Vol. 7 (2013), pp.39-47 https://doi.org/10.56424/jts.v7i01.10468

On the Hypersurface of a Finsler Space with the Special Metric

$$lpha + rac{eta^{n+1}}{(lpha - eta)^n}$$

Gauree Shanker*, G. C. Chaubey and Vinay Pandey

*Department of Mathematics and Statistics
Banasthali University, Banasthali-304022, Rajasthan, INDIA.
T. D. P. G. College, Jaunpur (U. P)
Email: grshnkr2007@gmail.com, chaubey.girish@gmail.com
(Received: January 14, 2013)

Abstract

In the present paper, we consider a n-dimentional Finsler space $F^n = (M^n, L)$ with (α, β) -metric $L(\alpha, \beta) = \alpha + \frac{\beta^{n+1}}{(\alpha-\beta)^n}$ which is a generalization of the metric $\alpha + \frac{\beta^2}{(\alpha-\beta)}$ considered in [9] and the hypersurface of F^n with $b_i(x) = \partial_i b$ being the gradient of a scalar function b(x). We find the conditions for this hypersurface to be a hyperplane of 1st kind, 2nd kind and we also show that this hypersurface is a hyperplane of 3rd kind if and only if it is a hyperplane of first kind.

Keywords and Phrases : Hypersurface, Hyperplane, (α, β) -metric, Normal curvature vector, Second fundamental tensor.

2010 AMS Subject Classification: 53B40, 53C60.

1. Introduction

We consider a n-dimensional Finsler space i.e., a pair consisting of a n-dimensional differential manifold M^n equipped with a fundamental function L(x, y). The concept of the (α, β) -metric $L(\alpha, \beta)$ was introduced by M. Matsumoto ([5]) and has been studied by many authors ([1], [2], [7]). A Finsler metric L(x, y) is called an (α, β) -metric $L(\alpha, \beta)$ if L is a positively homogeneous function of α and β of degree one, where $\alpha^2 = a_{ij}(x)$ y^i y^j is a Riemannian metric and $\beta = b_i(x)y^i$ is a 1-form on M^n .

A hypersurface M^{n-1} of the M^n may be represented parametrically by the equation $x^i = x^i(u^\alpha)$, $\alpha = 1,...,n-1$, where u^α are Gaussian coordinates on M^{n-1} . The following notations are also employed [3]: $B^i_{\alpha\beta} = \frac{\partial^2 x^i}{\partial u^\alpha \partial u^\beta}$, $B_{0\beta} =$

 $v^{\alpha}B^{i}_{\alpha\beta}, B^{ij\dots}_{\alpha\beta\dots} = B^{i}_{\alpha}B^{j}_{\beta}\dots$ If the supporting element y^{i} at a point (u^{α}) of M^{n-1} is assumed to be tangential to M^{n-1} , we may then write $y^{i} = B^{i}_{\alpha}(u)v^{\alpha}$, so that v^{α} is thought of as the supporting element of M^{n-1} at the point (u^{α}) . Since the function $\underline{L}(u,v) = L(x(u),y(u,v))$ gives rise to a Finsler metric of M^{n-1} , we get a (n-1)-dimensional Finsler space $F^{n-1} = (M^{n-1},\underline{L}(u,v))$.

2. Preliminaries

Let $F^n = (M^n, L)$ be a special Finsler space with the metric

$$\alpha + \frac{\beta^{n+1}}{(\alpha - \beta)^n}. (2.1)$$

The derivatives of the (2.1) with respect to α and β are given by

$$L_{\alpha} = \frac{(\alpha - \beta)^{n+1} - n\beta^{n+1}}{(\alpha - \beta)^{n+1}}, L_{\beta} = \frac{((n+1)\alpha - \beta)\beta^{n}}{(\alpha - \beta)^{n+1}}, L_{\alpha\alpha} = \frac{n(n+1)\beta^{n+1}}{(\alpha - \beta)^{n+2}},$$
$$L_{\beta\beta} = \frac{n(n+1)\alpha^{2}\beta^{n-1}}{(\alpha - \beta)^{n+2}}, L_{\alpha\beta} = \frac{-n(n+1)\alpha\beta^{n}}{(\alpha - \beta)^{n+2}},$$

where
$$L_{\alpha} = \frac{\partial L}{\partial \alpha}$$
, $L_{\beta} = \frac{\partial L}{\partial \beta}$, $L_{\alpha\alpha} = \frac{\partial L_{\alpha}}{\partial \alpha}$, $L_{\beta\beta} = \frac{\partial L_{\beta}}{\partial \beta}$, $L_{\alpha\beta} = \frac{\partial L_{\alpha}}{\partial \beta}$.

In the special Finsler space $F^n = (M^n, L)$ the normalized element of support $l_i = \dot{\partial}_i L$ and the angular metric tensor h_{ij} are given by [7]:

$$l_i = \alpha^{-1} L_{\alpha} Y_i + L_{\beta} b_i$$

and

$$h_{ij} = pa_{ij} + q_0b_ib_j + q_1(b_iY_j + b_2Y_iY_j) + Q_2Y_iY_j,$$

where

$$Y_{i} = a_{ij}y^{j},$$

$$p = LL_{\alpha}\alpha^{-1} = \frac{\{\alpha(\alpha - \beta)^{n} + \beta^{n+1}\}\{(\alpha - \beta)^{n+1} - n\beta^{n+1}\}}{\alpha(\alpha - \beta)^{(2n+1)}},$$

$$q_{0} = LL_{\beta\beta} = \frac{n(n+1)\{\alpha(\alpha - \beta)^{n} + \beta^{n+1}\}\alpha^{2}\beta^{n-1}}{(\alpha - \beta)^{2n+2}},$$

$$q_{1} = LL_{\alpha\beta}\alpha^{-1} = \frac{-n(n+1)\{\alpha(\alpha - \beta)^{n} + \beta^{n+1}\}\beta^{n}}{(\alpha - \beta)^{2(n+1)}},$$

$$q_{2} = L\alpha^{-2}(L_{\alpha\alpha})$$

$$= \frac{\{\alpha(\alpha - \beta)^{n} + \beta^{n+1}\}[n\beta^{n+1}\{(n+2)\alpha - \beta\} - (\alpha - \beta)^{n+2}]}{\alpha^{3}(\alpha - \beta)^{2(n+1)}}.$$
 (2.2)

The fundamental tensor $g_{ij} = \frac{1}{2} \dot{\partial}_i \dot{\partial}_j L^2$ and its reciprocal tensor g^{ij} are given, respectively by [7]

$$g_{ij} = pa_{ij} + p_0b_ib_j + p_1(b_iY_j + b_jY_i) + p_2Y_iY_j,$$

where

$$p_0 = q_0 + L_{\beta}^2$$

$$= \frac{(n+1)[\{n\alpha^3(\alpha-\beta)^n\beta^{n-1} + (n+1)\alpha^2\beta^{2n} + n\alpha^2\beta^{2n} - 2\alpha\beta^{2n+1}\} + (\alpha-\beta)^{2n+2}}{(\alpha-\beta)^{2n+2}}$$

$$\frac{\beta^{2n+2}]}{[\alpha-\beta]^{2n+2}}$$

$$p_{1} = q_{1} + L^{-1}pL_{\beta}$$

$$= \frac{\{(1-n)\alpha - \beta\}(n+1)\alpha\beta^{n}(\alpha-\beta)^{n} - 2n(n+1)\alpha\beta^{2n+1} + n\beta^{2(n+1)}}{\alpha(\alpha-\beta)^{2n+2}}$$

$$\frac{-\beta^{n+1}(\alpha-\beta)^{n+1}}{\beta^{n+1}},$$
(2.3)

$$p_{2} = q_{2} + p^{2}L^{-2}$$

$$\frac{\{\alpha(\alpha - \beta)^{n} + \beta^{n+1}\}[n\beta^{n+1}\{(n+2)\alpha - \beta\} - (\alpha - \beta)^{n+2}] + \alpha^{3}(\alpha - \beta)^{2(n+1)}}{\alpha^{3}(\alpha - \beta)^{2(n+1)}}$$

$$\frac{\{(\alpha - \beta)^{2n+2} + n^{2}\beta^{2n+2} - 2n(\alpha - \beta)^{n+1}\beta^{n+1}\}}{\alpha^{3}(\alpha - \beta)^{2n+2}},$$
(2.4)

and

$$g^{ij} = p^{-1}a^{ij} - S_0b^ib^j - S_1(b^iy^j + b^jy^i) - S_2y^iy^j$$
(2.5)

where

$$b^{i} = a^{ij}b_{j}, S_{0} = \frac{[pp_{0} + (p_{0}p_{2} - p_{1}^{2})\alpha^{2}]}{\zeta}, S_{1} = \frac{[pp_{1} + (p_{0}p_{2} - p_{1}^{2})\beta]}{\zeta p}, S_{2} = \frac{[pp_{2} + (p_{0}p_{2} - p_{1}^{2})b^{2}]}{\zeta p},$$

$$b^{2} = a_{ij}b^{i}b^{j}, \qquad \zeta = p(p + p_{0}b^{2} + p_{1}\beta) + (p_{0}p_{2} - p_{1}^{2})(\alpha^{2}b^{2} - \beta^{2})$$
(2.6)

The hv-torsion tensor $c_{ijk} = \frac{1}{2}\dot{\partial}_k g_{ij}$ is given by [7]

$$2pC_{ijk} = p_1(h_{ij}m_k + h_{jk}m_i + h_{ki}m_j) + \gamma_1 m_i m_j m_k,$$
 (2.7)

where

$$\gamma_1 = p \frac{\partial p_0}{\partial \beta} - 3p_1 q_0, \qquad m_i = b_i - \alpha^{-2} \beta Y_i.$$

Here m_i is a non-vanishing covariant vector orthogonal to the element of support y^i . Let $\begin{cases} i \\ jk \end{cases}$ be the components of Christoffel symbols of the associated Riemannian space R^n and ∇_k be covariant differentiation with respect to x^k relative to this Christoffel symbols. We put

$$2E_{ij} = b_{ij} + b_{ji}, 2F_{ij} = b_{ij} - b_{ji}, (2.8)$$

where $b_{ij} = \nabla_i b_i$.

Let $C\Gamma = (\Gamma_{ij}^{*i}, \Gamma_{0k}^{*i}, \Gamma_{jk}^{i})$ be the Cartan connection of F^{n} . The difference tensor $D_{jk}^{i} = \Gamma_{jk}^{*i} - \begin{Bmatrix} i \\ jk \end{Bmatrix}$ of the special Finsler space F^{n} is given by [4]

$$D_{jk}^{i} = B^{i}E_{jk} + F_{k}^{i}B_{j} + F_{j}^{i}B_{k} + B_{j}^{i}b_{0k} + B_{k}^{i}b_{0j} - b_{0m}g^{im}B_{jk} - C_{jm}^{i}A_{k}^{m} - C_{km}^{i}A_{j}^{m} + C_{jkm}A_{s}^{m}g^{is} + \lambda^{s}(c_{im}^{i}c_{sk}^{m} + c_{km}^{i}c_{sj}^{n} - c_{jk}^{m}c_{ms}^{i}),$$
(2.9)

where

$$B_{k} = p_{0}b_{k} + p_{1}Y_{k}, \qquad B^{i} = g^{ij}B_{j}, \qquad F_{i}^{k} = g^{kj}F_{ji},$$

$$B_{ij} = \frac{\{p_{1}(a_{ij} - \alpha^{-2}Y_{i}Y_{j}) + \frac{\partial p_{0}}{\partial \beta}m_{i}m_{j}\}}{2}, \qquad (2.10)$$

$$B_{i}^{k} = g^{kj}B_{ji},$$

$$A_{k}^{m} = b_{k}^{m}E_{00} + B^{m}E_{k0} + B_{k}F_{0}^{m} + B_{0}F_{k}^{m},$$

$$\lambda^{m} = B^{m}E_{00} + 2B_{0}F_{0}^{m}, B_{0} = B_{i}y^{i},$$

where '0 'denote contraction with y^i except for the quantities p_0 , q_0 and S_0 .

3. Induced Cartan connection

Let F^{n-1} be a hypersurface of F^n given by the equations $x^i = x^i(u)$. The element of support y^i of F^n is to be taken tangential to F^{n-1} , that is

$$y^i = B^i_\alpha(u) \, v^\alpha. \tag{3.1}$$

The metric tensor g and v-torsion tensor C of F^{n-1} are given by

$$g_{\alpha\beta} = g_{ij}B^i_{\alpha}B^j_{\beta}, \qquad C_{\alpha\beta\gamma} = C_{ijk}B^i_{\alpha}B^j_{\beta}B^k_{\gamma}.$$

At each point u of F^{n-1} , a unit normal vector $N^i(u, v)$ is defined by

$$g_{ij}(x(u,v), y(u,v)) B^i_{\alpha} N^j = 0,$$
 $g_{ij}(x(u,v), y(u,v)) N^i N^j = 1,$

and for the angular metric tensor h_{ij} , we have

$$h_{\alpha\beta} = h_{ij} B_{\alpha}^{i} B_{\beta}^{j}, \qquad h_{ij} B_{\alpha}^{i} N^{j} = 0, \qquad h_{ij} N^{i} N^{j} = 1.$$
 (3.2)

If (B_i^{α}, N^i) denote the inverse of (B_{α}^i, N_i) , then we have

$$\begin{split} B_i^\alpha &= g^{\alpha\beta} g_{ij} B_\beta^j, \quad B_\alpha^i B_i^\beta = \delta_\alpha^\beta, \quad B_i^\alpha N^i = 0, \quad B_\alpha^i N_i = 0, \quad N_i = g_{ij} N^j, \\ B_i^k &= g^{kj} B_{ji}, \qquad B_\alpha^i B_j^\alpha + N^i N^j = \delta_i^j. \end{split}$$

The induced connection $IC\Gamma = (\Gamma^{*\alpha}_{\beta\gamma}, G^{\alpha}_{\beta}, C^{\alpha}_{\beta\gamma})$ of F^{n-1} induced from the Cartan's connection $(\Gamma^{*i}_{jk}, \Gamma^{*i}_{0k}, C^{i}_{jk})$ is given by [6]

$$\begin{split} &\Gamma^{*\alpha}_{\beta\gamma} = B^{\alpha}_i (B^i_{\beta\gamma} + \Gamma^{*i}_{jk} B^j_{\beta} B^k_{\gamma}) + M^{\alpha}_{\beta} H_{\gamma}, \\ &G^{\alpha}_{\beta} = B^{\alpha}_i (B^i_{0\chi} + \Gamma^{*i}_{0j} B^i_{\beta}), \\ &C^{\alpha}_{\alpha\beta} = B^{\alpha}_i C^i_{jk} B^j_{\beta} B^k_{\gamma}, \end{split}$$

where

$$M_{\beta\gamma} = N_i C^i_{jk} B^j_{\beta} B^k_{\gamma}, \quad M^{\alpha}_{\beta} = g^{\alpha\gamma} M_{\beta\gamma}, \quad H_{\beta} = N_i (B^i_{0\beta} + \Gamma^{*i}_{0j} B^j_{\beta})$$
 (3.3)

and $B^i_{\beta\gamma} = \frac{\partial B^i_{\beta}}{\partial U^r}$. The quantities $M_{\beta\gamma}$ and H_{β} are called the second fundamental v-tensor and normal curvature vector respectively [6]. The second fundamental h-tensor $H_{\beta\gamma}$ is defined as [6]:

$$H_{\beta\gamma} = N_i (B_{\beta\gamma}^i + \Gamma_{jk}^{*i} B_{\beta}^j B_{\gamma}^k) + M_{\beta} H_{\gamma}, \tag{3.4}$$

where

$$M_{\beta} = N_i C^i_{jk} B^j_{\beta} N^k. \tag{3.5}$$

The relative h and v-covariant derivatives of projection factor B^i_{α} with respect to $IC\Gamma$ are given by

$$B_{\alpha|\beta}^{i} = H_{\alpha\beta}N^{i}, B_{\alpha}^{i}|\beta = M_{\alpha\beta}N^{i}. \tag{3.6}$$

The equation (2.3) shows that $H_{\beta\gamma}$ is generally not symmetric and

$$H_{\beta\gamma} - H_{\gamma\beta} = M_{\beta}H_{\gamma} - M_{\gamma}H_{\beta}. \tag{3.7}$$

The above equations yield

$$H_{0\gamma} = H_{\gamma}, H_{\gamma 0} = H_{\gamma} + M_{\gamma} H_{0}.$$
 (3.8)

We use following lemmas, which are due to Matsumoto [6]:

Lemma 3.1. The normal curvature $H_0 = H_{\beta}v^{\beta}$ vanishes if and only if the normal curvature vector H_{β} vanishes.

Lemma 3.2. A hypersurface F^{n-1} is a hyperplane of the 1st kind if and only if $H_{\alpha} = 0$.

Lemma 3.3. A hypersurface F^{n-1} is a hyperplane of the 2nd kind with respect to the connection $C\Gamma$ if and only if $H_{\alpha} = 0$ and $H_{\alpha\beta} = 0$.

Lemma 3.4. A hyperplane of the 3rd kind is characterized by $H_{\alpha\beta} = 0$ and $M_{\alpha\beta} = 0$.

4. Hypersurface $F^{n-1}(c)$ of the special Finsler space

Let us consider special Finsler metric $L = \alpha + \beta^{n+1}/(\alpha - \beta)^n$ with a gradient $b_i(x) = \partial_i b$ for a scalar function b(x) and a hypersurface $F^{n-1}(c)$ given by the equation b(x) = c(constant) [8]. From parametric equation $x^i = x^i(u)$ of $F^{n-1}(c)$, we get $\partial_{\alpha} B(x(u)) = 0 = b_i B_{\alpha}^i$ so that $b_i(x)$ are regarded as covariant components of a normal vector field of $F^{n-1}(c)$. Therefore, along the $F^{n-1}(c)$ we have

$$b_i B_{\alpha}^i = 0, \qquad b_i \, y^i = 0.$$
 (4.1)

The induced metric L(u, v) of $F^{n-1}(c)$ is given by

$$L(u,v) = a_{\alpha\beta}v^{\alpha}v^{\beta}, \qquad a_{\alpha\beta} = a_{ij}B_{\alpha}^{i}B_{\beta}^{j}. \tag{4.2}$$

which is the Riemannian metric.

At a point of $F^{n-1}(c)$, from (2.2), (2.3) and (2.5), we have

$$p = 1$$
, $q_0 = 0$, $q_1 = 0$, $q_2 = -\alpha^{-2}$, $p_0 = 0$,
 $p_2 = 0$, $\zeta = 1$, $S_0 = 0$, $S_1 = 0$, $S_2 = 0$. (4.3)

Therefore, from (2.4) we get

$$g^{ij} = a^{ij}. (4.4)$$

Thus along $F^{n-1}(c)$, (4.3) and (4.1) lead to

$$g^{ij}b_{i}b_{j} = b^{2} = b.b = bN^{j}b_{j} = \sqrt{b^{2}}g^{ij}g_{i\alpha}N^{\alpha}b_{j} = \sqrt{b^{2}}g^{ij}N_{i}b_{j}.$$

This implies

$$g^{ij}b_i(b_i - \sqrt{b^2}N_i) = 0.$$

Therefore, we get

$$b_i = \sqrt{b^2} N_i, b^2 = a^{ij} b_i b_j, \tag{4.5}$$

i.e., $b_i(x(u)) = bN_i$, where b is the length of the vector b^i . Again from (4.4) and (4.5) we get

$$b^i = bN^i. (4.6)$$

Thus we have

Theorem 4.1. In the special Finsler hypersurface $F^{n-1}(c)$, the Induced metric is a Riemannian metric given by (4.2) and the Scalar function b(x) is given by (4.5) and (4.6).

The angular metric tensor and metric tensor of F^n are given by

$$h_{ij} = a_{ij} - \frac{Y_i Y_j}{a^2}, g_{ij} = a_{ij}. (4.7)$$

From (4.1), (4.7) and (3.2) it follows that if $h_{\alpha\beta}^a$ denotes the angular metric tensor of the Riemannian $a_{ij}(x)$, then along $F^{n-1}(c)$, $h_{\alpha\beta} = h_{\alpha\beta}^a$. From (2.3), we get

$$\frac{\partial p_0}{\partial \beta} = \frac{\left[n(n+1)\alpha^3\{(n-1)\beta^n(\alpha-\beta)^{3n+2} + (n+2)\beta^{n-1}(\alpha-\beta)^{3n+1}\} + (\alpha-\beta)^{4n+4}}{(\alpha-\beta)^{4n+4}} \\
= \frac{\left\{n(n+1)\alpha^2 + (n+1)^2\alpha^2\}\binom{2n(\alpha-\beta)^{2n+2}\beta^{2n-1} + 2(n+1)(\alpha-\beta)^{2n+1}\beta^{2n}}{-2\alpha(n+1)}\right\}}{\binom{(2n+1)\beta^{2n}(\alpha-\beta^{2n+2}) + (2n+2)(\alpha-\beta)^{2n+1}\beta^{2n+1}}{(\alpha-\beta)^{2n+2}(2n+2)\beta^{2n+1} + (2n+2)(\alpha-\beta)^{2n+1}\beta^{2n+1}}}$$

Thus along $F^{n-1}(c)$, $\frac{\partial p_0}{\partial \beta} = 0$ and therefore (1.6) gives $\gamma_1 = 0$, $m_i = b_i$. Therefore the hv-torsion tensor becomes

$$C_{ijk} = 0. (4.8)$$

in a special Finsler hypersurface F^{n-1} (c). Therefore, (3.3), (3.5) and (4.8) give

$$M_{\alpha\beta} = 0, \qquad M_{\alpha} = 0. \tag{4.9}$$

From (3.7) it follows that $H_{\alpha\beta} = 0$ is symmetric. Thus we have

Theorem 4.2. The second fundamental v-tensor of special Finsler hyper-surface $F^{n-1}(c)$ vanishes and the second fundamental h-tensor $H_{\alpha\beta}$ is symmetric.

Next from (4.1), we get $b_{i|\beta}B^i_{\alpha} + b_i B^i_{\alpha|\beta} = 0$. Therefore, from (3.6) and Using, $b_{i|\beta} = b_{i|j}B^j_{\beta} + b_i|_j N^j H_{\beta}$, we get

$$b_{i|j}B_{\alpha}^{i}B_{\beta}^{j} + b_{i|j}B_{\alpha}^{i}N^{i}H_{\beta} + b_{i}H_{\alpha\beta}N^{i} = 0.$$
(4.10)

Since $b_i|_{j} = -b_h C_{ij}^h$, we get

Thus (4.10) gives

$$bH_{\alpha\beta} + b_{i|j}B^i_{\alpha}B^j_{\beta} = 0. (4.11)$$

It is noted that $b_{i|j}$ is symmetric. Furthermore, contracting (4.11) with v^{β} and then with v^{α} and using (3.1), (3.8) and (4.9), we get

$$bH_{\alpha} + b_{i|j}B_{\alpha}^{i}y^{j} = 0. \tag{4.12}$$

$$bH_0 + b_{i|j}y^i y^j = 0. (4.13)$$

In view of Lemmas (3.1) and (3.2), the hypersurface $F^{n-1}(c)$ is hyperplane of the first kind if and only if $H_0 = 0$. Thus from (4.12) it follows that $F^{n-1}(c)$

is a hyperplane of the first kind if and only if $b_{i|j}y^iy^j = 0$. Here $b_{i|j}$ being the covariant derivative with respect to $C\Gamma$ of F^n depends on y^i . Since b_i is a gradient vector, from (2.8) we have $E_{ij} = b_{ij}$, $F_{ij} = 0$ and $F_j^i = 0$. Thus (2.9) reduces to

$$D_{ij}^{i} = B^{i}b_{jk} + B_{j}^{i}b_{0k} + B_{k}^{i}b_{0j} - b_{0m}g^{im}B_{jk} - C_{jm}^{i}A_{k}^{n} - C_{km}^{i}A_{j}^{n} + C_{jkm}A_{s}^{n}g^{is} + \lambda(C_{jm}^{i}C_{sk}^{m} + C_{km}^{i}C_{sj}^{m} - C_{jk}^{m}C_{ms}^{i}).$$

$$(4.14)$$

In view of (4.3) and (4.4), the relations in (2.10) become to

$$B_i = 0, \quad B^i = 0, \quad B_{ij} = 0, \quad B_i^i = 0, \quad A_k^m = 0, \quad \lambda^m = 0.$$
 (4.15)

By virtue of (4.15) we have $B_0^i = 0$, $B_{i0} = 0$ which leads $A_0^m = 0$. Therefore we have

$$D_{j0}^i = 0, \qquad D_{00}^i = 0.$$

Thus from the relation (4.1), we get

$$b_i D_{i0}^i = 0. (4.16)$$

$$b_i D_{00}^i = 0. (4.17)$$

From (4.8) it follows that

$$b^m b_i C^i_{jm} B^j_{\alpha} = b^2 M_{\alpha} = 0.$$

Therefore, the relation $b_{i|j} = b_{ij} - b_r D_{ij}^r$ and equations (4.16), (4.17) give

$$b_{i|j}y^iy^j = b_{00}.$$

Consequently, (4.12) and (4.13) may be written as

$$bH_{\alpha} + b_{i|0}B_{\alpha}^{i} = 0, \qquad bH_{0} + b_{00} = 0.$$
 (4.18)

Thus the condition $H_0 = 0$ is equivalent to $b_{00} = 0$, where b_{ij} does not depend on y^i . Since y^i is to satisfy (4.1), the condition is written as $b_{ij}y^iy^j = (b_iy^i)(c_jy^j)$ for some $c_j(x)$, so that we have

$$2b_{ij} = b_i c_j + b_j c_i. (4.19)$$

From (4.1) and (4.19) it follows that $b_{00} = 0$, $b_{ij}B^i_{\alpha}B^j_{\beta} = 0$, $b_{ij}B^i_{\alpha}y^i = 0$. Hence (4.18) gives $H_{\alpha} = 0$. Again from (4.19) and (4.15) we get $b_{i0}b^i = \frac{b^2c_0}{2}$, $\lambda^m = 0$, $A^i_jB^j_{\beta} = 0$ and $B_{ij}B^i_{\alpha}B^j_{\beta} = 0$. Thus (3.4), (4.4), (4.5), (4.6), (4.9) and (4.14) give

$$b_r D_{ij}^r B_{\alpha}^i B_{\beta}^j = 0. (4.20)$$

Therefore (4.11) reduces to

$$H_{\alpha\beta} = 0. (4.21)$$

Thus we have

Theorem 4.3. The special Finsler hypersurface $F^{n-1}(c)$ is hyperplane of 1st kind if and only if (4.19) holds.

From the Lemmas (3.1), (3.2), (3.3) and Theorem (4.3), we have the following:

Theorem 4.4. If the special Finsler hypersurface $F^{n-1}(c)$ is a hyperplane of the 1st kind then it becomes a hyperplane of the 2nd kind too.

Hence from (3.8), (4.21), Theorem (4.2), and Lemma (3.4) we have

Theorem 4.5. The special Finsler hypersurface $F^{n-1}(c)$ is hyperplane of the 3rd kind if and only if it is a hyperplane of 1st kind.

References

- 1. Hashiguchi, M. and Ichijyo, Y. : On some special (α, β) —metrics, Rep. Fac. Sci. Kagasima Univ. (Math., Phys., Chem.), 8 (1975), 39-46.
- 2. Kikuchi, S.: On the condition that a space with (α, β) -metric be locally Minkowskian, Tensor, N. S., 33 (1979), 242-246.
- 3. Kitayama, M. : On Finslerian hypersurfaces given by β change, Balkan J. of Geometry and its Applications, 7 (2002), 49-55.
- 4. Matsumoto, M.: Foundations of Finsler Geometry and Special Finsler spaces, Kaiseisha press, Saikawa, Otsu, 520, Japan, 1986.
- 5. Matsumoto, M. : Theory of Finsler spaces with (α, β) -metrics, Rep. Math. Phys., 30 (1991), 15-20.
- 6. Matsumoto, M.: The induced and intrinsic Finsler connection of a hypersurface and Finslerian projective geometry, J. Math. Kyoto Univ., 25 (1985), 107-144.
- 7. Shibata, C. : On Finsler spaces with an (α, β) -metric, J. Hokkaido Univ. of Education, 35 (1984), 1-16.
- 8. Lee, II-Yong, Park, Ha-Yong and Lee, Yong-Duk : On a hypersurface of a special Finsler space with a metric $\alpha + \beta^2/\alpha$, Korean J. Math. Sciences, 8(1) (2001), 93-101.
- 9. Shanker, G. and Yadav, R. : On The Hypersurface of a Finsler space with a special (α, β) metric $\alpha + \beta^2/\alpha \beta$, J. Raj. Acad. Phy. Sc., 12, No. 1 (2013), 15-26.