
J. T. S. ISSN : 0974-5428

Vol. 7 (2013), pp.49-57

Geometry of Schwarzschild Soliton

Musavvir Ali and Zafar Ahsan

Department of Mathematics

Aligarh Muslim University, Aligarh-202 002, India

e-mail: musavvir.alig@gmail.com, zafar.ahsan@rediffmail.com

(Received: December 12, 2012)

Abstract

It is shown that the gravitational field of Schwarzschild soliton differ by its

original Schwarzschild metric. By using the technique of eigen value of charac-

teristic equation of λ−tensor, the geometry of Schwarzschild soliton has been

studied.
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1. Introduction

Mathematical models are involved in theories of gravitational Physics. Some-

times these models are defined under ideal conditions by a set of differential

equations and governed by some rules for translating the mathematical re-

sults into physical world with meaningful statements. In general relativity our

main motive is to solve the Einstein’s field equations. There are so many ex-

act and non-exact solutions for these equations in the literature (c.f., [6]). In

Einstein’s theory of general relativity, the Schwarzschild solution discovered by

Karl Schwarzschild in 1916, describes the gravitational field outside a spheri-

cally symmetric, uncharged, non-rotating gravitational object such as a (non-

rotating) star, planet, or black hole. The cosmological constant is assumed to

equal zero. If we suppose the gravitational mass as sun, then the field outside

the sun is called the Schwarzschild solution, given by the metric

ds2 =

(
r2

r2 − 2mr

)
dr2 + r2dθ2 + r2 sin2 θdϕ2 −

(
r2

r2 − 2mr

)−1

dt2. (1)

The corresponding solution for a charged, spherical, non-rotating body, the

ReissnerNordström metric is
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ds2 =

(
r2

r2 + e2 − 2mr

)
dr2 + r2dθ2 + r2 sin2 θdϕ2 −

(
r2

r2 + e2 − 2mr

)−1

dt2.

(2)

In 1982, Hamilton [5] introduced the Ricci flow

∂gij
∂t

= −2Rij , (3)

to study compact three-manifolds with positive Ricci curvature and he call equa-

tion (3) as evolution equation. Hamilton proved many important and remarkable

theorems for the Ricci flow, and laid the foundation for the program to approach

the Poincare’s conjecture and Thurstons geometrization conjecture via the Ricci

flow. Further the idea was extended to Ricci soliton by pulling back the solu-

tions of Ricci flow along a λ-dependent diffeomorphism. The Ricci soliton is

a manifold (M, gij) whose metric tensor for a vector field ξ on it satisfy the

equation

Rij −
1

2
£ξgij = kgij . (4)

Here k is a constant and Rij is the Ricci tensor for metric gij . The soliton is

gradient if ξ = ∇ϕ, for some function ϕ and steady if k = 0. If k < 0 the soliton

is called an expander; if k > 0 it is a shrinker.

For four dimensional case Akbar and Woolger [3] have given a local k = 0

soliton, named as Schwarzschild soliton. Further the Ricci soliton for Lorentzian

signature has been studied by Ali and Ahsan [2] and they have explored the

case of Riesner-Nordström metric as a soliton. The metric of the Schwarzschild

soliton is obtained by deforming the original Schwarzschild metric for a proper

substitution of functions and vector fields, for which the new metric tensor

satisfy the equation (4). The Schwarzschild soliton is given by the following

equation (c.f., [2])

ds2 = −
(
r2 − 2mr

r2

)√
2

dt2 + dr2 + (r2 − 2mr)(dθ2 + sin2 θdϕ2). (5)

Motivated by the all important role of Ricci soliton in differential geometry

and relativity, we have studied this concept for the spacetime of general relativ-

ity. We have chosen the Schwarzschild metric and studied its soliton in detail.

By using the 6-dimensional formalism, the characteristic values of λ-tensor (i.e.

RAB − λgAB) has been given in this paper and an example of canonical form of

the system is shown. Further the cases of 2 and 3-dimension for Schwarzschild
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soliton are discussed, in which Gaussian curvature is calculated and shown its

dependence on characteristic value of λ-tensor. Finally the discussion on geom-

etry of Schwarzschild metric and Schwarzschild soliton is made.

2. Schwarzschild soliton

Equation (5) for signature (1, 1, 1, −1) can also be written in the following

form

ds2 = dr2 + (r2 − 2mr)(dθ2 + sin2 θdϕ2)−
(
r2 − 2mr

r2

)√
2

dt2. (6)

The components of the potential for the gravitation or the metric tensor for

Schwarzschild soliton (6) in spherical coordinates xα ≡ (r, θ, ϕ, t) are given by

gij(x
α) =


1 0 0 0

0 r2 − 2mr 0 0

0 0 (r2 − 2mr) sin2 θ 0

0 0 0 −
(
r2 − 2mr

r2

)√
2

 (7)

or

g11 = 1, g22 = r2 − 2mr, g33 = (r2 − 2mr) sin2 θ, g44 = −
(
r2 − 2mr

r2

)√
2

. (8)

The Christoffel symbols, can be calculated from the formula [1]

Γi
jk = gilΓljk

= 1
2g

il

(
∂glj
∂xk

−
∂gjk
∂xl

+
∂gkl
∂xj

)
.

(9)

Thus the non-zero components of the Christoffel symbols for metric (6), by using

equation (8) are

Γ1
22 = (m− r), Γ1

33 = (m− r) sin2 θ

Γ1
44 =

√
2m

r2 − 2mr

(
r2 − 2mr

r2

)√
2

, Γ2
12 = Γ2

21 =
r −m

r2 − 2mr

Γ2
33 = − sin θ cos θ, Γ3

13 = Γ3
31 =

r −m

r2 − 2mr

Γ3
23 = Γ3

32 = cot θ, Γ4
14 = Γ4

41 =

√
2m

r2 − 2mr
.

(10)
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While Riemann tensor for the Schwarzschild soliton (4) can be calculated

from the formula [1]

Rijkl =
1
2

(
∂2gil

∂xj∂xk
+

∂2gjk
∂xi∂xl

− ∂2gik
∂xj∂xl

−
∂2gjl
∂xi∂xk

)
+ gmn(Γ

m
jkΓ

n
il − Γm

jlΓ
n
ik)

(11)

and the non-zero components of Riemann tensor, by using equation (8) are

R1212 =
m2

r2 − 2mr

R1414 =
2m

(r2 − 2mr)2

(
r2 − 2mr

r2

)√
2

[m+
√
2(m− r)]

R2323 = −m2 sin2 θ

R2424 =
−
√
2m(m− r)

(r2 − 2mr)

(
r2 − 2mr

r2

)√
2

R3131 =
m2 sin2 θ

r2 − 2mr

R3434 =
−
√
2m(m− rs) sin2 θ

(r2 − 2mr)

(
r2 − 2mr

r2

)√
2

.

(12)

We now use the 6-dimensional formalism in the pseudo-Euclidean space R6

by making the identification [4]

ij : 23 31 12 14 24 34

A : 1 2 3 4 5 6.
(13)

We also make use of the identification as

gikgjl − gilgjk = gijkl → gAB, (14)

where A,B= 1, 2, 3, 4, 5, 6 and gij are the components of the metric tensor at

an arbitrary point (xα) of the Schwarzschild soliton, whose metric is given by

equation (6). The new metric tensor gAB (A,B=1, 2, 3, 4, 5, 6) is symmetric

and non-singular.
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The non-zero components of the metric tensor gAB for equation (6) in 6-

dimensional formalism, by using formulation (14) are as

g11(x
α) = (r2 − 2mr)2 sin2 θ, g22(x

α) = (r2 − 2mr) sin2 θ

g33(x
α) = (r2 − 2mr), g44(x

α) = −
(
r2 − 2mr

r2

)√
2

g55(x
α) = −(r2 − 2mr)

(
r2 − 2mr

r2

)√
2

g66(x
α) = −(r2 − 2mr) sin2 θ

(
r2 − 2mr

r2

)√
2

.

(15)

Similarly, we can transform the components of the Riemann tensor as

Rijkl → RAB. Thus, for example R1212 can be written as R33 [using identifica-

tion (13)]. The non-zero components of the tensor RAB under the identification

(13) are

R11(x
α) = −m2 sin2 θ

R22(x
α) =

m2 sin2 θ

r2 − 2mr
, R33(x

α) =
m2

r2 − 2mr

R44(x
α) =

2m

(r2 − 2mr)2

(
r2 − 2mr

r2

)√
2

[m+
√
2(m− r)]

R55(x
α) =

−
√
2m

(r2 − 2mr)

(
r2 − 2mr

r2

)√
2

R66(x
α) =

−
√
2m(m− r) sin2 θ

(r2 − 2mr)

(
r2 − 2mr

r2

)√
2

(16)

Further we use all these values to find a canonical form of the λ-tensor

RAB − λgAB. Next, we will be interested in eigen values for the Schwarzschild

soliton (4), That is the solutions of the characteristic equation | RAB − λgAB |=
0. By using equations (15) and (14) easily, we calculate these eigen values and

those are given by
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λ1(r) =
m2

(r2 − 2mr)2

λ2(r) =
m2

(r2 − 2mr)2
= λ3(r)

λ4(r) =
−2m

(r2 − 2mr)2
[m+

√
2(m− r)]

λ5(r) =
−
√
2m(m− r)

(r2 − 2mr)2
= λ6(r).

(17)

λi, i = 1, 2, 3, 4, 5, 6, are the solution of the character equation | RAB − λgAB |
= 0 which depend on m and r. In other words we can say that for λi [equation

(17)], the determinant of λ-tensor RAB − λgAB is zero. Thus we can transform

the system in canonical form for values of λi as

gA′B′ =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1


and

RA′B′ =



λ1(r) 0 0 0 0 0

0 λ2(r) 0 0 0 0

0 0 λ3(r) 0 0 0

0 0 0 −λ4(r) 0 0

0 0 0 0 −λ5(r) 0

0 0 0 0 0 −λ6(r)


.

(18)

Thus in our case (for Schwarzschild soliton) the gravitational field deter-

mined by λ- tensor is of the type G1[(1)(1)(11)(11)] in Segre symbols. From

equation (18), we note that even if mass m = 0, the Schwarzschild soliton is

flat.

Case I - θ = 0 or θ = π

When taking θ = 0 or θ = π that is dθ = 0, the Schwarzschild soliton, given

by equation (6), reduces to the form
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∗ds2 = dr2 −
(
r2 − 2mr

r2

)√
2

dt2. (19)

Now equation (19) is a 2-dimensional surface now. The metric tensor ∗g in

coordinates xβ ≡ (r, t) is given by

∗gij(x
β) =

 1 0

0 −
(
r2 − 2mr

r2

)√
2

 , (20)

here i, j = 1, 4. Thus the hypersurface for θ = 0 or θ = π (i.e., ∗H0 or ∗Hπ)

degenerates to two dimensional surface. The non-zero component of Riemann

curvature tensor for equation (19) is unique and given by

∗R1414(x
β) =

2m

(r2 − 2mr)2

(
r2 − 2mr

r2

)√
2

[m+
√
2(m− r)], (21)

so the Gaussian curvature ∗K for surface ∗H0 or ∗Hπ is

∗K(xβ) =
2m

r2 − 2mr
[m+

√
2(m− r)]. (22)

Equations (17) and (22) show that curvature of the 2-dimensional surface of the

Schwarzschild soliton is related to the eigen value λ4(r).

Case II - 2m < r < ∞, 0 < θ < π and ϕ = 0

For this case, equation (6) reduces to

ds2 = dr2 + (r2 − 2mr)dθ2 −
(
r2 − 2mr

r2

)√
2

dt2. (23)

The metric tensor ∗∗gij for equation (23) in coordinate xγ ≡ (r, θ, t) is given

by

∗∗gij(x
γ) =


1 0 0

0 (r2 − 2mr) 0

0 0 −
(
r2 − 2mr

r2

)√
2

 . (24)
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The non-zero components of the Riemann curvature tensor for the metric (23)

are as following

∗∗R1212(x
γ) =

m2

r2 − 2mr

∗∗R1414(x
γ) =

2m

(r2 − 2mr)2

(
r2 − 2mr

r2

)√
2

[m+
√
2(m− r)]

∗∗R2424(x
γ) =

√
2m

(r2 − 2mr)

(
r2 − 2mr

r2

)√
2

.

(25)

So for 3-dimensional space (23), the Gaussian curvature at each point xγ ≡
(r, θ, t) is given by the following three physical quantities

∗∗K1(x
γ) =

∗∗R2424(x
γ)

|∗∗g24|
=

−
√
2m

(r2 − 2mr)2

∗∗K2(x
γ) =

∗∗R1414(x
γ)

|∗∗g14|
=

−2m

(r2 − 2mr)2
[m+

√
2(m− r)]

∗∗K4(x
γ) =

∗∗R1212(x
γ)

|∗∗g12|
=

m2

(r2 − 2mr)2
.

(26)

Here ∗∗g24 denotes the sub-matrix of ∗∗gij corresponding to x1 = r. It is clear

from equations (17) and (26) that the curvature of the 3-dimensional space of

Schwarzschild soliton can be expressed in terms of a λ-tensor which happens to

be the solutions (eigen-values) of the characteristic equation |RAB −λgAB| = 0.

3. Discussion

In this paper we worked out on gravitational field of Schwarzschild soliton

by using characteristic of λ-tensor RAB − λgAB, we have also discussed 2 and

3-dimensional cases. It is seen that Schwarzschild soliton, given by Akbar and

Woolger [3] has different geometry as that of Schwarzschild metric which is stud-

ied by Borgiel [4]. We see that the gravitational field for Schwarzschild soliton

is of type G1[(1)(1)(11)(11)] [equation (18)] in Segre symbols while Borgiel has

given type G1[(1111)(11)] for Schwarzschild metric. For Schwarzschild soliton,

not only the Gaussian curvature differ with that of Schwarzschild metric but also

the dependence of curvature on eigen values of λ−tensor RAB−λgAB is not sim-

ilar. Thus the deformation in metric (along a λ−dependent diffeomorphism) of

a spacetime is cause for change in geometry or gravitational field.
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