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Abstract

In this paper we study generalized (k, ) space forms by considering flat,
symmetry and semi-symmetry conditions. We find relations among associated
functions to prove conformal flatness, projective flatness of generalized (k,u)
space forms. Further we prove that in a projectively flat generalized (k,u)
space form the associated functions fo and f3 are linearly dependent.
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1. Introduction

A generalized Sasakian space form was defined by Carriazo et al. in [1], as
an almost contact metric manifold (M?"*+! ¢, €, 1, g) whose curvature tensor R
is given by

R = fiRy + foR2 + f3R3, (1.1)

where f1, fo, f3 are some differentiable functions on M?"*+! and

Ri(X,Y)Z = g(Y,2)X — g(X,2)Y
Ro(X,Y)Z = g(X,0Z)pY — g(Y,02)pX + 29(X, Y )pZ
R3(X,Y)Z =n(X)n(2)Y —n(Y)n(Z2)X + g9(X, Z)n(Y)§ — g(Y, Z)n(X)E,

for any vector fields X, Y, Z on M?"*1,

In [5], the authors defined a generalized (k, ;1) space form as an almost con-
tact metric manifold (M?"*1, ¢, €, n, g) whose curvature tensor can be written
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as
R = fiR1 + foRa + f3R3 + faR4 + f5R5 + feRs, (1.2)

where f1, fa, f3, fa4, f5, fe are differentiable functions on M?"*! and Ry, Ry, R3
are tensors defined as above and

Ry(X,Y)Z = g(Y, Z)hX — g(X, Z)hY + g(hY, Z)X — g(hX, 2)Y,
R5(X,Y)Z = g(hY, Z)hX — g(hX, Z)hY + g(¢hX, Z)phY — g(dhY, Z)phX,
Re(X,Y)Z =n(X)n(Z)hY —n(Y)n(Z)hX + g(hX, Z)n(Y)§ — g(hY, Z)n(X)¢,

for any vector fields X, Y, Z, where 2h = L¢¢ and L is the usual Lie derivative.
This manifold was denoted by M2 TL(f1, fo, f3, f1, f5, fo)-

Natural examples of generalized (k,u) space forms are (k,u) space forms
and generalized Sasakian space forms. The authors in [1] proved that contact
metric generalized (k, u) space forms are generalized (k, 1) spaces and if dimen-
sion is greater than or equal to 5, then they are (k,p) spaces with constant
¢—sectional curvature 2fg — 1. The authors gave a method of constructing ex-
amples of generalized (k, 1) space forms and proved that generalized (k, ) space
forms with trans-Sasakian structure reduces to generalized Sasakian space forms.
Further in [2], it is proved that under D,—homothetic deformation generalized
(k, 1) space form structure is preserved for dimension 3, but not in general. In
this paper, we study generalized (k, i) space forms under the flatness, symme-
try and semi symmetry conditions. The paper is organised as follows. After
preliminaries in section 2, we study conformal curvature tensor in a generalized
(k, 1) space form in section 3. Projective semi symmetric and projective Ricci
symmetric generalized (k, 1) space forms are studied in section 4. We derived
conditions for projective semi symmetric generalized (k,u) space forms to be
projectively flat.

2. Preliminaries

In this section, some general definitions and basic formulas are presented
which will be used later. A (2n+1)—dimensional Riemannian manifold (M?"+!, g)
is said to be an almost contact metric manifold [3] if it admits a tensor field ¢
of type (1, 1), a vector field £ and a 1—form 7 satisfying

¢2:_I+77®£a U(E):la ¢ =0, nogp =0, (21)
9(¢X,9Y) = g(X,Y) — n(X)n(Y), (22)
9(X,9Y) = —g(¢X,Y), g(X,0X) =0, g(X,&) =n(X). (2.3)
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Such a manifold is said to be a contact metric manifold if dyp = &, where
®(X,Y) = g(X,Y) is the fundamental 2-form of M?"+1,

It is well known that on a contact metric manifold (M?2"*1, ¢, & 0, g), the
symmetric tensor h satisfies the following relations:

h§ =0, h¢ = —¢h, trh =0, noh =0, (2.4)
Vxé=—¢X — ¢hX, (Vxn)Y = g(X +hX,¢Y). (2.5)
In a (2n + 1)—dimensional (k, ;1) —contact metric manifold, we have [4]
h? = (k—1)¢?, k<1, (2.6)
(Vxo)(Y) = g(X + hX,Y)E = n(Y)(X + hX), (2.7)
(Vxh)(Y) =[(1 = k)g(X, ¢Y) + g(X, hoY)]§ + n(Y)h(¢X + ¢hX) 28)
— un(X)ohY.

Definition 1. A contact metric manifold M?"*+! is said to be

(i)  Einstein if S(X,Y) = Ag(X,Y), where X is a constant and S is the Ricci
tensor,

(i) n-Einstein if S(X,Y) = ag(X,Y)+Bn(X)n(Y), where o and 8 are smooth
functions on MZ"+1,

In a (2n + 1)-dimensional generalized (k, 1) space form, the following rela-
tions hold.

R(X,Y)E = (fr = ) (V)X = n(X)Y]+ (fa — fo)In(Y)hX —n(X)hY], (2.9)

QX =[2nf1 +3f2 — f3]X +[(2n — 1) fa — fo]hX (2.10)
— [Bfe+ (2n — 1) f3]n(X)§, '
S(X,Y) =[2nf1 +3f2 — f3]g(X,Y) + [(2n — 1) f1 — felg(hX,Y)
(2.11)
—[Bfa+(2n - 1)f3}77( n(y),
S(X,8) =2n(f1 — f3)n(X), (2.12)
r=2n[2n+1)f1 +3f2 — 2f3], (2.13)

where () is the Ricci operator, S is the Ricci tensor and r is the scalar curvature
of M2n+1(f1, ey fﬁ)

The relation between the associated functions f;,i = 1,...,6 of M?"*1(f1, ..., f6)
was recently discussed by Carriazo et al. [5].
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Remark 2.1. (Carriazo et al. [5]) A contact metric generalized (k,p) space
form M?"*t1(f, ..., f¢) is n-Einstein if and only if (2n — 1)fy — f¢ = 0. In
particular M3(f1, ..., f¢) is n-Einstein if and only if f; — fs = 0.

Proposition 2.1. (Carriazo et al. [5]) Let M?3(fi,..., f¢) be a contact metric
generalized (k, u) space form. If fi — f3 # 1 and fy — fg = 0, then fi + f3 and
f1+ 3fy are constants and 2f; + 3f2 — f3 = 0 holds.

3. Conformal Curvature Tensor in Generalized (k, u) Space Forms

The conformal curvature tensor C' is defined by [6]

C(X,Y)Z =R(X,Y)Z - !

— 1[S(Y, )X —S(X,2)Y +9(Y,Z2)QX

"
2n(2n — 1)
Definition 1.1. A generalized (k, i) space form M2"F1(fy, ..., fg) is

(1) &-conformally flat if C'(X,Y )€ = 0.
(2) conformally Ricci symmetric if C.S = 0.

(3.1)

—9(X, 2)QY] + [9(Y, 2)X — g(X, 2)Y].

Theorem 3.1. A (2n + 1)—dimensional generalized (k, ) space form is £—
conformally flat if and only if

(i) 2nfi+3fo— f3 =0, when k=1.
(ii) 2nfi+3f2— f3=0and f1 — fo =0 when k # 1.

Proof. Let M?"*1(f1,..., f¢) be é-conformally flat. Then from (3.1), we obtain

R(X,Y)E =5 [S(V,)X ~ S(X,OY +1(1)QX ~n(X)QY] -
r 3.2
- m[n(Y)X —n(X)Y].
We prove this theorem by considering two cases.
Case (i). If £ =1, then h = 0.
Using (2.1), (2.9), (2.10) and (2.12) in (3.2), we obtain
20f1 435~ J5) o= D)X — (X)) = 0. (33

which implies that
2nf1 4+ 3fa — f3=0. (3.4)
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Case (ii). If k # 1, then h # 0.
Using (2.1), (2.9), (2.10) and (2.12) in (3.2), we obtain

(2n —2)
20f1 435>~ 1) o= D () X — (X)Y] .
+ (fa = fo)In(Y)hX —n(X)nY] = 0.
If X is orthogonal to &, then (3.5) reduces to
2061430 1) o= D)X + (fa— fon(VhX =0, (36)
2nfi +3f2 — f3] (gz — i)X + (fa— fe)hX = 0. (3.7)

Contracting the above with W, we get

2nfi + 35 F1 DG W) + (£ - F)aBX.W) =0, (38)

Taking X = W = e;, where {e;, i = 1,...,2n + 1} is an orthonormal basis of
T,M and taking summation over ¢ = 1,...,2n + 1, we obtain

2nf1+3f2— f3=0. (3.9)
Using (3.9) in (3.8), we obtain f; — fs = 0.
Hence the proof.
Theorem 3.2. A (2n + 1)-dimensional generalized (k, i) space form is confor-
mally Ricci symmetric if and only if it is an Einstein manifold.
Proof. Suppose C.S = 0. i.e.
S(CW, X)Y,Z)+ S(Y,C(W,X)Z) = 0. (3.10)
Then taking W = Z = ¢ in (3.10) and using (2.3) and (2.9)— (2.12), we obtain
2n(f1 = f3)
(2n —1)

= |2t - (

S(X,Y)

> —b(k—1) (an_ T (fa- fa))] 9(X,Y)
b

2n —1

2n —1

|2t = s o+ a (g~ U= o)) | o) (3.11)

+ [oati - 7 eats - 50— 0+ b0

02n(f1 — f3)
2n —1

o1 (f4—f6)>

n ] n(X)n(Y),
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where
a = 2nf1 + 3f2 - f3, b= (27”L - 1)f4 — f6, Cc= —[3f2 + (2n — 1)f3]. (3.12)
If Y is orthogonal to &, then (3.11) reduces to

2n(f1 — f3)

2n=1) S(X,Y) =pg(X,Y) + qg(X, hY). (3.13)

where

p=2mthi= ) (557 )~ -0 (5 — (- 1)

q=2n(f1 — f3)(fa— f6) +a <2n — (- f6)> -
Replacing Y by hY in (3.11) and using (2.6) and (2.11), we obtain
_2n(fi—f)b—gq(2n—-1)
Now substituting for g(X,hY’) in (3.11), we obtain

S(X,Y) = ag(X,Y), (3.15)

where

oo @n=1)(p+as)
2n(f1 — f3)
o 2n(f1 — f3)b—q(2n —1)
2n(f1 — f3)a —p(2n — 1)

Thus M?"*1(f1, ..., f¢) is an Einstein manifold.

(k—1).

Converse is obvious.
Hence the theorem is proved.

4. Projective Curvature Tensor in Generalized (k, ) Space Forms

Let M?"*L(f1,..., f¢) be a generalized (k, i) space. The projective curva-
ture tensor P is given by [6]

P(X,Y)Z:R(X,Y)Z—%(S(Y,Z)X—S(X,Z)Y). (4.1)
Suppose R.P = 0. Then we have
R, X)P(Y,Z)W — P(R(&, X)Y, Z)W — P(Y,R(§, X)Z)W
— P(Y,Z)R({, X)W =0,
for all vector fields X, Y, Z and W on M?"+1,

(4.2)
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Taking Y =W = ¢ in (4.2) and using (2.9),(2.12) and (4.1) we get
(fr = f3)°9(X, 2)€ + (fa— fo) (f1 — f3)9(Z, hX)€

(fi— f3) (fa — f6) B
- S(Z,X)€ — o S(Z,hX)¢ = 0.

(4.3)

If X is orthogonal to £, then in view of (2.11), contraction of the above equation
with £ yields

S(Z,X) = (2n(fs — f5)° + (fa— fo)(k — 1)((2n — 1) fy

(fi = fs3) (4.4)
— f6)lg(Z, X) = (fa = f6)[3fa + (2n = 1) f3]9(Z, hX)) .
Replacing X by hX in (4.4) and using (2.6) and (2.11), we obtain
 (k=1)[(f1 — f3)b—c(fa — fo)]
Ty Ay S S )
where
v=2n(fi = f3)* + (fa— fo) (k = D)((2n — 1) fa — fo)- (4.6)
Substituting for g(Z, hX) in (4.4), we obtain
S(X,Z)=~9(X, Z), (4.7)
with
_ 1 oo (P fs) —clfa=fo)\ (o varg
(il S G e LU R B

From (4.7), we conclude that M2"*1(fi, ..., f¢) is an Einstein manifold if f; # fs.
Using (4.7) in (4.1), we obtain

'P(X.Y, W) = R(X.Y, ZW)~ L g(V. 2)g(X, W) ~g(X, Z2)g(Y.W)]. (4.9)

n

Hence we can state the following:
Theorem 4.1. A (2n + 1)—dimensional projectively semi symmetric contact
metric generalized (k, u) space form with f; # f3 is projectively flat if it is of
sectional curvature %

If P.S =0, then we have

S(P(W,X)Y,Z)+ S(Y,P(W,X)Z) = 0. (4.10)
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Taking W =Y = ¢ in (4.10) and using (2.1), (2.6), (2.12) and (4.1), we get

_ (i — f)2 — (F, — 1D ((2n —
S(Z’X)_(ﬁ—fg) (2n(f1 = f3)> = (fa— fo)(k = 1)((2n — 1) f4

~ 92, X) + (s = )1 = 2m) fs = 3faJg(Z,hx) (41D
—(fa = fo)(k = D)((2n = 1) fa = fo)n(X)n(2)) -
If X is orthogonal to &, then (4.11) reduces to

_; n — 2_ - - n-
S(2X) =gy (A = 1 = o= fe = D(Cn=DF

—f6)lg(Z2, X) = (fa = f6)[3f2 4+ (2n — 1) f3]9(Z, hX)) .
Replacing X by hX in (4.11) and using (2.6), (2.11) we obtain
(k = 1)[b(f1 — f3) — c(fa — fo)l9(Z, X)

9(Z,hX) = A , (4.13)
where

e =2n(f1 — f3)° — (fa— fo)(k = 1)((2n — 1) f1 — f5).
Substituting for g(Z, hX) in (4.11), we obtain

1
S(X,Z) = m (r9(X, 2)) (4.14)
with
e c(fs — fo)(k — D)[b(f1 — f3) — c(fa — fo)]
a +< a(fr— f3) —e >

From (4.14), it follows that M?"*1(fy, ..., f¢) is an Einstein manifold if f; # f3.
Converse is obvoius.

Hence we can state the following.

Theorem 4.2. A (2n+1)-dimensional generalized (k, 1) space form is projective
Ricci symmetric if and only if it is an Einstein manifold for f; # fs.

The following establishes relation between fs and fs.

Theorem 4.3. In a projectively flat M2"*1(f, ..., fg), the associated functions
fo and f3 are linearly dependent.

Proof. If M?>"TY(fi, ..., f¢) is projectively flat, then P(X,Y)Z = 0. From
(4.1), we obtain

R(X,Y)Z = QL[S(Y, Z)X — S(X, 2)Y). (4.15)

n
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Taking X = ¢Y and using (1.2) and (2.11) in (4.15) , we obtain

Fla(Y, 2)Y = g(6Y, 2)Y] + folg(¢Y,02)9Y — g(Y,02)$’Y + 29(8Y, 6Y )¢ Z]
+ f3l9(eY, Z)n(YV)E = n(Y)n(2)oY] + falg(Y, 2)heY — g(8Y, Z)hY

+9(hY, 2)¢Y — g(hoY, Z)Y] + f5[g(hY, Z)heY — g(hoY, Z)hY

+ 9(9heY, Z)ohY — g(ohY, Z)oh¢Y] + fslg(hdY, Z)n(Y)E — n(Y)n(Z)heY ]

L (@nfi 435 — )oY, 2)6Y — g(6Y, Z)Y]

n

— Bf2+ @2n =) f3)n(Z)n(Y)¢Y
+(2n =1 fs = fo)lg(hY, Z)9Y — g(hoY, Z)Y]). (4.16)

Taking Y = Z = U, where U is a unit vector orthogonal to £ and using (2.1),
(2.4) and (2.6) in (4.16), we obtain

frg(U,U)oU + 3fag(oU, pU) U + falg(U,U)heU + g(hU, U)pU — g(¢U, hU)U]
+ f5lg(hU, UYhoU — g(U, hUYRU + g(¢hoU, U)phU + g(hU, $U)phgU]
= o (I2nfi + 35> — folo(U, U)OU + [(2n ~ 1)fi — filx

[9(hU,U)¢U — g(hoU,U)U]) (4.17)

Let {e;,i = 1,...,2n + 1} be an orthonormal basis of T,,M. Taking U = e; in
(4.17) and summing over ¢ = 1, ...,2n + 1, we obtain

[3(2n — 2) fa + f3]pe; + 2n fihde; = 0. (4.18)
Contracting the above equation with respect to ¢e; and using (2.4), we obtain
3(2n—2)]f2 + f5 = 0. (4.19)
Hence the proof.
Combining theorem 4.1 and theorem 4.3, we have

Corollary 4.1. Let M?"T1(f(,..., f¢) be a (2n + 1)-dimensional projectively-
semi-symmetric contact metric generalized (k, u) space form with fi # f3. If it
is of sectional curvature %, then fo and f3 are linearly dependent.
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