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Abstract

The purpose of the present paper is to discuss the conformal transformation

of a Finsler space with a special (α, β) metric given by L2 = c1α
2+2c2αβ+c3β

2,

where c1, c2, c3 are constants, α is Riemannian metric and β is one form. We

have proved that for such a Finsler metric, the Berwald spaces, the locally

Minkowski spaces and the projectively flat spaces are not invariant under non-

homothetic conformal transformation.
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1. Introduction

LetMn be an n-dimensional differentiable manifold and TMn be its tangent

bundle. The manifold Mn is covered by a coordinate neighbourhood {U}; in
each U of which we have a local coordinate system (xi). A tangent vector at

a point x = (xi) of U is written as yi
(

∂
∂xi

)
x
and we have a local co-ordinate

system (xi, yi) of TMn over the U .

The manifold Mn equipped with a fundamental function L(x, y) is called

a Finsler space Fn = (Mn, L), if L is defined for any point of TMn − {0} and

is positively homogeneous of degree one in yi. If L is positively homogeneous

of degree one in α and β, where α =
√

aij(x)yiyj is a Riemannian metric

and β = bi (x)y
i is a one-form on Mn, then Fn is called a Finsler space with

(α, β)−metric ([2], [3]).
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Various special (α, β)−metrics have been considered in the literature. For

instance if L = α+β, then this metric is called Randers metric and corresponding

Finsler space is called Randers space [4]. If L = α2

β , then this metric is called

Kropina metric and corresponding Finsler space is called Kropina space [8].

A Finsler space is called C-reducible Finsler space if its Cartan’s C-tensor

Cijk = 1
4

∂3L2

∂yi∂yj∂yk
is written in the form

Cijk = hijAk + hjkAi + hkiAj , (1.1)

where hij is the angular metric tensor given by hij = L ∂2L
∂yi∂yj

and Ai is a vector

field given by Ai =
1

n+1Cijk g
jk. In [5], M. Matsumoto and S. Hojo have obtained

that a Finsler space of dimension n ≥ 3, is C-reducible if and only if the Fn is

either Randers space or Kropina space.

A Finsler space is called generalized C-reducible [7] if there exists a covari-

ant tensor field Kij of order 2 and a covariant vector field Bi such that

Cijk = KijBk +KjkBi +KkiBj . (1.2)

A Finsler space with (α, β)−metric is generalized C-reducible if and only

if 1
2
∂3L2(α,β)

∂β3 = 0. Owing to this fact Park and Choi [6] introduced an (α, β)

metric L given by

L2 = c1α
2 + 2c2 αβ + c3β

2, (1.3)

where c1, c2, c3 are constants. In case of c1 = c2 = c3 = 1, the metric L(α, β)

given by (1.3) is a Randers metric, so that the metric L(α, β) given by (1.3) may

be considered as a generalization of Randers metric. If c2 = 0, the metric L(α, β)

given by (1.3) is a Riemannian metric and if c1c3 − c22 = 0, then the metric is

Randers metric. Therefore we shall assume that c2 ̸= 0 and c1c3 − c22 ̸= 0. A

Finsler space with the metric (1.3) is said to be a generalized Randers space.

A Finsler space Fn is called a Berwald space if Berwald’s connection coeffi-

cient of Fn is linear and Fn is called locally Minkowski if there exist a coordinate

system in which L is independent of coordinates (xi). The Finsler space Fn is

called projectively flat if Fn is conformal to a locally Minkowski space.

Let ∇kbi denote covariant derivative of bi with respect to associated Rie-

mannian connection and Ri
hjk be the curvature tensor of Riemannian space

(Mn, α), then we have the following theorems [6]:

Theorem 1.1. If c1 ̸= 0, c3 ̸= 0, then Fn is a Berwald space if and only if

∇kbi = 0.
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Theorem 1.2. If c1 = c3 = 0, then Fn is a Berwald space if and only if there

exists a covariant vector field (vk) such that

∇kbi =
1

2
(vrbraki − vibk − 2vkbi),

where vr = arivi.

Theorem 1.3. The Finsler space with an (α, β)−metric given by (1.3), where

c1 ̸= 0, c3 ̸= 0, is locally Minkowski space if and only if Ri
hjk = 0 and ∇kbi = 0

are satisfied.

Theorem 1.4. A Finsler space with an (α, β)−metric given by (1.3), is pro-

jectively flat if and only if associated Riemannian space (Mn, α) is projectively

flat and ∇kbi = 0.

2. Conformal Change of Finsler Space

Let two distinct Finsler metric functions L(x, y) and L∗(x, y) be defined

over an n-dimensional differentiable manifold Mn, then the two Finsler spaces

(Mn, L) and (Mn, L∗) are said to be in conformal correspondence if there exist

a function σ(x) such that

L∗ = eσL. (2.1)

If we denote the quantities corresponding to (Mn, L∗) by putting ‘*’ on the

superscript position of that quantity, then

l∗i =
yi

L∗ = e−σli, l∗i =
∂L∗

∂yi
= eσli, g∗ij =

1

2

∂2L∗2

∂yi∂yj
= e2σgij ,

g∗ij = e−2σgij , C∗
ijk = e2σCijk, C∗i

jk = g∗irC∗
rjk = Ci

jk.

(2.2)

If σ is constant, the conformal transformation is called homothetic. For homo-

thetic transformation σi =
∂σ
∂xi = 0.

3. Conformal Change of (α, β)−metric

A conformal change L → L∗ = eσL(α, β) of (α, β)−metric L is expressed

as (α, β) → (eσα, eσβ). Thus a conformal change of (α, β)−metric is expressed

as (α, β) → (α∗, β∗), where

α∗ = eσ α, and β∗ = eσβ. (3.1)

Therefore, we have

a∗ij = e2σaij , b∗i = eσbi, (3.2)

where α∗ =
√

a∗ij(x)yiyj and β∗ = b∗i (x)y
i.
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Also we have b2 = aijbibj = a∗ijb∗i b
∗
j = b∗2.

Lemma 3.1. In a Finsler space with (α, β)−metric, the length b of bi with

respect to Riemannian α, is invariant under any conformal change of metric.

As to the metric (1.3) of generalized Randers space we have

L∗2 = e2σL2 = e2σ(c1α
2 + 2c2 αβ + c3β

2) = c1α
∗2 + 2c2α

∗β∗ + c3β
∗2.

Therefore we have the following:

Theorem 3.1. The conformal transformation of a generalized Randers space

is a generalized Randers space with same constant coefficients.

If γijk denotes the Christoffel symbol of Riemannian space (Mn, α), then

the corresponding quantity of (Mn, α∗) is obtained from (3.2) and is given by

γ∗ijk = γijk + (σkδ
i
j + σjδ

i
k − σiajk), (3.3)

where σi = aijσj , σj =
∂σ
∂xj .

Thus ∇∗
k b

∗
i =

∂b∗i
∂xk − b∗h γ

∗h
ik is transformed to

∇∗
kb

∗
i = eσ(∇kbi + brσ

raik − σibk). (3.4)

In view of theorem (1.1) and equations (1.3), (3.4) it follows that a generalized

Randers-Berwald space is conformally transformed to a generalized Randers-

Berwald space if and only if

br σ
raij = σibj . (3.5)

Contracting (3.5) with aij , we get (n− 1) brσ
r = 0 which implies that brσ

r = 0

for n > 1. Hence from (3.5) we get σibj = 0. Since bi ̸= 0 we have σi = 0, i.e.

the transformation is homothetic. Thus

Theorem 3.2. For c1 ̸= 0, c3 ̸= 0, a generalized Randers-Berwald space is

conformally transformed to a generalized Randers-Berwald space if and only if

the transformation is homothetic.

Let Fn with metric (1.3), where c1 = c3 = 0, be a Berwald space. Then

there exists a covariant vector field vi(x) such that [6]

(a) aij|k = vkaij , (b) bi|k = − 1

2
vkbi, (3.6)
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where |k denote the covariant derivative with respect to Berwald connection

(Gi
jk, G

i
j , 0). From (3.6)(a), we get

Gi
jk = γijk −

1

2
(vkδ

i
j + vjδ

i
k − viajk), (3.7)

where vi = aijvj . From (3.6)(b) and (3.7), we obtain

∇kbi =
1

2
(vrbraki − vibk − 2vkbi). (3.8)

Now let us suppose that the conformally transformed generalized Randers

space F ∗n is also a Berwald space. Then there exist covariant vector field v∗i
such that

∇∗
kb

∗
i =

1

2
(v∗rb∗ra

∗
ki − v∗i b

∗
k − 2v∗kb

∗
i ), (3.9)

where v∗i = a∗ijv∗j . From (3.2) we have

v∗rb∗ra
∗
ki = eσv∗rb

raki. (3.10)

From (3.4), (3.8) and (3.10), we get

vrb
raki − vibk − 2vkbi = v∗rb

raki − v∗i bk − 2v∗kbi. (3.11)

Contracting (3.11) with aki we get vrb
r = v∗rb

r and putting this value in (3.11),

we have (v∗i − vi)bk + 2 (v∗k − vk)bi = 0.

Contracting this equation by bk, and using the fact that vrb
r = v∗rb

r, we get

v∗i = vi. (3.12)

Proposition 3.1. If the generalized Randers- Berwald space for c1 = c3 = 0,

is conformally transformed to the generalized Randers-Berwald space, then the

vector field vi occurring in theorem (1.2) is conformally invariant.

Now we consider the generalized Randers space Fn for c1 = c3 = 0 and

discuss the case that the Berwald space Fn is conformally transformed to a

Berwald space or not. In this case from theorem (1.2), Fn is Berwald space if

and only if there exists a vector field vi such that (3.8) holds.

Now from (3.2), (3.8) and (3.12) we get

∇∗
kb

∗
i −

1

2
(v∗rb∗ra

∗
ki − v∗i b

∗
k − 2v∗kb

∗
i ) = eσ(brσ

raki − σibk).

Therefore by theorems (1.2) and (3.1), F ∗n is also a Berwald space if and only

if brσ
raki − σibk = 0, which gives σi = 0, i.e. the conformal transformation is

homothetic.
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Theorem 3.3. For c1 = c3 = 0, the generalized Randers-Berwald space is

conformally transformed to the generalized Randers-Berwald space if and only

if the transformation is homothetic.

Now let us suppose that the generalized Randers space Fn with c1 ̸= 0,

c3 ̸= 0, is locally Minkowski space. Then in view of theorem (1.3) we have Ri
hjk

= 0 and ∇kbi = 0. For conformally transformed generalized Randers space F ∗
n ,

from (3.4) we have

∇∗
kb

∗
i = eσ(brσ

raik − σibk) (3.13)

and [1]

R∗i
hjk = Ri

hjk+δikσhj−δijσhk+air(ahjσrk−ahkσrj)+(δikahj−δijahk)∆1σ, (3.14)

where

σij = ∇iσj − σiσj , ∆1σ = aijσiσj . (3.15)

From (3.13) and (3.14) it follows that F ∗n is also locally Minkowski if and only

if σi = 0 i.e. the conformal transformation is homothetic and in this case (3.14)

gives R∗i
hjk = 0. Hence we have the following:

Theorem 3.4. If a generalized Randers space Fn with c1 ̸= 0, c3 ̸= 0, is locally

Minkowski, its conformally transformed space F ∗n is also locally Minkowaski if

and only if the transformation is homothetic.

If Fn is projectively flat then from theorem (1.4) we have ∇kbi = 0 and

associated Riemannian space is projectively flat.

The associated Riemannian space is projectively flat if and only if γi00 = v0y
i

[3], where ‘0’ denote the contraction with yi.

From (3.3) and (3.12) it follows that

γ∗i00 − v∗0y
i = (γi00 − v0y

i) + 2σ0y
i − α2σi. (3.16)

Thus if Fn is projectively flat then F ∗n is also projectively flat if and only if

σi = 0 i.e. the conformal transformation is homothetic.

Theorem 3.5. If a generalized Randers space Fn is projectively flat then its

conformally transformed space F ∗n is also projectively flat if and only if the

transformation is homothetic.

Conclusion. For a non-homothetic conformal transformation of generalized

Randers space

(i) a Berwald space is not conformal to a Berwald space,
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(ii) a locally Minkowaski space is not conformal to a locally Minkowaski

space,

(iii) a projectively flat space is not conformal to a projectively flat space.
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