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Abstract

The purpose of the present paper is to discuss the conformal transformation
of a Finsler space with a special («, ) metric given by L? = cia? +2coa 3+ ¢332,
where ¢1, ¢, c3 are constants, « is Riemannian metric and [ is one form. We
have proved that for such a Finsler metric, the Berwald spaces, the locally
Minkowski spaces and the projectively flat spaces are not invariant under non-
homothetic conformal transformation.
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1. Introduction

Let M™ be an n-dimensional differentiable manifold and T"M™ be its tangent
bundle. The manifold M™ is covered by a coordinate neighbourhood {U}; in
each U of which we have a local coordinate system (z¢). A tangent vector at
a point x = (2°) of U is written as yl( 821')9; and we have a local co-ordinate
system (z°,y") of TM™ over the U.

The manifold M"™ equipped with a fundamental function L(z,y) is called
a Finsler space F™" = (M", L), if L is defined for any point of TM"™ — {0} and
is positively homogeneous of degree one in y'. If L is positively homogeneous
of degree one in o and 3, where a@ = /a;;(z)y’y? is a Riemannian metric
and 3 = b; (x)y’ is a one-form on M", then F™ is called a Finsler space with

(ar, B)—metric ([2], [3]).
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Various special («, f)—metrics have been considered in the literature. For

instance if L = a4+, then this metric is called Randers metric and corresponding
2
a“
6 I
Kropina metric and corresponding Finsler space is called Kropina space [8].

Finsler space is called Randers space [4]. If L = then this metric is called

A Finsler space is called C-reducible Finsler space if its Cartan’s C-tensor

372 . . .
Cijr = %% is written in the form

Cijke = hij Ak + hjpAi + hiiAj, (1.1)
where h;; is the angular metric tensor given by h;; = L% and A; is a vector
field given by A; = %Hcijk ¢’*. In [5], M. Matsumoto and S. Hojo have obtained

that a Finsler space of dimension n > 3, is C-reducible if and only if the F™ is
either Randers space or Kropina space.

A Finsler space is called generalized C-reducible [7] if there exists a covari-
ant tensor field K;; of order 2 and a covariant vector field B; such that

Ciji = Kij By + Kjx Bi + Ky Bj. (1.2)
A Finsler space with («, 8)—metric is generalized C-reducible if and only
3712
if %8%75(:?’@ = 0. Owing to this fact Park and Choi [6] introduced an («, )

metric L given by

L? = ¢10® + 2¢0 o + ¢332, (1.3)
where ¢y, ca, c3 are constants. In case of ¢; = co = ¢3 = 1, the metric L(a, f)
given by (1.3) is a Randers metric, so that the metric L(a, 8) given by (1.3) may
be considered as a generalization of Randers metric. If ¢ = 0, the metric L(a, 3)
given by (1.3) is a Riemannian metric and if cic3 — ¢3 = 0, then the metric is
Randers metric. Therefore we shall assume that ¢y # 0 and cic3 — C% £0. A
Finsler space with the metric (1.3) is said to be a generalized Randers space.

A Finsler space F'" is called a Berwald space if Berwald’s connection coeffi-
cient of F'" is linear and F™ is called locally Minkowski if there exist a coordinate
system in which L is independent of coordinates (x'). The Finsler space F™ is
called projectively flat if F'™ is conformal to a locally Minkowski space.

Let Vib; denote covariant derivative of b; with respect to associated Rie-
mannian connection and Rﬁljk be the curvature tensor of Riemannian space
(M™, ), then we have the following theorems [6]:

Theorem 1.1. If ¢; # 0, ¢35 # 0, then F™ is a Berwald space if and only if
Vib; = 0.
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Theorem 1.2. If ¢c; = c3 =0, then F™ is a Berwald space if and only if there
exists a covariant vector field (vy) such that

1
kai = §(UrbTaki — ’Uz'bk — 2’Ukbi),
where v" = a"v;.

Theorem 1.3. The Finsler space with an («, 8)—metric given by (1.3), where
c1 # 0, c3 # 0, is locally Minkowski space if and only if R;ij =0 and Vib; =0
are satisfied.

Theorem 1.4. A Finsler space with an (a, 8)—metric given by (1.3), is pro-
jectively flat if and only if associated Riemannian space (M™, «) is projectively
flat and Vib; = 0.

2. Conformal Change of Finsler Space

Let two distinct Finsler metric functions L(z,y) and L*(x,y) be defined
over an n-dimensional differentiable manifold M", then the two Finsler spaces
(M™, L) and (M"™, L*) are said to be in conformal correspondence if there exist
a function o(x) such that

L* =¢€°L. (2.1)

If we denote the quantities corresponding to (M™, L*) by putting ‘*’ on the
superscript position of that quantity, then

yz ] B oL* 1 82L*2

xt _ J  __ _—0O]i * — o0]. * . — 20, .
l - L* =€ ) lz 8yz € lh g 1] 2 8y7“8y] € gl]7 (22)
g*ij — 672091']'7 Cz*gk — 620611,]‘]{7 ]*Ii — g*irc*rjk — C]zk

If o is constant, the conformal transformation is called homothetic. For homo-
Jdo

- = 0.
ox*

thetic transformation o; =

3. Conformal Change of («, 3)—metric

A conformal change L — L* = e’ L(«, 3) of (o, B)—metric L is expressed
as (o, B) — (e, e?3). Thus a conformal change of («, 3)—metric is expressed
as (o, B) — (a*, B*), where

o =e a, and B =e€p. (3.1)
Therefore, we have

aj; = e a;j, b; = €b;, (3.2)

where a* = \/a*;;(z)y’y? and B* = b} (x)y".
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Also we have b = aijbibj = a*ijb;‘b; = b*2.

Lemma 3.1. In a Finsler space with («, 5)—metric, the length b of b; with
respect to Riemannian «, is invariant under any conformal change of metric.

As to the metric (1.3) of generalized Randers space we have
L2 =¢*[? = 620(61042 + 2¢9 a8 + 0352) = c10*? 4 20" B* + ¢332
Therefore we have the following;:

Theorem 3.1. The conformal transformation of a generalized Randers space
is a generalized Randers space with same constant coefficients.

If 7;% denotes the Christoffel symbol of Riemannian space (M", «), then
the corresponding quantity of (M"™, a*) is obtained from (3.2) and is given by

”yﬁﬁ = ’Y}k + (Uk(S; + dei — U’ajk), (3.3)
i ijy. 5. 0o
where o' = a0;, 0; = 57%.
ob¥ .
Thus Vi b = 5% — bj, vi is transformed to

Vib; = €7 (Vibi + bpo"a;, — oiby). (3.4)

In view of theorem (1.1) and equations (1.3), (3.4) it follows that a generalized
Randers-Berwald space is conformally transformed to a generalized Randers-
Berwald space if and only if

br O'Taij == O'ibj. (35)

Contracting (3.5) with a™/, we get (n — 1) b,0” = 0 which implies that b.0” = 0
for n > 1. Hence from (3.5) we get o;b; = 0. Since b; # 0 we have o; = 0, i.e.
the transformation is homothetic. Thus

Theorem 3.2. For ¢; # 0, ¢35 # 0, a generalized Randers-Berwald space is
conformally transformed to a generalized Randers-Berwald space if and only if
the transformation is homothetic.

Let F™ with metric (1.3), where ¢; = ¢3 = 0, be a Berwald space. Then
there exists a covariant vector field v;(x) such that [6]

1
(a) aij‘k. = VrQqy, (b) bl|k = — ivkbi, (36)
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where | denote the covariant derivative with respect to Berwald connection
(G;k,Gé,O). From (3.6)(a), we get
. . 1 . A ,
Gk =Yk — 5(%5} + iy — v'ai), (3.7)
where v’ = a”v;. From (3.6)(b) and (3.7), we obtain

1
Vib; = i(varaki — vib, — 2ugb;). (3.8)

Now let us suppose that the conformally transformed generalized Randers
space F*" is also a Berwald space. Then there exist covariant vector field v}
such that

k7 %k 1 * ko k k7 %k k7 3k
Vibi = 5 (v brag; — viby — 2uibi), (3.9)
where v* = a*ijv;f. From (3.2) we have

v"brar; = e“vrb ag;. (3.10)

From (3.4), (3.8) and (3.10), we get
v ag; — viby — 2uEb; = Vb ag; — vi by — 2uLb;. (3.11)
Contracting (3.11) with a** we get v,.b” = vb" and putting this value in (3.11),
we have (v] — v;)by, + 2 (v}, — vg)b; = 0.
Contracting this equation by b*, and using the fact that v,b" = v}b", we get

vy = ;. (3.12)

1

Proposition 3.1. If the generalized Randers- Berwald space for ¢; = ¢3 = 0,
is conformally transformed to the generalized Randers-Berwald space, then the
vector field v; occurring in theorem (1.2) is conformally invariant.

Now we consider the generalized Randers space F™ for ¢; = ¢3 = 0 and
discuss the case that the Berwald space F" is conformally transformed to a
Berwald space or not. In this case from theorem (1.2), F™ is Berwald space if
and only if there exists a vector field v; such that (3.8) holds.

Now from (3.2), (3.8) and (3.12) we get
1
Vibi — §(v*7"b:a}';i —v;by, — 2upb;) = €7 (bro"ay; — o;by,).

Therefore by theorems (1.2) and (3.1), F*" is also a Berwald space if and only
if b.0"ay; — o;b = 0, which gives o; = 0, i.e. the conformal transformation is
homothetic.
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Theorem 3.3. For ¢; = c3 = 0, the generalized Randers-Berwald space is
conformally transformed to the generalized Randers-Berwald space if and only
if the transformation is homothetic.

Now let us suppose that the generalized Randers space F™ with ¢; # 0,
cg # 0, is locally Minkowski space. Then in view of theorem (1.3) we have R}ij
= 0 and Vib; = 0. For conformally transformed generalized Randers space F};,
from (3.4) we have

Vb = e (bro"a;, — oiby) (3.13)
and [1]
Rzgk = R};jk + 61,01 — 0L onk+a” (anjork — aneor) + (Span; — Ssank) Aro, (3.14)
where
0ij = Vi0; — 0,04, Ao = aijaiaj. (3.15)
From (3.13) and (3.14) it follows that F*" is also locally Minkowski if and only

if o; = 0 i.e. the conformal transformation is homothetic and in this case (3.14)
gives R,’:’jk = 0. Hence we have the following;:

Theorem 3.4. If a generalized Randers space F™ with ¢y # 0, ¢3 # 0, is locally
Minkowski, its conformally transformed space F*™ is also locally Minkowaski if
and only if the transformation is homothetic.

If F™ is projectively flat then from theorem (1.4) we have Vb, = 0 and
associated Riemannian space is projectively flat.

The associated Riemannian space is projectively flat if and only if 7, = voy’
[3], where ‘0’ denote the contraction with y°.

From (3.3) and (3.12) it follows that
%60 — v6y" = (Yoo — voy’) + 200y" — a’a’. (3.16)
Thus if F™ is projectively flat then F*" is also projectively flat if and only if
o; = 0 i.e. the conformal transformation is homothetic.

Theorem 3.5. If a generalized Randers space F" is projectively flat then its
conformally transformed space F*" is also projectively flat if and only if the
transformation is homothetic.

Conclusion. For a non-homothetic conformal transformation of generalized
Randers space

(i) a Berwald space is not conformal to a Berwald space,
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(ii) a locally Minkowaski space is not conformal to a locally Minkowaski
space,
(iii) a projectively flat space is not conformal to a projectively flat space.
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