
J. T. S. ISSN : 0974-5428

Vol. 7 (2013), pp.59-68

Particle Creation with Generalised Gravitational and
Cosmological Constants

N. Ibotombi Singh and Y. Bembem Devi∗

Department of Mathematics, Manipur University

Imphal – 795003, Manipur, India

e-mail:bemyumnam@gmail.com

(Received: February 17, 2013)

Abstract

In this paper we study the effect of particle creation on the evolution of

FRW cosmological model. The universe has been considered as an open thermo-

dynamic system when particle creation leads to supplementary negative creation

pressure in addition to the thermodynamic pressure. We also discuss dynamical

behaviors of the cosmological solutions of radiation dominated models and stiff

models.
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1. Introduction

Many problems in standard cosmology have been explained by the infla-

tionary models of (Guth [1], Linde [2]). Different alternative theories have been

proposed to explain the cosmological problems of the early universe (Brans and

Dicke [8], Bergmann [9], Nortvedt [10], Wagoner [11]). Now we are facing a new

problem in cosmology. Earlier cosmologists hold the view that our expanding

universe will slow down come to a halt and start contracting under the influence

of gravity. On the contrary high red-shift supernovae Ia (SNe Ia) observations

(Riess et al. 1998, Perlmutter et al. 1999) reveals the accelerated expansion

of the universe which is big blow to all the cosmologist. But what causes such

accelerated expansion of the universe is yet to be confirmed. Dark energy mod-

els have suggested by many cosmologist to explain such observation. The idea

of particle production in cosmology has been dealt by many authors (Zeldovich
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[12], Parker [13], Brout et al. [14]). Prigogine et al. [15] have studied thermo-

dynamics of open systems in the reference of cosmology and suggested a quan-

titative expression for the particle production out of gravitational energy. They

have presented a new concept of adiabatic transformation from closed to open

systems. The negative creation pressure associated with particle creation may

explain the observed accelerated expansion of the universe. If we consider the

universe as an adiabatic open thermodynamic system, allowing for irreversible

matter production from the gravitational field, then the thermodynamic energy

conservation equation becomes

d(ρV ) + pdV − (ρ+ p)

n
dN = 0, (1)

where V is the volume of the system, n = N/V is the particle number density,

and N is the number of particles in V . This conservation equation may be

written as

d(ρV ) + (p+ pc)dV = 0. (2)

Here pc is the supplementary pressure corresponding to creation of matter

and expressed as

pc = −(ρ+ p)

N

dN

dt

1

3H
, (3)

the creation pressure pc is negative or zero depending on the presence or ab-

sence of particle production. Thus, the effect of production of new particles is

equivalent to adding a supplementary pressure term pc to the thermodynamic

pressure p so that the conservation equation for a closed system

d(ρV ) + pdV = 0 (4)

is the modified to eq.(2) for an open system. For an adiabatic open system, the

increase in entropy is only due to the creation of matter and since entropy S

is an extensive property of the system (i.e., S is proportional to the number of

particle included in the system), we have the relation

dS

S
=
dN

N
. (5)

The second law of thermodynamics requires that dS ≥ 0 , which imposes

the condition that the only particle number variations admitted are such that

dN ≥ 0. Several authors (Calvao et al. [16], Triginer and Pavon [17]) have

studied the thermodynamics of particle production in different contexts. A

theory of gravitation, using G and Λ as no constant coupling scalars, was studied



Particle creation with generalised gravitational and cosmological constants 61

by Abdel-Rahman [18], Beesham ([19], [20]). Its motivation was to include a G-

varying ‘constant’ of gravity as pioneered by Dirac [21]. We have the Einstein’s

field equations

Rij − 1

2
Rgij = −8πGT ij − Λgij , (6)

where T ij is the matter energy-momentum tensor, gij the metric tensor, R

the scalar curvature, Rij the Ricci tensor, G and Λ are coupling scalars. As

in Einstein’s theory we assume the principle of equivalence i.e. the equality

of gravitational and inertial mass and the gravitational time dilation, then we

require that the equation of motion of particles and photons must not contain G

and Λ but only gij . So, the interchange of energy between matter and gravitation

is given by the conservation laws

T ij
;j

= 0. (7)

And of course the Bianchi identity still holds,

(Rij − 1

2
gij);j = 0. (8)

Thus the role of the scalarsG and Λ is confined to the effects on the field equation

(6) and once gij is determined, the gravitational phenomena are described in

the same ways as in Einstein’s equation The covariant derivative of (6), taking

into account the Bianchi identity and (7) gives

8πG;jT
ij + Λ;jg

ij = 0. (9)

Here, equations (6) and (9) are considered as the fundamental equations of

gravity with G and Λ coupling scalars. The cosmological models based on these

equations allow the possibility of investigating different cases for G, as in Dirac’s

cosmology for example, or to solve some cosmological difficulties (Ozer, M. and

Taha M. O. [22], [23]); they may be useful to study the early universe (singular

or not) and their relations with particle fields. Sistero [24] found exact solutions

for zero pressure models satisfying G = G0(
a
a0
)m. Barrow [25] formulated and

studied the problem of varying G in Newtonian Gravitation and cosmology.

Vishwakarma R. G. ([26], [27]) also studied cosmological models with variable

G and Λ.

In this paper, we discuss field equations in section 2, solution of the field

equations in section 3 and we conclude in section 4.
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2. Model

We assume a flat cosmological model which is homogeneous and isotropic

and it is natural to consider the metric tensor of this gravitational field to be of

the type

ds2 = dt2 − a2(t)[dr2 + r2(dθ2 + sin2θdϕ2)] (10)

where a(t) the scale factor (the speed of light c and signature + - - - are used).

For perfect fluid cosmology we have the energy-momentum tensor

T ij = −pgij + (p+ ρ)uiuj . (11)

We set uν = (1, 0, 0, 0) in (11) and with the metric (5), Einstein’s equations (6)

gives

3ä = −4πGa(3p+ ρ− Λ

4πG
), (12)

3ȧ2 = 8πGa2(ρ+
Λ

8πG
). (13)

Elimination of ä gives

ρ̇+ 3
ȧ

a
(p+ ρ) = −(

Ġρ

G
+

Λ̇

8πG
). (14)

The conservation of energy momentum yields

ρ̇+ 3
ȧ

a
(p+ ρ) = 0. (15)

Using (15) in (14)

8πĠρ+ Λ̇ = 0. (16)

Equations (12), (13), and (16) are the fundamental equations. They reduce to

standard Freidmann Cosmology when G and Λ are constants. The equations

(12) and (13) may be written as

8πGρ = −2
ä

a
− (

ȧ

a
)2 + Λ, (17)

8πGρ = 3(
ȧ

a
)2 − Λ. (18)

Eliminating Λ between (17) and (18) ä with the derivative of (18) and using

(16), it is found that

d(ρa3)

dt
+ p

da3

dt
= 0, (19)
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(17) and (18) are formally identical to those of usual cosmology with G and Λ

constants as must be, since the LHS of (6) depends only on the metric compo-

nents (10) G and Λ enter algebraically in the RHS of (6). Also (12) is identical to

that of usual cosmology despite the fact that it comes from a differential form

of (18), and from (10), both involving the time dependent scalars G and Λ,

however, their derivatives eliminate with (16), thus leading to (19). Equations

(16), (18) and (19) are independent and they will be treated as fundamental in

the following. The cosmological problem posed by these equations leaves two

degrees of freedom; it may be determined by a physical assumption p = p(ρ),

i.e. the ‘equation of state’, and from an additional explicit adoption on a(t),

ρ(t), p, G or Λ in terms of t or a which itself depends on t.

3. Solution

The barotropic equation of state is

p = γρ (20)

0 ≤ γ ≤ 1. Using eqs.(19) and (20), we get

1

ψ

dψ

da
+

3γ

a
= 0 (21)

where

ψ = ρa3 (22)

and ψ can be determined from eq.(21)

ψ = ψ0 exp [−
∫

3γ

a
da] (23)

The Friedmann eq.(18) with (22) becomes

3ȧ2 =
8πGψ

a
+ Λa2. (24)

Eq. (16) and (22) with
d

dt
= ȧ

d

da

8π
dG

da
+
a3

ψ

dΛ

da
= 0. (25)

If G = G(a) is given, (26) integrates to give Λ = Λ(a), (25) determines a = a(t)

and the problem is solved; if Λ = Λ(a) is given instead then also we obtain G(a)

from (26) giving in turn a(t) from integration of (25). We assume

G = G0

(
a

a0

)m

. (26)
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Let us treat the universe as an open thermodynamic system with initially

N particles and assume that a random fluctuation in curvature induces a trans-

formation of gravitational energy into matter energy, producing an additional

number of particle dN . This increase in the number of particle from N to

N + dN gives rise to a negative supplementary pressure to the thermodynamic

pressure and this negative pressure drives the expansion of the universe. Hence,

the perfect fluid pressure should be replaced by an effective pressure of the

cosmic fluid which is given by

peff = p+ pc. (27)

Using (20) and (27) the conservation equation (15) reduces to

ρ̇+ 3Hρ(1 + γ) = −3Hpc. (28)

With the help of (3), eq. (28) after integration yields

N(t) = N0a
3ρ(1+γ) (29)

where N0 is an integration constant. Eq. (29) give rise to a relation between

the particle number density (n) and energy density (ρ) as

n = n1ρ
(1+γ) (30)

where n1 is the constant of proportionality. According to Gibbs integrability

condition, one cannot independently specify an equation of state for the pressure

and temperature (Maartens [29]). If we consider one barotropic relation then

the other relation must be barotropic and hence we get T ∝ exp
∫ dp

ρ(p)+p . Now

using eq. (20), we get

T = T0ρ
γ

1+γ , (31)

T0 is the integration constant. We consider two cases of the equation of state

p = γρ.

Case 1. Radiation dominated model (γ = 1
3
)

Putting γ = 1
3 in eq. (20), we get p = ρ/3. Then using (22), we get

ψ =
ψ0

a
(32)

and the expression of Λ as Λ = −8πmG0ψ0a
(m−4)

(m− 4)am0
.
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We solve Λ for particular value of m = 3

Λ =
24πG0ψ0

a30a
(33)

Using the values of G, ψ and Λ, we get the expression of a(t) as

a(t) = Bt2 (34)

where B =
8πG0ψ0

3a30
. B is positive as scale factor cannot be negative. Now we

can evaluate the value of the physical parameters and they are obtained as

ρ =
ψ0

B4t8
(35)

N(t) =
N0ψ

4
3
0

B
7
3 t

14
3

(36)

T =
T0ψ

1
4
0

Bt2
(37)

Λ =
24πG0ψ0

Ba30t
2

(38)

In this case deceleration parameter is given by q = −1/2.

The negative deceleration parameter shows that the model represents an

accelerating universe. From the expression of the scale factor we know that the

universe start with a big bang. All the physical parameters N(t), ρ, T and Λ

are all decreasing function of time.

The event horizon rE is given by the expression

rE = a(t0)

∫ ∞

t0

dt

a(t)
. (39)

In this case event horizon exist and is found to be 2/H0.

Case 2. Stiff model (γ = 1)

Putting γ = 1 in (23), we get

ψ =
ψ0

a3
. (40)

Using (26) and (39)in (25) and integrating, we get

Λ = −8mπG0ψ0a
(m−6)

(m− 6)am0
. (41)
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We use particular value of m say m = 5 in order to simplify mathematical

calculation. In this case we obtain the expression of Λ

Λ =
40πG0ψ0

a50a
. (42)

We calculate the value of scale factor a(t) by substituting the values of G, ψ

and Λ

a(t) = Ct2 (43)

where C =
4πG0ψ0

a50
is positive as scale factor cannot be negative.

Putting γ = 1, the physical parameters are obtained as a function of time as

ρ =
ψ0

C6t12
(44)

N(t) =
N0ψ

2
0

C9t18
(45)

n(t) =
n1ψ

2
0

C6t12
(46)

T =
T0ψ

1
2
0

C3t6
(47)

Λ =
40πG0ψ0

Ca50t
2

(48)

In both the models, deceleration parameter is q = −1/2 showing that the uni-

verse is accelerating. From the above expressions we observe that in stiff fluid

model energy density ρ, particle density N(t), temperature T and cosmological

constant Λ are decreasing functions of time. Interestingly event horizon for this

model is found to be 2/H0.

4. Conclusion

We observed that the scale factor increases with the age of universe in both

the models. The scale factor has an initial singularity which supports the start

of universe with a big bang. Data obtained by WMAP satellite strongly sup-

ports an accelerating universe and the negative deceleration parameter obtain

in the paper explains the congruence of the true nature of the universe with our

model. Since the number of particles N(t) is a decreasing function of time in

the above two cases. The presence of a positive cosmological constant always

produces a repulsive effect and we obtain a positive cosmological constant in
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all the cases. So either the big bang impulse or the presence of time decaying

positive cosmological constant in this paper may account for the observed accel-

eration. Other physical parameters are also decreasing function of cosmic time

which are well supported by present observations. Event horizon always exist

in both the models.

Acknowledgement

One of the authors Y. Bembem Devi thanks CSIR for financial assistance

(CSIR Award No. 09/476(0062)).

References

1. Guth, A. H. : Phys. Rev. D, 23 (1981), 347.

2. Linde, A. D. : Rep. Prog. Phys., 47 (1984), 925.

3. Hartle, B. and Hawking, S. W. : Phys. Rev. D, 28 (1983), 2960.

4. Hawking, S. W. : Nucl. Phys. B, 239 (1984), 257.

5. Vilenkin, A. : Phys. Rev. D, 32 (1985), 2511.

6. Bardeen, M., Steinhardt, P. J. and Turner, M. S. : Phys. Rev. D, 28 (1983),

679.

7. Brandenberger, R. and Khan, R. : Phys. Rev. D, 29 (1984), 2172.

8. Brans, C. and Dicke, R. H. : Phys. Rev., 124 (1961), 925.

9. Bergmann, P. G. : Int. J. Theor. Phys., 1 (1968), 25.

10. Nortvedt, K. : Astrophys. J., 161 (1970), 1059.

11. Wagoner, R. V. : Phys. Rev. D, 1 (1970), 3209.

12. Zel’dovich, Ya. B. : JEPT. Lett., 12 (1970), 307.

13. Parker, L. : Phys. Rev. D, 3 (1971), 346.

14. Brout, R., Englert, F. and Gunzig, E. : Gen. Relativ. Gravit., 1 (1979), 1.

15. Prigogine, I., Geheniau, J., Gunzig, E. and Nordone, P. : Gen. Relativ. Gravit.,

21 (1989), 767.

16. Calvao, M. O., Lima, J. A. S. and Waga, I. : Phys. Lett. A, 162 (1992), 223.

17. Triginer, J. and Pavon, D. : Gen. Relativ. Gravit., 26 (1994), 513.

18. Abdel-Rahman, A-M.M. : Gen. Relativ. Gravit. 22 (1990), 655.

19. Beesham, A. : Nuovo Cimento, B, 96 (1986), 19.

20. Beesham, A. : Int. J. Theor. Phys., 25 (1986), 1295.

21. Dirac, P. A. M. : Nature, 139 (1937), 323.

22. Ozer, M. and Taha, M. O. : Phys. Lett. B, 171 (1986), 363.

23. Ozer, M. and Taha, M. O. : Nucl. Phys. B, 287 (1987), 776.

24. Sistero, R. F. : Gen. Relativ. Gravit., 23 (1991), 11.

25. Barrow, J. D. : Roy. Astron. Soc., 282 (1996), 1397.

26. Vishwakarma, R. G. : Class. Quantum Gravit., 18 (2001), 1159.



68 N. Ibotombi Singh and Y. Bembem Devi

27. Vishwakarma, R. G. : Gen. Relativ. Gravit., 37 (2005), 1305.

28. Sistero, R. F. : Astrophys. Space Sci., 12 (1971), 484.

29. Maartens, R. : Proceedings of the Hanno Rund Conference on Relativity and

Thermodynamics edited by S. D. Maharaj (Natal Univ., South Africa, 1996).




