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Abstract

In this paper we have shown that Lorentzian α−Sasakian manifold are

Einstein manifold if they satisfy the condition R(X,Y ).S = 0, C(ξ,X).S = 0,

C(ξ,X).C = 0, C(ξ,X).R = 0, R.C = R.R and ϕ2((DXQ)(Y )) = 0.
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1. Introduction

The product of an almost contact manifold M and the real R carries a

natural almost complex structure. However, if one takes M to be an almost

contract metric manifold and suppose that the product metric G on M × R is

Käehlerian, the structure on M is cosymplectic [3] and not Sasakian. Tanno S.

[7] classified connected almost contact metric manifolds whose automorphism

groups possess the maximum dimension. For such a manifold, the sectional

curvature of plane sections containing ξ, say ‘c’. They showed that they can be

divided into three classes:

(i) homogeneous normal contact Riemannian manifold with c > 0.

(ii) global Riemannian product of a line or a circle with a Käehler manifold

of constant holomorphic sectional curvature if c = 0.

(iii) a warped product space if c < 0.

It is known that the manifold of class (i) are characterized by admitting a

Sasakian structure.

https://doi.org/10.56424/jts.v7i01.10471
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In the Gray-Hervella classification of almost Hermitian manifolds [3], there

appears a class, W4 of Hermitian manifolds which are closely related to local

conformal Käehler manifolds. An almost contact metric structure on a manifold

M is called trans-Sasakian structure [5]. If the product manifold M×R belongs

to the W4. The class C6 ⊗ C5 coincide with the class of the trans-Sasakian

structure of type (α, β).

We note that trans-Sasakian structure of the type (0, 0), (0, β) and (α, 0)

are cosymplectic, β−Kenmotsu and α−Sasakian repectivily. Yildiz and Mu-

rathan [10, 11] introduced Lorentzian α−Sasakian manifolds. Many other au-

thor De and Tripathi, De and Sarakar, De and Shaikh, Prakasha, Bagewadi and

Basavarajappa [1, 6, 7, 10, 11] studied and obtain interesting results.

A (1, 3)−type of tensor C(X,Y )Z which remains invariant under concir-

cular transformation for n−dimensional Riemanniam manifold is given by Yano

and Kon

C(X,Y )Z = R(X,Y )Z − r

n(n− 1)
[g(Y,Z)X − g(X,Z)Y ],

where R is the Riemannian curvature tensor, ‘r’ is the scalar curvature tensor.

This paper is organized as follows. After introduction, we give a brief

account of Lorentzian α−Sasakian manifolds. In section 3, we study Lorentzian

α−Sasakian manifolds satisfying the condition (X,Y ).S = 0, C(ξ,X).S = 0,

C(ξ,X).C = 0, C(ξ,X).R = 0, R.C = R.R and ϕ2(DXQ)(Y )) = 0 are Einstein

manifold.

2. Preliminaries

A differentiable manifold M of dimension (2n + 1) is called a Lorentzian

α−Sasakian manifold if it admits a tensor field ϕ of type (1, 1), a contravarint

vector field ξ, a covariant vector field η and Lorentzian metric g which satisfy

ϕ2 = I + η ⊗ ξ (2.1)

η(ξ) = −1 (2.2)

g(ϕX, ϕY ) = g(X,Y ) + η(X) η(Y ) (2.3)

g(X, ξ) = η(X) (2.4)

ϕξ = 0, η(ϕX) = 0 (2.5)

(DXϕ)Y = αg(X,Y ) ξ + αη(Y )X, (2.6)

for all X,Y ∈ Tm.
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Also a Lorentzian α−Sasakian manifold M satisfies

(DXξ)Y = αϕX (2.7)

(DXη)Y = αg(X,ϕY ), (2.8)

whereD denotes the operator of covariant differentiation with respect to Lorentzian

metric g and α is constant.

Also on a Lorentzian α−Sasakian manifold the following relation hold [2,

3]

R(X,Y ) ξ = α2 (η(Y )X − η(X)Y ) (2.9)

R(ξ,X)Y = α2(g(X,Y )ξ − η(Y )X) (2.10)

R(ξ,X) ξ = α2(η(X)ξ +X) (2.11)

S(X, ξ) = 2nα2η(X) (2.12)

ϕξ = 2nα2ξ (2.13)

S(ξ, ξ) = −2nα2. (2.14)

For any vector field X,Y, Z where S is the Ricci curvature and Q is the φ Ricci

operator given by

S(X,Y ) = g(φX, Y ).

Definition 2.1. The concircular curvature Tensor C on Lorentzian α−Sasakian

manifold M of dimensional (2n + 1) is given by C(X,Y )Z = R(X,Y )Z −
r

2n(2n+1) [g(Y, Z)X − g(X,Z)Y ] for any vector fields X, Y, Z where R is the

curvature tensor and r is the scalar curvature.

Definition 2.2. An (2n + 1)−dimensional Lorentzian α−Sasakian manifold is

said to be Ricci semi-symmetric if R(X,Y ).S = 0 where R is the curvature

tensor and S is the Ricci tensor.

3. Main Results

In this section we prove the following theorem:

Theorem 3.1. Let M be an (2n + 1)−dimensional Lorentzian α−Sasakian

manifold thenM is Ricci semi-symmetric if and only if it is an Einstein manifold.

Proof. It is well known that every Einstein manifold is Ricci semi-symmetric

but converse is not true in general. Here we prove that in (2n+1)−dimensional

Lorentzian α−Sasakian manifold R(X,Y ).S = 0 implies that manifold is an

Einstein manifold.
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Now from definition (2.2), it follows that

S(R(X,Y )U, V ) + S(U,R(X,Y )V ) = 0. (3.1)

Putting X = ξ in above, we get

S(R(ξ, Y )U, V ) + S(U,R(ξ, Y )V ) = 0. (3.2)

Using (2.10) and (2.13) in (3.2), we get

2nα4g(Y, U)η(V )− α2η(U)S(Y, V ) + 2nα4g(Y, V )η(U)− α2η(V )S(U, Y ) = 0.

(3.3)

Putting U = ξ in (3.3) and using (2.4), (2.12), we get

2nα4η(Y )η(V ) + α2S(Y, V )− 2nα4g(Y, V )− 2nα4η(Y )η(V ) = 0

which implies

S(Y, V ) = 2nα2g(Y, V ) (3.4)

Therefore,M is Einstein manifold. This completes the proof of the theorem.

Theorem 3.2. Let M be an (2n + 1)−dimensional Lorentzian α−Sasakian

manifold then M satisfies the condition C(ξ,X).S = 0 if and only if either M

is Einstein manifold or M has scalar curvature r = α22n (2n+ 1).

Proof. Since C(ξ,X).S = 0, then we have C(ξ,X).S(Y, ξ) = 0 which implies

S(C(ξ,X)Y, ξ) + S(Y,C(ξ,X)ξ) = 0 (3.5)

Using (2.12) and definition (2.2), in (3.5), we have

S

((
α2 − r

2n(2n+ 1

)
[g(Y,X)ξ − η(Y )X], ξ

)
+S

(
Y,

(
α2 − r

2n(2n+ 1)
[η(X)ξ +X]

))
= 0,

which implies(
α2− r

2n(2n+ 1)

)
[g(X,Y )S(ξ, ξ)−η(Y )S(X, ξ)+η(X)S(Y, ξ)+S(Y,X)] = 0.

(3.6)

Using (2.12) and (2.14) in (3.5), we have(
α2 − r

2n(2n+ 1)

)
[−2nα2g(X,Y ) + S(X,Y )] = 0. (3.7)

This implies S(X,Y ) = 2nα2g(X,Y ). Therefore M is an Einstein manifold with

scalar curvature r = α22n(2n + 1). Converse is trivial. Therefore proof of the

theorem is complete.
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Theorem 3.3. An (2n + 1)−dimensional Lorentzian α−Sasakian manifold M

satisfies

C(ξ,X).C = 0.

If and only if either the scalar curvature r of M is r = α22n(2n + 1) or M is

locally isometric to the Hyperbolic sphere H2n+1α2.

Proof. In an (2n + 1)−dimensional Lorentzian α−Sasakian manifold M , we

have

C(ξ,X)Y =

(
α2 − r

2n(2n+ 1)

)
{g(X,Y )ξ − η(X)Y }, (3.8)

C(X,Y )ξ =

(
α2 − r

2n(2n+ 1)

)
{η(Y )X − η(X)Y }. (3.9)

The condition C(ξ,X).C = 0 implies that

C(ξ, U)C(X,Y ) ξ − C(C(ξ, U)X,Y ) ξ − C(X,C(ξ, U)Y ) ξ = 0.

Then in view of (3.9), we get(
α2 − r

2n(2n+ 1)

)
× [g(U,C(X,Y )ξ)ξ − C(X,Y ) ξη(U)− g(U,X)C(ξ, Y )ξ

+η(X)C(U, Y )ξ − g(U, Y )C(X, ξ)ξ + η(Y )C(X,U)ξ − C(X,Y )U ] = 0.

Using (3.8) in above, we get(
α2− r

2n(2n+ 1)

)
×
[
C(X,Y )U−

(
α2− r

2n(2n+ 1)

)
{g(U, Y )X−g(U,X)Y }

]
,

which implies the scalar curvature r = α22n(2n+ 1) or[
C(X,Y )U −

(
α2 − r

2n(2n+ 1)

)
{g(U, Y )X − g(U,X)Y }

]
= 0.

Then in view of definition (2.1), we have

R(X,Y )U = α2[g(Y,Z)X − g(X,Z)Y ].

The above expression implies that M is of constant curvature α2. Consequently,

it is locally isometric to the hyperbolic space H2n+1α2.

Conversely, if it has the scalar curvature r = α22n(2n + 1), then from

(3.9) it follows that C(ξ,X) = 0. Similarly in the second case, since constant

r = α22n(2n+ 1), therefore again we get C(ξ,X) = 0. This complete the proof

of the theorem.

Using the fact C(ξ,X).R = 0, C(ξ,X) is acting as a derivation, we state

the following corollary.
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Corollary 3.4. An (2n+ 1)−dimensional Lorentzian α−Sasakian manifold M

satisfies

C(ξ,X).R = 0.

If and only if either the scalar curvature r of M is r = α22n(2n + 1) or M is

locally isometric to the Hyperbolic sphere H2n+1α2.

Theorem 3.5. Let M be an (2n + 1)−dimensional Lorentzian α−Sasakian

manifold then R.C = R.R.

Proof. We have

(R(X,Y ).C)(U, V,W ) = R(X,Y )C(U, V )W − C(R(X,Y )U, V )W

−C(U,R(X,Y )V )W − C(U, V )R(X,Y )W.

In view of definition (2.1), from above we have

(R(X,Y ).C)(U, V,W )

= R(X,Y )

[
R(U, V )W − r

2n(2n+ 1)
(g(V,W )U − g(U,W )V )

]
−R(R(X,Y )U, V )W +

r

2n(2n+ 1)
[g(V,W )R(X,Y )U − g(R(X,Y )U,W )V ]

−R(U,R(X,Y )V )W +
r

2n(2n+ 1)
[g(R(X,Y )V,W )U − g(U,W )R(X,Y )V ]

−R(U, V )R(X,Y )W +
r

2n(2n+ 1)
[g(V,R(X,Y )W )U − g(V,R(X,Y )W )V ].

On simplification, we get

R(X,Y ).C(U, V,W ) = (R(X,Y ).R)(U, V,W ).

Therefore R.C = R.R.

This completes the proof of the theorem.

Definition 3.1. An (2n + 1)−dimensional Lorentzian α−Sasakian manifold is

said to be ϕ−Ricci symmetric if the Ricci operator satisfies ϕ2(DXQ)(Y ) = 0

for all vector field X, Y on M and S(X,Y ) = g(QX,Y ).

Theorem 3.6. An (2n + 1)−dimensional Lorentzian α−Sasakian manifold is

ϕ−Ricci symmetric if and only if manifold is Einstein manifold.

Proof. Let us suppose that manifold is ϕ−Ricci symmetric then in view of

definition (3.3), we have

ϕ2((DXQ)(Y )) = 0.
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Using (2.1), we have

((DXQ)(Y ) + η((DXQ)(Y ))ξ) = 0. (3.10)

Taking inner product of (3.10) with Z, we get

g(((DXQ)(Y ), Z)) + η((DXQ)(Y )) η(Z)) = 0,

which implies

g(DXQ(Y )−Q(DXY ).Z) + η(DXQ)(Y )η(Z) = 0.

On simplification, we have

g(DXQ(Y ), Z)− S(DXY, Z) + η(DXQ)(Y )η(Z) = 0. (3.11)

Putting Y = ξ, in (3.11) and using (2.7), (2.13), we get

2nα3g(ϕX,Z)− αS(ϕX,Z) + η((DXQ)(ξ)) η(Z) = 0.

Replacing Z by ϕZ, we get S(ϕX, ϕZ) = 2nα2g(ϕX, ϕZ)

S(X,Z) + 2nα2η(X)η(Z) = 2nα2g(X,Z) + 2nα2η(X) η(Z),

which implies

S(X,Z) = 2nα2g(X,Z).

Therefore manifold is Einstein manifold.

Now let us suppose that manifold is Einstein manifold then in the view of

definition (2.2), we have S(X,Y ) = λg(X,Y ) where S(X,Y ) = g(ϕX, Y ) and λ

is constant.

Hence QX = λX. Therefore we obtain

ϕ2((DXQ)(Y )) = 0.

This completes the proof.
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