}}.$$

Let γ^i_{jk} denote the christoffel symbol constructed from a_{ij} and $F_{\gamma} = \{\gamma^i_{jk}, \gamma^i_{0j} = p^k \gamma^i_{kj}, 0\}$ be the linear Finsler connection of the space C^n , induced from the Riemannian connection $\gamma = (\gamma^i_{jk}(x))$ of the associated Riemannian space (M^n, α) . We denote ':' the covariant differentiation with respect to F_{γ} . Then $a_{ij:k} = 0$, $a^{ij}_{:k} = 0$, $p^i_{:k} = 0$. Since $p_i = a_{ij}p^j$, it follows that $p_{i:k} = 0$. Also, $\alpha^2 = a^{ij}(x)p_ip_j$ gives $\alpha_{:k} = 0$. Now, if we assume that $b^{(r)i}_{:k} = 0$ for $r = 1, ..., \lambda$, then $\beta^{(r)} = b^{(r)i}p_i$ gives $\beta^{(r)}_{:k} = 0$ for $r = 1, ..., \lambda$. Consequently, (1.1) gives

$$K_{:k} = K_{\alpha}\alpha_{:k} + \sum_{r=1}^{\lambda} L_{\beta(r)}\beta_{:k}^{(r)} = 0.$$

Since K_{α} is a function of $\alpha, \beta^{(1)}, \beta^{(2)}, ..., \beta^{(\lambda)}$, we have $(K_{\alpha})_{:k} = 0$. Similarly, $K_{\alpha\beta^{(r)}:k} = 0, K_{\beta^{(r)}\beta^{(s)}:k} = 0$, which in view of (2.5) give $\rho_{:k} = 0, \rho_{:k}^{rs} = 0, \rho_{:k}^{r} = 0$ and $\sigma_{:k} = 0$. Therefore, from (2.4) it follows that $g_{:k}^{ij} = 0$.

Further, F_{γ} has vanishing (h) h-torsion tensor T, deflection tensor D and (h) hv-torsion tensor C. Therefore, by the definition of Rund connection, we have

Proposition (2.1). If $b_{:k}^{(r)i} = 0, r = 1, ..., \lambda$, is satisfied in a Cartan space \mathbb{C}^n with generalized (α, β) — metric then the linear Cartan connection F_{γ} is nothing but the Rund's connection $R\Gamma$ of C^n .

It is remarked that the h-covariant derivative with respect to $R\Gamma$ coincides with that with respect to the Cartan connection $C\Gamma$.

Using the Christoffel symbols $\Gamma^{i}_{jk}(p) = \frac{1}{2} g^{ir} (\partial_{j} g_{rk} + \partial_{k} g_{jr} - \partial_{r} g_{jk})$ constructed from $g_{ij}(x,p)$, we can define canonical N-connection

(2.7)
$$N_{ij} = \Gamma_{ij}^k \rho_k - \frac{1}{2} \Gamma_{hr}^k \rho_k \rho^r \partial^{\cdot h} g_{ij}.$$

We consider the canonical d-connection

(2.8)
$$D\Gamma = \left(N_{jk}, H_{jk}^i, C_i^{jk}\right),$$

where

(2.9)
$$H_{jk}^{i} = \frac{1}{2}g^{ir}\left(\partial_{j}g_{rk} + \partial_{k}g_{jr} - \partial_{r}g_{jk}\right).$$

The d-tensor field C_i^{jk} of type (2, 1) is given by

(2.10)
$$C_i^{jk} = -\frac{1}{2}g_{ir}\partial^{r}g^{jk} = g_{ir}C^{rjk}.$$

Let $_k$ denote the h-covariant derivative with respect to $D\Gamma$, then we have

Definition (2.2). A d-connection $D\Gamma$ of a Cartan space C^n with generalized (α, β) -metric is called h-metrical d-connection if it satisfies the following conditions:

- (i) h-deflection tensor $D_{ij} = (p_{i | j}) = 0$,
- (ii) $a_{ik}^{ij} = 0,$
- (iii) $g_{,k}^{ij} = 0.$

3. Cartan Spaces with generalized (α, β) - metric admitting h-metrical d-connection

From the condition (i) of definition (2.2), we get $D_{ij} = p_{i|j} = 0$, therefore, the equation $K^2 = g^{ij}p_ip_j$ and condition (iii) of definition (2.2) give $K_{ik} = 0$.

Again, by the condition (i) and (ii), on the basis of the equation $p^i = a^{ij}(x)p_j$ and $\alpha^2 = a^{ij}(x) p_i p_j$, we get

(3.1)
$$\alpha_{ik} = 0, \quad p_{ik}^i = 0.$$

Since $K = K(\alpha, \beta^{(1)}, \beta^{(2)}, ..., \beta^{(\lambda)}), 1 \le \lambda \le n$, on the basis of (3.1), we get

$$K_{!k} = \sum_{r=1}^{\lambda} K_{\beta^{(r)}} \beta_{!k}^{(r)} = 0.$$

Therefore, $\beta_{ik}^{(r)}=0$ for $r=1,...,\lambda$ and $K_{\beta^{(r)}}$ are linearly independent. Since, $\beta^{(r)}(x,p)=b^{(r)i}(x)p_i, r=1,...,\lambda$, on the basis of condition (i) of definition(2.3), we get

(3.2)
$$\beta_{ik}^{(r)} = b_{ik}^{(r)i}(x)p_i = 0, r = 1, ..., \lambda.$$

Since, $K_{lk} = 0$, $\alpha_{lk} = 0$, $\beta_{lk}^{(r)i} = 0$ for $r = 1, ..., \lambda$ and $K_{\alpha}, K_{\alpha\alpha}, K_{\alpha\beta^{(r)}}, K_{\beta^{(r)}\beta^{(s)}}$ are functions of $\alpha, \beta^{(1)}, \beta^{(2)}, ..., \beta^{(\lambda)}$, therefore, $\rho_{lk} = 0$, $\rho_{lk}^r = 0$, $\rho_{lk}^{rs} = 0$, $\sigma_{lk} = 0$. Hence, h-covariant derivative of (2.4), on the basis of the conditions(ii) and (iii) of definition (2.2) gives

$$g_{\mathsf{i}k}^{ij} = 0 = \sum_{r=1}^{\lambda} b_{\mathsf{i}k}^{(r)i} \left(\sum_{s=1}^{\lambda} \rho^{rs} b^{(r)j} + \rho^{s} p^{j} \right) + \sum_{s=1}^{\lambda} b_{\mathsf{i}k}^{(s)i} \left(\sum_{r=1}^{\lambda} \rho^{rs} b^{(r)i} + \rho^{s} p^{i} \right).$$

Contracting by p_j and using the identity (2.6) and equation (3.2), we get

$$\sum_{r=1}^{\lambda} K_{\beta^{(r)}} b_{ik}^{(r)i} = 0.$$

Since $K_{\beta^{(r)}}$ are linearly independent, we have

(3.3)
$$b_{ik}^{(r)i} = 0, r = 1, ..., \lambda.$$

Now from $a_{ik}^{ij} = 0$, we get $H_{jk}^i = \gamma_{jk}^i$. Hence, we have

(3.4)
$$b_{\cdot k}^{(r)i} = 0, \qquad r = 1, ..., \lambda.$$

Also, the curvature tensor D^i_{hjk} of $D\Gamma$ coincides with the curvature tensor R^i_{hjk} of Riemannian connection $R\Gamma = \left(\gamma^i_{jk}, \gamma^i_{jk} p_i, 0\right)$. If $R^i_{hjk} = 0$, then $D^i_{hjk} = 0$. Thus, we have the following proposition:

Proposition (3.1). A Cartan space C^n with generalized (α, β) — metric admitting h-metrical d-connection is locally flat if and only if the associated Riemannian space is locally flat.

If the connection $D\Gamma$ is h-metrical, then $g_{lh}^{ij}=0$, $\alpha_{lh}=0$, $a_{lh}^{ij}=0$, $b_{lh}^{(r)k}=0$, $p_{lh}^k=0$. From (2.1), (2.4) and (2.5) it follows that $C^{ijk}=-\frac{1}{2}\partial^{\cdot k}g^{ij}$ can be determined in terms of $a^{ij}, p^i, b^{(r)i}, K$ and its partial derivatives of first, second and third orders with respect to α and $\beta^{(r)}, (r=1,...,\lambda)$. Since the h-covariant derivative of all these quantities vanishes, we have $C_{lh}^{ijk}=0$. Hence, in view of (2.10) and condition (iii) of definition (2.2), it follows that

(3.5)
$$C_{k,h}^{ij} = 0.$$

Definition (3.1). A Cartan space C^n is a Berwald space if and only if $C_{k:h}^{ij} = 0$.

Hence, from (3.5), we have the following proposition:

Proposition (3.2). A Cartan space C^n with generalized (α, β) -metric admitting h-metrical d-connection is a Berwald space.

As we know [9] a locally Minkowaski space is a Berwald space in which the curvature tensor vanishes. Hence, from the propositions (3.1) and (3.2), we have the following theorem:

Theorem (3.1). A Cartan space C^n with generalized (α, β) — metric admitting h-metrical d-connection is locally Minkowaski if and only if the associated Riemannian space is locally flat.

4. Conformal change of Cartan space

Let $C^n = (M, K(x, p))$ be an n-dimensional Cartan space with generalized (α, β) -metric $K = K(\alpha, \beta^{(1)}, \beta^{(2)}, ..., \beta^{(\lambda)})$, $1 \le \lambda \le n$, by a conformal change $\eta : K \longrightarrow \overline{K}$ such that $\overline{K} \left(\overline{\alpha}, \overline{\beta}^{(1)}, \overline{\beta}^{(2)}, ..., \overline{\beta}^{(\lambda)} \right) = e^{\eta} K(\alpha, \beta^{(1)}, \beta^{(2)}, ..., \beta^{(\lambda)})$, $1 \le \lambda \le n$, we have another Cartan space $\overline{C}^n = \left(M, \overline{K} \left(\overline{\alpha}, \overline{\beta}^{(1)}, ..., \overline{\beta}^{(\lambda)} \right) \right)$, where $\overline{\alpha} = e^{\eta} \alpha$ and $\left(\overline{\beta}^{(1)}, \overline{\beta}^{(2)}, ..., \overline{\beta}^{(\lambda)} \right) = e^{\eta} \left(\beta^{(1)}, \beta^{(2)}, ..., \beta^{(\lambda)} \right)$. Putting $\alpha(x, p) = \left(a^{ij} p_i p_j \right)^{\frac{1}{2}}$ and $\beta^{(r)}(x, p) = b^{(r)i}(x) p_i, r = 1, ..., \lambda$, we get $\overline{a}^{ij} = e^{2\eta} a^{ij}$ and $\overline{b}^{(r)i} = e^{\eta} b^{(r)i}$. Then the Christoffel symbol $\overline{\gamma}^i_{jk}$ constructed from \overline{a}^{ij} is written as

$$\overline{\gamma}_{jk}^i = \gamma_{jk}^i + B_{jk}^i,$$

where

$$B_{jk}^i = \delta_j^i \eta_k + \delta_k^i \eta_j - \eta^i a_{jk}, \qquad \eta^i = \eta_j a^{ij}.$$

Taking covariant derivative of $\overline{b}^{(r)i}$ with respect to $\overline{\gamma}_{ik}^{i}$, we get

$$\bar{b}_{:k}^{(r)i} = e^{\eta} \sum_{r=1}^{\lambda} \left(b_{:k}^{(r)i} + 2\eta_k b^{(r)i} + b^{(r)j} \eta_j \delta_k^i - \eta^i a_{jk} b^{(r)j} \right).$$

Transvecting by $\overline{b}^{(r)k}$ and putting

(4.2)
$$M^{i} = \frac{1}{B^{2}} \sum_{r=1}^{\lambda} \left(b^{(r)k} b_{:k}^{(r)i} - \frac{1}{n+4} b_{:j}^{(r)j} b^{(r)i} \right),$$

we have

$$\eta^i = \overline{M}^i - M^i, \text{ from which we get, } \sigma_i = \overline{M}_i - M_i.$$

Substituting this in (4.1) and putting $D_{hj}^i = \gamma_{hj}^i + \delta_h^i M_j - M^i a_{hj}$, we have

$$(4.3) \overline{D}_{hj}^i = D_{hj}^i$$

 D_{hj}^i is a symmetric conformally invariant linear connection on M. Thus we have the following proposition:

Proposition (4.1). In a Cartan space with generalized (α, β) metric there exists a conformally invariant symmetric linear connection D_{hj}^i .

If we denote by D_{hjk}^i , the curvature tensor of D_{hj}^i , we have from (4.3)

$$(4.4) \overline{D}_{hjk}^i = D_{hjk}^i$$

Since $b_{:k}^{(r)i}=0$, we have $M^i=0$. Hence, $D^i_{jk}=\gamma^i_{jk}$ and $D^i_{hjk}=R^i_{hjk}$. Thus, we have the next proposition:

Proposition (4.2). In a Cartan space with generalized (α, β) — metric admitting h-metrical d-connection $M^i = 0$ and there exists a conformally invariant symmetric linear connection D^i_{jk} such that $D^i_{jk} = \gamma^i_{jk}$ and $D^i_{hjk} = R^i_{hjk}$.

If the associated Riemannian space (M, α) is locally flat $\left(R_{hjk}^i = 0\right)$, then from (4.4) and proposition (4.2), we have $\overline{D}_{hjk}^i = 0$, i.e., the space C^n is conformally flat. Thus we conclude that

Theorem (4.1). A Cartan space C^n with generalized (α, β) — metric admitting h-metrical d-connection is conformally flat if and only if the associated Riemannian space (M, α) is locally flat $\left(R_{hjk}^i = 0\right)$.

References

- Cartan, E.: Les éspacès metriquès fondès sur la notion dairé, Actualitiès, Sci.Ind., 72 (1933), Herman, Paris.
- 2. Brickel, F.: A relation between Finsler and Cartan structures, Tensor, N.S. 25 (1972), 360-364.
- 3. Nagraja, H. G. : On Cartan spaces with (α, β) -metric, Turk. J. Math., 31 (2007), 363-369.
- 4. Rund, H.: The Hamiltonian-Jacobi theory in the calculus of variations, D. van Nostrand Co., London, (1966).
- 5. Matsumoto, M. and Shimada, H.: On Finsler spaces with one-form metric, Tensor, N. S., 32 (1978), 161-169.
- 6. Miron, R.: Cartan spaces in a new point of view by considering them as duals of Finsler spaces, Tensor, N. S., 46 (1987), 329-334.
- 7. Miron, R.: The geometry of Cartan spaces. Progress of Math., 22(1988), 01-38.
- 8. Singh, S. K.: Conformally Minkowaski type spaces and certain d-connections in a Miron space, Indian J. pure appl. Math., 26(4)(1995), 339-346.
- 9. Singh, S. K.: An h-metrical d-connection of a special Miron space, Indian J.pure appl. Math., 26(4)(1995), 347-350.
- 10. Igrashi, T.: Remarkable connections in Hamilton spaces, Tensor, N.S., 55 (1992), 151-161.
- 11. Igrashi, T.: (α, β) -metric in Cartan spaces, Tensor, N. S., 55 (1994), 74-82.
- 12. Ichijyo, Y. and Hashiguchi, M.: On the condition that a Rander space be conformally flat, Rep. Fac. Sci. Kagoshima Univ., (Math. Phy. Chem.), 22 (1989), 07-14.
- 13. Ichijyo, Y. and Hashiguchi, M. : On locally flat generalized (α, β) metrics and conformally flat generalized Randers metrics, Rep. Fac. Sci. Kagoshima Univ., (Math. Phy. Chem.), 27(1994), 17-25.