

On Certain Subclasses of Meromorphic Functions with Positive Coefficients involving Generalized Liu-Srivastava Operator

N. B. Gatti*, N. Magesh¹, J. Jothibasu and S. Murthy

*PG Studies in Mathematics, Govt Science College,
 Chitradurga - 577501, Karnataka, India
 e-mail: nbg_71@rediffmail.com

PG and Research Department of Mathematics,
 Government Arts College (Men)
 Krishnagiri - 635001, Tamilnadu, India
 e-mail: nmagi_2000@yahoo.co.in, jjthebas@yahoo.co.in and
 smurthy07@yahoo.co.in
 (Received: 6 May, 2011)

(Dedicated to Prof. K. S. Amur on his 80th birth year)

Abstract

In this paper, making use of the generalized Liu-Srivastava operator, we introduce and study a new subclass $\Sigma_P(\alpha, \beta, \gamma, \lambda, k)$ of meromorphically univalent functions. We obtain the coefficient estimates, distortion bounds, extreme points, radii of meromorphically starlikeness and convexity for functions in the class $\Sigma_P(\alpha, \beta, \gamma, \lambda, k)$. Furthermore we obtain the partial sums for the same.

Keywords and Phrases : Meromorphic functions, Hadamard product (or convolution), meromorphic starlike functions, meromorphic convex functions, Liu-Srivastava operator.

2010 AMS Subject Classification : 30C45, 30C50.

1. Introduction

Let Σ denote the class of functions of the form

¹Corresponding Author.

The authors very much thankful to the Conference Organizers and the Tensor Society for the given opportunity to present the paper in 3rd Annual Conference of Tensor Society held on 27th and 28th May, 2011, at Kuvempu University, Shimoga-577451, Karnataka.

$$f(z) = z^{-1} + \sum_{n=1}^{\infty} a_n z^n \quad (1.1)$$

which are analytic in the punctured open unit disk

$$\mathbb{U}^* := \{z : z \in \mathbb{C}, 0 < |z| < 1\} =: \mathbb{U} \setminus \{0\}.$$

Let Σ_S , $\Sigma^*(\gamma)$ and $\Sigma_K(\gamma)$, ($0 \leq \gamma < 1$) denote the subclasses of Σ that are meromorphically univalent, meromorphically starlike functions of order γ and meromorphically convex functions of order γ respectively. Analytically, $f \in \Sigma^*(\gamma)$ if and only if, f is of the form (1.1) and satisfies

$$-\operatorname{Re} \left(\frac{zf'(z)}{f(z)} \right) > \gamma, \quad z \in \mathbb{U},$$

similarly, $f \in \Sigma_K(\gamma)$, if and only if, f is of the form (1.1) and satisfies

$$-\operatorname{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) > \gamma, \quad z \in \mathbb{U},$$

and similar other classes of meromorphically univalent functions have been extensively studied by (for example) Altintas [2], Aouf [4], Mogra et al. [17], Uralegadi et al. [21, 22, 23] and others (see [3, 6, 18, 19]).

Let Σ_P be the class of functions of the form

$$f(z) = z^{-1} + \sum_{n=1}^{\infty} a_n z^n, \quad a_n \geq 0, \quad (1.2)$$

that are analytic and univalent in \mathbb{U}^* . For functions $f \in \Sigma$ given by (1.1) and $g \in \Sigma$ given

$$g(z) = z^{-1} + \sum_{n=1}^{\infty} b_n z^n, \quad (1.3)$$

we define the Hadamard product (or convolution) of $f(z)$ and $g(z)$ by

$$(f * g)(z) := z^{-1} + \sum_{n=1}^{\infty} a_n b_n z^n =: (g * f)(z). \quad (1.4)$$

For complex parameters $\alpha_1, \dots, \alpha_l$ and β_1, \dots, β_m ($\beta_j \neq 0, -1, \dots; j = 1, 2, \dots, m$) the generalized hypergeometric function ${}_lF_m(z)$ is defined by

$$\begin{aligned} {}_lF_m(z) \equiv {}_lF_m(\alpha_1, \dots, \alpha_l; \beta_1, \dots, \beta_m; z) &:= \sum_{n=0}^{\infty} \frac{(\alpha_1)_n \dots (\alpha_l)_n}{(\beta_1)_n \dots (\beta_m)_n} \frac{z^n}{n!} \quad (1.5) \\ (l \leq m+1; l, m \in \mathbb{N}_0) &:= \mathbb{N} \cup \{0\}; z \in U, \end{aligned}$$

where N denotes the set of all positive integers and $(\theta)_n$ is the Pochhammer symbol defined by

$$(\theta)_n = \frac{\Gamma(\theta + n)}{\Gamma(\theta)} = \begin{cases} 1, & n = 0; \theta \in \mathbb{C} \setminus \{0\} \\ \theta(\theta + 1)(\theta + 2) \dots (\theta + n - 1), & n \in \mathbb{N}; \theta \in C \end{cases} \quad (1.6)$$

Corresponding to a function ${}_lF_m(\alpha_1, \dots, \alpha_l; \beta_1, \dots, \beta_m; z)$ defined by

$$\mathcal{F}(\alpha_1, \dots, \alpha_l; \beta_1, \dots, \beta_m; z) := z^{-1} {}_lF_m(\alpha_1, \dots, \alpha_l; \beta_1, \dots, \beta_m; z),$$

Liu and Srivastava [15] (see also [16]) considered a linear operator $\mathcal{H}(\alpha_1, \dots, \alpha_l; \beta_1, \dots, \beta_m) : \Sigma \rightarrow \Sigma$ defined by the following Hadamard product (or convolution):

$$\begin{aligned} \mathcal{H}(\alpha_1, \dots, \alpha_l; \beta_1, \dots, \beta_m) f(z) &= \mathcal{F}(\alpha_1, \dots, \alpha_l; \beta_1, \dots, \beta_m; z) * f(z) \\ &= z^{-1} + \sum_{n=1}^{\infty} \frac{(\alpha_1)_{n+1} \dots (\alpha_l)_{n+1}}{(\beta_1)_{n+1} \dots (\beta_m)_{n+1}} \frac{a_n z^n}{(n+1)!}, \end{aligned} \quad (1.7)$$

where, $\alpha_i > 0$, $(i = 1, 2, \dots, l)$, $\beta_j > 0$, $(j = 1, 2, \dots, m)$, $l \leq m+1$; $l, m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$. For notational simplicity, we use a shorter notations $\mathcal{H}_m^l[\alpha_1]$ for $\mathcal{H}(\alpha_1, \dots, \alpha_l; \beta_1, \dots, \beta_m)$, in the sequel. We note that the linear operator $\mathcal{H}_m^l[\alpha_1]$ was motivated essentially by Dziok and Srivastava [9].

Next, we define the linear operator $\mathcal{D}_{\lambda, k}^{l, m} : \Sigma \rightarrow \Sigma$ by

$$\begin{aligned} \mathcal{D}_{\lambda, 0}^{l, m} f(z) &= f(z), \\ \mathcal{D}_{\lambda, 1}^{l, m} f(z) &= (1 - \lambda) \mathcal{H}_m^l[\alpha_1] f(z) + \frac{\lambda}{z} (z^2 \mathcal{H}_m^l[\alpha_1] f(z))' = \mathcal{D}_{\lambda}^{l, m} f(z), \quad (\lambda \geq 0). \end{aligned}$$

and (in general),

$$\begin{aligned} \mathcal{D}_{\lambda, k}^{l, m} f(z) &= \mathcal{D}_{\lambda}^{l, m} (\mathcal{D}_{\lambda, k-1}^{l, m} f(z)) \\ \mathcal{D}_{\lambda, k}^{l, m} f(z) &:= \frac{1}{z} + \sum_{n=1}^{\infty} \Gamma_n(\alpha_1, k, \lambda) a_n z^n, \end{aligned} \quad (1.8)$$

where,

$$\Gamma_n(\alpha_1, k, \lambda) = \left(\frac{(\alpha_1)_{n+1} \dots (\alpha_l)_{n+1}}{(\beta_1)_{n+1} \dots (\beta_m)_{n+1}} \frac{[1 + \lambda(n-1)]}{(n+1)!} \right)^k, \quad (k \in \mathbb{N}_0, \lambda > 0). \quad (1.9)$$

We note that, for $k = 1$ and $\lambda = 0$ the operator $\mathcal{D}_{0, 1}^{l, m} f(z) = H_m^l[\alpha_1] f(z)$ which was investigated by Liu and Srivastava [15], Aouf [5] (see also [7]), for $l = 2$, $m = 1$, $\alpha_2 = 1$, $\lambda = 0$ and $k = 1$ the operator $\mathcal{D}_{0, 1}^{2, 1}[\alpha_1, 1; \beta_1] f(z) = \mathcal{L}[\alpha_1; \beta_1] f(z)$ was introduced and studied by Liu and Srivastava [14] (see also [1],

[11] and [25]). Further, we remark in passing that this operator $\mathcal{L}[\alpha_1; \beta_1]$ is closely related to the Carlson-Shaffer operator $\mathcal{L}[\alpha_1; \beta_1]$ defined on the space of analytic and univalent functions in \mathbb{U} . For $l = 2$, $m = 1$, $\alpha_1 = \delta + 1$, $\beta_1 = \alpha_2 = 1$, $\lambda = 0$ and $k = 1$, the operator $\mathcal{D}_{0,1}^{2,1}[\delta + 1, 1; 1]f(z) = \mathcal{D}^\delta f(z) = \frac{1}{z(1-z)^{\delta+1}} * f(z)$ ($\delta > -1$), where \mathcal{D}^δ is the differential operator which was introduced by Ganigi and Uralegadi [10] (see also [7]) and then it was generalized by Yang [24].

Now by making use of the operator $\mathcal{D}_{\lambda,k}^{l,m}$, we define a new subclass of functions in Σ_P as follows.

Definition 1.1. For $0 \leq \alpha < 1$ and $0 < \beta \leq 1$, $\frac{1}{2} < \gamma \leq 1$ if $\alpha = 0$, $\frac{1}{2} < \gamma \leq \frac{1}{2\alpha}$ if $\alpha \neq 0$, let $\Sigma(\alpha, \beta, \gamma, \lambda, k)$ denote a subclass of Σ consisting functions of the form (1.1) satisfying the condition that

$$\left| \frac{\frac{z(\mathcal{D}_{\lambda,k}^{l,m} f(z))'}{\mathcal{D}_{\lambda,k}^{l,m} f(z)} + 1}{2\gamma \left[\frac{z(\mathcal{D}_{\lambda,k}^{l,m} f(z))'}{\mathcal{D}_{\lambda,k}^{l,m} f(z)} + \alpha \right] - \left[\frac{z(\mathcal{D}_{\lambda,k}^{l,m} f(z))'}{\mathcal{D}_{\lambda,k}^{l,m} f(z)} + 1 \right]} \right| < \beta, \quad z \in \mathbb{U}^*, \quad (1.10)$$

where $\mathcal{D}_{\lambda,k}^{l,m} f(z)$ is given by (1.8). Furthermore, we say that a function $f \in \Sigma_P(\alpha, \beta, \gamma, \lambda, k)$, whenever $f(z)$ is of the form (1.2).

We observe that by specializing the parameters involved in the operator and in the class, we obtain the classes studied by Aouf [3], Kulkarni and Joshi [12], Mogra et al., [17] and others. The present paper aims at providing a systematic investigation of the various interesting properties and characteristics of functions belonging to the class $\Sigma_P(\alpha, \beta, \gamma, \lambda, k)$. Further we determine the radius of starlikeness and convexity for the functions in the class $\Sigma_P(\alpha, \beta, \gamma, \lambda, k)$. We also obtain the partial sums for the aforementioned class.

2. Coefficient Inequalities

In this section we assume that $0 \leq \alpha < 1$ and $0 < \beta \leq 1$, $\frac{1}{2} < \gamma \leq 1$ if $\alpha = 0$, $\frac{1}{2} < \gamma \leq \frac{1}{2\alpha}$ if $\alpha \neq 0$, and $\Gamma_n(\alpha_1, k, \lambda)$ is given by (1.9). Our first result for the functions $f \in \Sigma$ is contained in the following theorem.

Theorem 2.1. Let $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n$ be analytic in U^* . If

$$\sum_{n=1}^{\infty} [(n+1) + \beta((1-n) + 2\gamma(n-\alpha))] \Gamma_n(\alpha_1, k, \lambda) |a_n| \leq 2\beta\gamma(1-\alpha), \quad (2.1)$$

then $f \in \Sigma(\alpha, \beta, \gamma, \lambda, k)$.

Proof. Suppose (2.1) holds, for all admissible values of α , β and γ . Then we have

$$\begin{aligned}
& \left| z(\mathcal{D}_{\lambda,k}^{l,m} f(z))' + \mathcal{D}_{\lambda,k}^{l,m} f(z) \right| - \beta \left| (2\gamma - 1)z(\mathcal{D}_{\lambda,k}^{l,m} f(z))' + (2\alpha\gamma - 1)\mathcal{D}_{\lambda,k}^{l,m} f(z) \right| \\
&= \left| \sum_{n=1}^{\infty} (n+1)\Gamma_n(\alpha_1, k, \lambda) a_n z^n \right| - \beta \left| 2\gamma(\alpha - 1) \frac{1}{z} + \sum_{n=1}^{\infty} (2\gamma - 1)n\Gamma_n(\alpha_1, k, \lambda) a_n z^n \right| \\
&\quad + \sum_{n=1}^{\infty} (2\alpha\gamma - 1)\Gamma_n(\alpha_1, k, \lambda) a_n z^n \Big| \\
&\leq \sum_{n=1}^{\infty} [(n+1) + \beta((1-n) + 2\gamma(n-\alpha))] \Gamma_n(\alpha_1, k, \lambda) |a_n| z^{n+1} - 2\beta\gamma(1-\alpha).
\end{aligned}$$

Since the above inequality holds for all $r = |z|$, $0 < r < 1$, letting $r \rightarrow 1$, we have,

$$\sum_{n=1}^{\infty} [(n+1) + \beta((1-n) + 2\gamma(n-\alpha))] \Gamma_n(\alpha_1, k, \lambda) |a_n| \leq 2\beta\gamma(1-\alpha)$$

by (2.1). Hence it follows that $f \in \Sigma(\alpha, \beta, \gamma, \lambda, k)$.

In the next theorem, we obtain the necessary and sufficient condition for a function f to be in the class $\Sigma_P(\alpha, \beta, \gamma, \lambda, k)$.

Theorem 2.2. Let $f \in \Sigma_P$ be given by (1.2). Then $f \in \Sigma_P(\alpha, \beta, \gamma, \lambda, k)$ if and only if

$$\sum_{n=1}^{\infty} [(n+1) + \beta((1-n) + 2\gamma(n-\alpha))] \Gamma_n(\alpha_1, k, \lambda) a_n \leq 2\beta\gamma(1-\alpha), \quad (2.2)$$

where $\Gamma_n(\alpha_1, k, \lambda)$ is given by (1.9).

Proof. By previous theorem, it is sufficient to show the only if part. Let us assume that the function $f(z)$ is of the form (1.2) is in $\Sigma_P(\alpha, \beta, \gamma, \lambda, k)$. Then

$$\left| \frac{\frac{z(\mathcal{D}_{\lambda,k}^{l,m} f(z))'}{\mathcal{D}_{\lambda,k}^{l,m} f(z)} + 1}{2\gamma \left[\frac{z(\mathcal{D}_{\lambda,k}^{l,m} f(z))'}{\mathcal{D}_{\lambda,k}^{l,m} f(z)} + \alpha \right] - \left[\frac{z(\mathcal{D}_{\lambda,k}^{l,m} f(z))'}{\mathcal{D}_{\lambda,k}^{l,m} f(z)} + 1 \right]} \right|$$

$$\begin{aligned}
&= \left| \frac{\sum_{n=1}^{\infty} (n+1)\Gamma_n(\alpha_1, k, \lambda) a_n z^{n+1}}{2\gamma(1-\alpha) - \sum_{n=1}^{\infty} (1-2\gamma)n\Gamma_n(\alpha_1, k, \lambda) a_n z^{n+1}} \right. \\
&\quad \left. - \frac{\sum_{n=1}^{\infty} (1-2\alpha\gamma)\Gamma_n(\alpha_1, k, \lambda) a_n z^{n+1}}{\sum_{n=1}^{\infty} (1-2\alpha\gamma)\Gamma_n(\alpha_1, k, \lambda) a_n z^{n+1}} \right| \\
&< \beta, \quad z \in \mathbb{U}^*. \tag{2.3}
\end{aligned}$$

Using fact that $|\Re(z)| \leq |z|$ for any z , it follows that

$$\Re \left(\frac{\sum_{n=1}^{\infty} (n+1)\Gamma_n(\alpha_1, k, \lambda) a_n z^{n+1}}{2\gamma(1-\alpha) - \sum_{n=1}^{\infty} (1-2\gamma)n\Gamma_n(\alpha_1, k, \lambda) a_n z^{n+1}} \right. \\
\left. - \frac{\sum_{n=1}^{\infty} (1-2\alpha\gamma)\Gamma_n(\alpha_1, k, \lambda) a_n z^{n+1}}{\sum_{n=1}^{\infty} (1-2\alpha\gamma)\Gamma_n(\alpha_1, k, \lambda) a_n z^{n+1}} \right) < \beta, \quad z \in \mathbb{U}^*. \tag{2.4}$$

Now choose the value of z on real axis so that $\frac{z(\mathcal{D}_{\lambda, k}^{l, m} f(z))'}{\mathcal{D}_{\lambda, k}^{l, m} f(z)}$ is real. Upon clearing the denominator in (2.4) and letting $z \rightarrow 1$ through positive values, we obtain

$$\sum_{n=1}^{\infty} [(n+1) + \beta((1-n) + 2\gamma(n-\alpha))] \Gamma_n(\alpha_1, k, \lambda) a_n \leq 2\beta\gamma(1-\alpha).$$

Hence the result follows.

The coefficient estimate for functions in the class $\Sigma_P(\alpha, \beta, \gamma, \lambda, k)$ is stated in the following corollary.

Corollary 2.3. If $f \in \Sigma_P(\alpha, \beta, \gamma, \lambda, k)$ then

$$a_n \leq \frac{2\beta\gamma(1-\alpha)}{[(n+1) + \beta((1-n) + 2\gamma(n-\alpha))] \Gamma_n(\alpha_1, k, \lambda)}. \tag{2.5}$$

The result is sharp for the function

$$f_n(z) = \frac{1}{z} + \frac{2\beta\gamma(1-\alpha)}{[(n+1) + \beta((1-n) + 2\gamma(n-\alpha))] \Gamma_n(\alpha_1, k, \lambda)}, \quad n \geq 1. \tag{2.6}$$

Next we obtain the distortion and growth results for the class $\Sigma_P(\alpha, \beta, \gamma, \lambda, k)$ from the following theorem.

Theorem 2.4. If $f \in \Sigma_P(\alpha, \beta, \gamma, \lambda, k)$, then

$$\frac{1}{r} - \frac{2\beta\gamma(1-\alpha)}{[2+2\beta\gamma(1-\alpha)]\Gamma_1(\alpha_1, k, \lambda)}r \leq |f(z)| \leq \frac{1}{r} + \frac{2\beta\gamma(1-\alpha)}{[2+2\beta\gamma(1-\alpha)]\Gamma_1(\alpha_1, k, \lambda)}r$$

$$(|z| = r)$$

and

$$\frac{1}{r^2} - \frac{2\beta\gamma(1-\alpha)}{[2+2\beta\gamma(1-\alpha)]\Gamma_1(\alpha_1, k, \lambda)} \leq |f'(z)| \leq \frac{1}{r^2} + \frac{2\beta\gamma(1-\alpha)}{[2+2\beta\gamma(1-\alpha)]\Gamma_1(\alpha_1, k, \lambda)}$$

$$(|z| = r).$$

The result is sharp for

$$f(z) = \frac{1}{z} + \frac{2\beta\gamma(1-\alpha)}{[2+2\beta\gamma(1-\alpha)]\Gamma_1(\alpha_1, k, \lambda)}z. \quad (2.7)$$

Proof. Since $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n$, we have

$$|f(z)| \leq \frac{1}{r} + \sum_{n=1}^{\infty} a_n r^n \leq \frac{1}{r} + r \sum_{n=1}^{\infty} a_n. \quad (2.8)$$

Given that $f \in \Sigma_P(\alpha, \beta, \gamma, \lambda, k)$, from the equation (2.2), we have

$$\begin{aligned} [2+2\beta\gamma(1-\alpha)]\Gamma_1(\alpha_1, k, \lambda) \sum_{n=1}^{\infty} a_n &\leq \sum_{n=1}^{\infty} [(n+1) + \beta((1-n) + 2\gamma(n-\alpha))] \times \\ &\quad \Gamma_n(\alpha_1, k, \lambda) a_n \\ &\leq 2\beta\gamma(1-\alpha). \end{aligned}$$

That is,

$$\sum_{n=1}^{\infty} a_n \leq \frac{2\beta\gamma(1-\alpha)}{[2+2\beta\gamma(1-\alpha)]\Gamma_1(\alpha_1, k, \lambda)}.$$

Using the above equation in (2.8), we have

$$|f(z)| \leq \frac{1}{r} + \frac{2\beta\gamma(1-\alpha)}{[2+2\beta\gamma(1-\alpha)]\Gamma_1(\alpha_1, k, \lambda)}r$$

and

$$|f(z)| \geq \frac{1}{r} - \frac{2\beta\gamma(1-\alpha)}{[2+2\beta\gamma(1-\alpha)]\Gamma_1(\alpha_1, k, \lambda)}r.$$

The result is sharp for $f(z) = \frac{1}{z} + \frac{2\beta\gamma(1-\alpha)}{[2+2\beta\gamma(1-\alpha)]\Gamma_1(\alpha_1, k, \lambda)}z$. Similarly we have,

$$|f'(z)| \geq \frac{1}{r^2} - \frac{2\beta\gamma(1-\alpha)}{[2+2\beta\gamma(1-\alpha)]\Gamma_1(\alpha_1, k, \lambda)}$$

and

$$|f'(z)| \leq \frac{1}{r^2} + \frac{2\beta\gamma(1-\alpha)}{[2+2\beta\gamma(1-\alpha)]\Gamma_1(\alpha_1, k, \lambda)}.$$

Let the functions $f_j(z)$ ($j = 1, 2, \dots, m$) be given by

$$f_j(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_{n,j} z^n, \quad a_{n,j} \geq 0, \quad n \in \mathbb{N}, n \geq 1. \quad (2.9)$$

We state the following closure theorem for the class $\Sigma_P(\alpha, \beta, \gamma, \lambda, k)$ without proof.

Theorem 2.5. Let the function $f_j(z)$ defined by (2.9) be in the class $\Sigma_P(\alpha, \beta, \gamma, \lambda, k)$ for every $j = 1, 2, \dots, m$. Then the function $f(z)$ defined by

$$f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n,$$

belongs to the class $\Sigma_P(\alpha, \beta, \gamma, \lambda, k)$, where $a_n = \frac{1}{m} \sum_{j=1}^m a_{n,j}$, ($n = 1, 2, \dots$).

Theorem 2.6. (Extreme Points) Let

$$\begin{aligned} f_0(z) &= \frac{1}{z} \text{ and} \\ f_n(z) &= \frac{1}{z} + \frac{2\beta\gamma(1-\alpha)}{[(n+1) + \beta((1-n) + 2\gamma(n-\alpha))] \Gamma_n(\alpha_1, k, \lambda)} z^n, \quad (n \geq 1). \end{aligned} \quad (2.10)$$

Then $f \in \Sigma_P(\alpha, \beta, \gamma, \lambda, k)$, if and only if it can be represented in the form

$$f(z) = \sum_{n=0}^{\infty} \mu_n f_n(z), \quad (\mu_n \geq 0, \sum_{n=0}^{\infty} \mu_n = 1). \quad (2.11)$$

Proof. Suppose $f(z)$ can be expressed as in (2.11). Then

$$\begin{aligned} f(z) &= \sum_{n=0}^{\infty} \mu_n f_n(z) \\ &= \mu_0 f_0(z) + \sum_{n=1}^{\infty} \mu_n f_n(z) \\ &= \frac{1}{z} + \sum_{n=1}^{\infty} \mu_n \frac{2\beta\gamma(1-\alpha)}{[(n+1) + \beta((1-n) + 2\gamma(n-\alpha))] \Gamma_n(\alpha_1, k, \lambda)} z^n. \end{aligned}$$

Therefore,

$$\begin{aligned} & \sum_{n=1}^{\infty} \mu_n \frac{2\beta\gamma(1-\alpha)}{[(n+1)+\beta((1-n)+2\gamma(n-\alpha))]\Gamma_n(\alpha_1, k, \lambda)} \times \\ & \quad \frac{[(n+1)+\beta((1-n)+2\gamma(n-\alpha))]\Gamma_n(\alpha_1, k, \lambda)}{2\beta\gamma(1-\alpha)} z^n \\ &= \sum_{n=1}^{\infty} \mu_n - 1 = 1 - \mu_0 \leq 1. \end{aligned}$$

So by Theorem 2.2, $f \in \Sigma_P(\alpha, \beta, \gamma, \lambda, k)$.

Conversely, suppose $f \in \Sigma_P(\alpha, \beta, \gamma, \lambda, k)$. Since

$$a_n \leq \frac{2\beta\gamma(1-\alpha)}{[(n+1)+\beta((1-n)+2\gamma(n-\alpha))]\Gamma_n(\alpha_1, k, \lambda)}, \quad n \geq 1.$$

We set,

$$\mu_n = \frac{[(n+1)+\beta((1-n)+2\gamma(n-\alpha))]\Gamma_n(\alpha_1, k, \lambda)}{2\beta\gamma(1-\alpha)} a_n, \quad n \geq 1$$

and $\mu_0 = 1 - \sum_{n=1}^{\infty} \mu_n$. Then we have, $f(z) = \sum_{n=0}^{\infty} \mu_n f_n(z) = \mu_0 f_0(z) + \sum_{n=1}^{\infty} \mu_n f_n(z)$.

Hence the results follows.

3. Radii of meromorphically starlikeness and meromorphically convexity

In this section, we obtain the radii of stralikeness and convexity of order δ for functions in the class $\Sigma_P(\alpha, \beta, \gamma, \lambda, k)$.

Theorem 3.1. Let $f \in \Sigma_P(\alpha, \beta, \gamma, \lambda, k)$. Then f is meromorphically starlike of order δ ($0 \leq \delta < 1$) in the disc $|z| < r_1$, where

$$r_1 = \inf_n \left[\left(\frac{1-\delta}{n+2-\delta} \right) \frac{[(n+1)+\beta((1-n)+2\gamma(n-\alpha))]\Gamma_n(\alpha_1, k, \lambda)}{2\beta\gamma(1-\alpha)} \right]^{\frac{1}{n+1}}, \quad (n \geq 1).$$

The result is sharp for the extremal function $f(z)$ given by (2.10).

Proof. The function $f \in \Sigma_P(\alpha, \beta, \gamma, \lambda, k)$ of the form (1.1) is meromorphically starlike of order δ in the disc $|z| < r_1$, if and only if it satisfies the condition

$$\left| \frac{zf'(z)}{f(z)} + 1 \right| < 1 - \delta. \quad (3.1)$$

Since

$$\left| \frac{zf'(z)}{f(z)} + 1 \right| \leq \left| \frac{\sum_{n=1}^{\infty} (n+1)a_n z^{n+1}}{1 + \sum_{n=1}^{\infty} a_n z^{n+1}} \right| \leq \frac{\sum_{n=1}^{\infty} (n+1)|a_n| |z|^{n+1}}{1 - \sum_{n=1}^{\infty} |a_n| |z|^{n+1}}.$$

The above expression is less than $1 - \delta$ if

$$\sum_{n=2}^{\infty} \frac{n+2-\delta}{1-\delta} |a_n| |z|^{n-1} < 1.$$

Using the fact, that $f \in \Sigma_P(\alpha, \beta, \gamma, \lambda, k)$ if and only if

$$\sum_{n=2}^{\infty} \frac{[(n+1) + \beta((1-n) + 2\gamma(n-\alpha))] \Gamma_n(\alpha_1, k, \lambda)}{2\beta\gamma(1-\alpha)} a_n < 1.$$

We say (3.1) is true if

$$\frac{n+2-\delta}{1-\delta} |z|^{n+1} < \frac{[(n+1) + \beta((1-n) + 2\gamma(n-\alpha))] \Gamma_n(\alpha_1, k, \lambda)}{2\beta\gamma(1-\alpha)}.$$

Or, equivalently,

$$|z|^{n+1} < \frac{(1-\delta)}{(n+2-\delta)} \frac{[(n+1) + \beta((1-n) + 2\gamma(n-\alpha))] \Gamma_n(\alpha_1, k, \lambda)}{2\beta\gamma(1-\alpha)}$$

which yields the starlikeness of the family.

Theorem 3.2. Let $f \in \Sigma_P(\alpha, \beta, \gamma, \lambda, k)$. Then f is meromorphically convex of order δ ($0 \leq \delta < 1$) in the unit disc $|z| < r_2$, where

$$r_2 = \inf_n \left[\left(\frac{1-\delta}{n(n+2-\delta)} \right) \frac{[(n+1) + \beta((1-n) + 2\gamma(n-\alpha))] \Gamma_n(\alpha_1, k, \lambda)}{2\beta\gamma(1-\alpha)} \right]^{\frac{1}{n+1}},$$

$(n \geq 1).$

The result is sharp for the extremal function $f(z)$ given by (2.7).

Proof. The proof is analogous to that of Theorem 3.1, and we omit the details.

4. Partial Sums

Let $f \in \Sigma_P$ be a function of the form (1.1). Motivated by Silverman [20], Cho and Owa [8], Latha and Shivarudrappa [13], we define the partial sums $f_m(z)$ defined by

$$f_m(z) = \frac{1}{z} + \sum_{n=1}^m a_n z^n \quad (m \in \mathbb{N}). \quad (4.1)$$

In this section, we consider partial sums of functions from the class $\Sigma_P(\alpha, \beta, \gamma, \lambda, k)$ and obtain sharp lower bounds for the real part of the ratios of f to f_m and f' to f'_m .

Theorem 4.1. Let $f \in \Sigma_P(\alpha, \beta, \gamma, \lambda, k)$ be given by (1.2) and define the partial sums $f_1(z)$ and $f_m(z)$, by

$$f_1(z) = \frac{1}{z} \text{ and } f_m(z) = \frac{1}{z} + \sum_{n=1}^m a_n z^n, \quad (m \in \mathbb{N}/\{1\}). \quad (4.2)$$

Suppose also that

$$\sum_{n=1}^{\infty} d_n a_n \leq 1,$$

where

$$d_n \geq \begin{cases} \frac{1}{[(n+1)+\beta((1-n)+2\gamma(n-\alpha))]\Gamma_n(\alpha_1, k, \lambda)} & \text{for } n = 1, 2, 3, \dots, m \\ \frac{1}{2\beta\gamma(1-\alpha)} & \text{for } n = m+1, m+2, m+3, \dots \end{cases} \quad (4.3)$$

Then $f \in \Sigma_P(\alpha, \beta, \gamma, \lambda, k)$. Furthermore,

$$\operatorname{Re} \left(\frac{f(z)}{f_m(z)} \right) > 1 - \frac{1}{d_{m+1}} \quad (4.4)$$

and

$$\operatorname{Re} \left(\frac{f_m(z)}{f(z)} \right) > \frac{d_{m+1}}{1 + d_{m+1}}. \quad (4.5)$$

Proof. For the coefficients d_n given by (4.3) it is not difficult to verify that

$$d_{n+1} > d_n > 1. \quad (4.6)$$

Therefore we have

$$\sum_{n=1}^m a_n + d_{m+1} \sum_{n=m+1}^{\infty} a_n \leq \sum_{n=1}^{\infty} d_n a_n \leq 1 \quad (4.7)$$

by using the hypothesis (4.3). By setting

$$\begin{aligned} g_1(z) &= d_{m+1} \left(\frac{f(z)}{f_m(z)} - \left(1 - \frac{1}{d_{m+1}} \right) \right) \\ &= 1 + \frac{d_{m+1} \sum_{n=m+1}^{\infty} a_n z^{n-1}}{1 + \sum_{n=1}^m a_n z^{n-1}}, \end{aligned}$$

then it suffices to show that

$$\operatorname{Re} (g_1(z)) \geq 0 \quad (z \in \mathbb{U}^*)$$

or,

$$\left| \frac{g_1(z) - 1}{g_1(z) + 1} \right| \leq 1 \quad (z \in \mathbb{U}^*)$$

and applying (4.7), we find that

$$\begin{aligned} \left| \frac{g_1(z) - 1}{g_1(z) + 1} \right| &\leq \frac{d_{m+1} \sum_{n=m+1}^{\infty} a_n}{2 - 2 \sum_{n=1}^m a_n - d_{m+1} \sum_{n=m+1}^{\infty} a_n} \\ &\leq 1, \quad z \in \mathbb{U}^*, \end{aligned}$$

which readily yields the assertion (4.4) of Theorem 4.1. In order to see that

$$f(z) = \frac{1}{z} + \frac{z^{m+1}}{d_{m+1}} \quad (4.8)$$

gives sharp result, we observe that for $z = re^{i\pi/m}$ that $\frac{f(z)}{f_m(z)} = 1 - \frac{r^{m+2}}{d_{m+1}} \rightarrow 1 - \frac{1}{d_{m+1}}$ as $r \rightarrow 1^-$.

Similarly, if we take

$$g_2(z) = (1 + d_{m+1}) \left(\frac{f_m(z)}{f(z)} - \frac{d_{m+1}}{1 + d_{m+1}} \right)$$

and making use of (4.7), we deduce that

$$\left| \frac{g_2(z) - 1}{g_2(z) + 1} \right| \leq \frac{(1 + d_{m+1}) \sum_{n=m+1}^{\infty} a_n}{2 - 2 \sum_{n=1}^m a_n - (1 - d_{m+1}) \sum_{n=m+1}^{\infty} a_n}$$

which leads us immediately to the assertion (4.5) of Theorem 4.1. The bound in (4.5) is sharp for each $m \in \mathbb{N}$ with the extremal function $f(z)$ given by (4.8).

Theorem 4.2. If $f(z)$ of the form (1.2) satisfies the condition (2.2). Then

$$Re \left(\frac{f'(z)}{f'_m(z)} \right) \geq 1 - \frac{m+1}{d_{m+1}}$$

and

$$Re \left(\frac{f'_m(z)}{f'(z)} \right) \geq \frac{d_{m+1}}{m+1+d_{m+1}},$$

where

$$d_n \geq \begin{cases} n & \text{for } n = 2, 3, \dots, m \\ \frac{n[(n+1)+\beta((1-n)+2\gamma(n-\alpha))]\Gamma_n(\alpha_1, k, \lambda)}{2\beta\gamma(1-\alpha)} & \text{for } n = m+1, m+2, m+3, \dots \end{cases}.$$

The bounds are sharp, with the extremal function $f(z)$ of the form (2.7).

Proof. The proof is analogous to that of Theorem 4.1, and we omit the details.

Acknowledgment. The authors would like to thank the referees for their valuable suggestions and comments.

REFERENCES

- [1] Aghalary, R. : Some properties of a certain family of meromorphically univalent functions defined by an integral operator, *Kyungpook Math. J.*, 48 no. 3 (2008), 379–385.
- [2] Altintas, O., Irmak, H. and Srivastava, H. M. : A family of meromorphically univalent functions with positive coefficients, *Panamer. Math. J.*, 5 no. 1 (1995), 75–81.
- [3] Aouf, M. K. : A certain subclass of meromorphically starlike functions with positive coefficients, *Rend. Mat. Appl.*, (7) 9 no. 2 (1989), 225–235.
- [4] Aouf, M. K. : On a certain class of meromorphic univalent functions with positive coefficients, *Rend. Mat. Appl.*, (7) 11 no. 2 (1991), 209–219.
- [5] Aouf, M. K. : Certain subclasses of meromorphically multivalent functions associated with generalized hypergeometric function, *Comput. Math. Appl.*, 55 no. 3 (2008), 494–509.
- [6] Aouf, M. K. and Joshi, S. B. : On certain subclasses of meromorphically starlike functions with positive coefficients, *Soochow J. Math.*, 24 no. 2 (1998), 79–90.
- [7] Cho, N. E. and Kim, I. H. : Inclusion properties of certain classes of meromorphic functions associated with the generalized hypergeometric function, *Appl. Math. Comput.*, 187 no. 1 (2007), 115–121.
- [8] Cho, N. E. and Owa, S. : Partial sums of certain meromorphic functions, *JIPAM. J. Inequal. Pure Appl. Math.*, 5 no. 2 (2004), Article 30, 7 pp.
- [9] Dziok, J. and Srivastava, H. M. : Classes of analytic functions associated with the generalized hypergeometric function, *Appl. Math. Comput.*, 103 no. 1 (1999), 1–13.
- [10] Ganigi, M. R. and Uralegaddi, B. A. : New criteria for meromorphic univalent functions, *Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.)*, 33(81) no. 1 (1989), 9–13.
- [11] Hussain, S. : A new class of meromorphic functions, *Acta Universitatis Apulensis*, 24 (2010), 181–187.
- [12] Kulkarni, S. R. and Joshi, Sou. S. S. : On a subclass of meromorphic univalent functions with positive coefficients, *J. Indian Acad. Math.*, 24 no. 1 (2002), 197–205.
- [13] Latha, S. and Shivarudrappa, L. : Partial sums of some meromorphic functions, *JIPAM. J. Inequal. Pure Appl. Math.*, 7 no. 4 (2006), Article 140, 8 pp.
- [14] Liu, J.-L. and Srivastava, H. M. : A linear operator and associated families of meromorphically multivalent functions, *J. Math. Anal. Appl.*, 259 no. 2, (2001), 566–581.
- [15] Liu, J.-L. and Srivastava, H. M. : Classes of meromorphically multivalent functions associated with the generalized hypergeometric function, *Math. Comput. Modelling*, 39 no. 1 (2004), 21–34.
- [16] Liu, J.-L. and Srivastava, H. M. : Subclasses of meromorphically multivalent functions associated with a certain linear operator, *Math. Comput. Modelling*, 39 no. 1 (2004), 35–44.
- [17] Mogra, M. L., Reddy, T. R. and Juneja, O. P. : Meromorphic univalent functions with positive coefficients, *Bull. Austral. Math. Soc.*, 32 no. 2 (1985), 161–176.

- [18] Owa, S. and Pascu, N. N. : Coefficient inequalities for certain classes of meromorphically starlike and meromorphically convex functions, JIPAM. J. Inequal. Pure Appl. Math., 4 no. 1 (2003), Article 17, 6 pp.
- [19] Pommerenke, Ch. : On meromorphic starlike functions, Pacific J. Math., 13 (1963), 221–235
- [20] Silverman, H. : Partial sums of starlike and convex functions, J. Math. Anal. Appl., 209 no. 1 (1997), 221–227.
- [21] Uralegaddi, B. A. and Ganigi, M. D. : A certain class of meromorphically starlike functions with positive coefficients, Pure Appl. Math. Sci., 26 no. 1-2 (1987), 75–81.
- [22] Uralegaddi, B. A. and Somanatha, C. : Certain differential operators for meromorphic functions, Houston J. Math., 17 no. 2 (1991), 279–284.
- [23] Uralegaddi, B. A. and Somanatha, C. : New criteria for meromorphic starlike univalent functions, Bull. Austral. Math. Soc., 43 no. 1 (1991), 137–140.
- [24] Yang, D. : On a class of meromorphic starlike multivalent functions, Bull. Inst. Math. Acad. Sinica, 24 no. 2 (1996), 151–157
- [25] Yang, D. : Certain convolution operators for meromorphic functions, Southeast Asian Bull. Math., 25 no. 1 (2001), 175–186.