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Abstract

Regarding the theory of foliation, some aspects of the theory of riemann-
ian foliations have been brought in completion by the Molino theory. Such a
structure is defined by some finite dimensional Lie subalgebra of the Lie algebra
of transverse vector fields. The problem I am interested in is more modeste. It
is to get sufficient conditions for a smooth manifold admitting foliations with
transverse (pseudo) riemannanian metrics. The investigation is inspired by both
methods of information geometry and the Hessian geometry.
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1. Introduction

This aim of this paper is to discuss two questions in a smooth manifold
M. The first question is related to foliation with transverse riemannian metrics.
Here riemannian metric means non degenerate quadratic form. My aim is to
provide some sufficient conditions for the existence of such foliations. The second
question is to investigate sufficient conditions for some webs being linearizable.
In both cases the sufficient conditions involve the geometry of dual pairs of linear
gauges in riemannian manifolds. Beside the introduction the paper is divided
into five sections.

Section.1 is devoted to recall some differential topology notions such as foliations
and webs. We give main definitions that will be needed in the sequel.
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Section.2 deals with the geometry of linear gauges which are nothing than Koszul
connections in vector bundles. We discuss some notions such as the dualistic
equivalence in riemannian vector bundles. We point out some perspectives in
the transverse geometry of riemannian foliations. For instance we discuss the
dualistic equivalence for Bott connection.

Section.3 is a brief introduction to some methods of the geometric science of
information. We define a remarkable short exact sequence in statistic manifolds
and we discuss its relationships with foliations admitting transverse riemannian
metrics. Those discussions yield the statements of the main results to be proved.

The aim of Section 4. is to describe some materials in both information geom-
etry and Hessian geometry, The theory of statistical models for measurable set
is overviewed. The comparison of statistical models is goal in statistics. We
point out two comparistion problems for fixed dimension statistical models for
the same measurable set. We recall their characteristic invariant which is an
application of (convex) set of linear gauge in the set of random Hessian met-
rics in the base manifold. Another comparison problem deals with the types of
probability density in a fixed base manifold of statistical models. Local answers
of this problem is related to a cohomology vanishing theorem In Section 5. we
describe some cochain complex and we point out its heplness to discuss many
relevant problems in both information geometry and differential topology.

2. Foliations and webs

From now on all ojects defined in a smooth manifold are smooth as well.
We deals connected finite dimensional smooth manifolds.

2.1. Foliation

Let M be an m—dimensional smooth manifold and let ¢ be a non negative
integer with q # m.
Definition 2.1. A g—codimensional foliation in M is a smooth g—codimension
partition F of M by g—codimensional connected submanifolds.

The partition F is a subset of the set P(M) of subsets of M and its elements
are called leaves of the foliation. Every x € M belongs to only one leaf F'. Let

D=TF

be the union of tangent bundle of leaves of F. Then D is an involutive differential
system in M. Every section X of D is smooth vector field which is tangent to
leaves of F. The couple (M, F) is called a foliated manifold.
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Definition 2.2. A transverse riemannian (pseudo) metric in (M, F) is a qua-
dratic form g in M such that for every section X of D one has

ixg =0,

Lxg=0.
Regarding the notion of holonomy group of a leaf of foliation we refer the read-
ers to The notations ix and Lx stand for the inner product by X and the Lie
derivative in the direction of X respectivly. The question whether a given man-
ifold does admit a non trivial foliation is a differential topology question which
has no general answer. Suppose a smooth manifold admits foliations, there are

no creteria to decide whether M does admit a foliation with transverse metrics.
In this paper we give sufficient conditions to those existence problems.

Definition 2.3. A structure of riemannian foliation in M is a triplet (M, g, F)
formed by a foliated manifold (M, F) and a riemannian structure (M, g) whose
riemannian metric ¢ is invariant under the holonomy group of every leaf of F.

Some references for a extensive study of riemannian foliations is Molino’s book

[9].
2.2. Webs

Let k be a positive integer and le Di<j<j be k regular differential systems.
Thus every D; is a vector subbundle of the tangent bundle T'M.

Definition 2.4. The D;s are in general position if for every fixed ¢ < k and at
every point x € M one has

dim (Y Dj(x)) = min (dim (M), > dim (Dj(x)).
J J

Definition 2.5. Given k foliations (F;,1 < j < k) are in general position if
they are defined by a family D; of subbundles of the tangent bundle 7'M which
are in general position.

Definition 2.6. A k—web in a manifold M is family F;, 1 < j < k of foliations
which are in general position.

For example (i) a bilagrangian structure (L1, L) in a symplectique manifold
(M,w) is a 2-web; (ii) A parallelism (X7,..., X,,) in a m—dimensional compact
manifold M defines a m—web. It must be noticed that different foliations in a
web may have different codimensions.
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2.3. The linearization problem for webs

In the real affine space R a k web (Fj)i<j is called a linear web if the
leaves of every foliation F; are affine subspaces.

Definition 2.7. A k—web in a m—dimensional manifold M is called an lin-
earizable web if it is locally isomorphic to a linear k—web in R™.

Nowadays the problem of linearization of webs in R? is discussed.

In [7] T have widely discussed the problem of symplectic linearization of la-
grangian webs. This question is related to the geometry of locally flat manifolds,
[2].

As it has been mentioned in the introduction I plan to discuss both existence
problems for foliations admitting transverse metrics and for linearizable webs.

3. The gauge geometry

Le G be a Lie group whose Lie algebra is denoted by G. Let P be a principal
G—Dbundle over a manifold M.

In mathematical physics a gauge field in P is a principal connection 1-form
w in P.

The 1—form w is a G—valued differential of type ad(G).

Actually I intend to deal with the vector bundle versus of gauge fields.
Thus linear counterparts of principal connection forms are Koszul connections
in vector bundles. So given a vector bundle V over a manifold M a Koszul
connection in V will be denoted by V.

The curvature of V the End(V)—valued differential 2-form Ry defined in
the base manifold M as it follows

Ry(X,X').s = Vx.(Vxr.5) = Vx1.(Vx.5) = V[x,x1]-5.

In the formula above X, X’ are smooth vector fields in M and s is a smooth
section of V.

Let (V,g) be a riemannian vector bundle. At every point x € Mg, is
an inner product in the fiber V,. Let us recall some method of information
geometry.

3.1. The dualistic relation

The dualistic realtion in (V, g) deals with pairs of Koszul connections in V.
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Definition 3.1. A pair (V, V*) of Koszul connections in (V, g) is called a dual
pair if for all vector field X in M and for all sections s, s’ of V the following
equality holds

X.g(s,8')=9g(Vx.s,5) + g(s,V.s).
The curvature forms Ry, Ry+ are in dualistic relation as well. This means that
the following identity holds
9(Rv (X, X'").s,5") + g(s, Ry~ (X, X").s") = 0.

Thereby (V, V) is a flat vector bundle iff (V, V*) is a flat vector bundle.

A pair (V,V*) is called dually flat pair if Ry vanishes identically.
3.1.1. «a—connections

A given dual pair (g, V, V*) generates a one (real) parameter family (g, V¢, V™)
of dual pairs in (V, g). For a € R the connection V? is defined by setting
_ 1;QV+ 1gozv*‘
Thus to every pair (o, —a) € R? is assigned the dual pair (g, V®, V~9).

va

3.2. Some short exact sequences

Let (V,V*) be a dual pair in (V,g). The vector bundle End(V) of the
vector bundle endomorphisms of V contains the following remarkable vector
subbundle.

The first vector subbundle is denoted by J(V,V*) which stands for the
subbundle of gauge homomorphism of (V,V) in (V,V*). Thus a section ¢ of
J(V,V*) is a vector bundle homomorphism subject to the following requirement

Vi.0(s) = ¢(Vx.s).
Those ¢ € J(V,V*) are nothing than infinitesimal gauge homomorphisms.

The second vector subbundle is denoted by J(V,V*, g). Its sections are
those sections psi of J(V, V*) subject to the following requirement

g(¥(s),s") + g(s,¥(s")) = 0.

Let S2(V*) be the vector bundle of symmetric bi-linear functions in V. Its
sections are inner products in the vector bundle V. Now let us consider the map
q from J(V,V*) to S2(V*) which is defined by setting

1

4(9)-(s,5") = 5 (9(8(s), &) + g(s,6(5)))-



6 Michel Nguiffo Boyom

3.2.1. Parallel symmetric forms

Definition 3.2. A section Q of S%2(V*) is V—parallel if the following identity
holds
X.Q(s,8) =Q(Vx.s,8)+Q(s,Vx.s)
for all vector field X and for all sections s, s’ of V.
It is easy to prove the following claim.

Lemma 3.1. The image of the map

q:J(V,V*) = S (V)
is the subbunde Sy (V*) of parallel forms.

3.2.2. Parallel skew symmetric forms

Let A2(V*) be the bundle of skew symmetric bilinear forms in V. We define
the map w of J(V,V*) in A2(V*) by putting
1

w(@)-(s,5") = 5(9(d(s), 5") = g(s, &(5"))-

Lemma 3.2. The image of w is the subbundle AY (V*) of parallel skew sym-
metric bilinear forms in the vector bundle V.

Proposition 3.3. The following short sequence of vector bundles is exact
0— J(V,V* g) = J(V,V*) = 55 (V") = 0.
Actually it is a easy to see the induced map
w: J(V,V*) = AY (V)

is an isomorphism. Therefore one can regard AY (V*) as a subbundle of J(V, V*).
The viewpoint yields the following short exact sequence

0—= Ay (V") = J(V,V*) = S5 (V*) = 0.

Let us fix a couple (V,V). Then up to isomorphism the vector bundle
J(V,V*) does not depend on the riemannian vector bundle structure (V, g) of
course, given two dual pairs (V,g,V,V*) and (V,¢’,V, V™) is easy to see that
the couples (V,V*) and (V, V") are canonically isomorphic. In other words
there is an automorphism ¢ of V such that

d(V's.5) = Vx.p(s)

for every vector field X in the base manifold of V and for every section s of V.
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3.3. The linear gauges

In this subsection I shall be dealing with Koszul connections in the tangent
bundle of smooth manifolds. So it will not be necessary to explicit the vector
bundles.

Let (g, V,V*) be a dual pair in a riemannian manifold (M, g). The mean
~ 1
V= i(V + V%)
of the couple (V,V*) is the Levi-Civita connection of (M, g). This implies that
their torsion tensors are related as it follows
Ty + Ty~ = 0.
Now S3(M) and A9(M) stand for So(T*M) and for No(T*M) respectively.
I am interested in the following short exact sequence
0— AY (M) = J(V,V*) = S5 (M) — 0.
Every section w of AY (M) yields the decomposition of the tangent bundle
as it follows
TM = ker(w) @ ker(w)™
where ker(w)™t stands for the g—orthogonal to ker(w)

Mutatis muntandis every section Q of Sy (M) yields the orthogonal decom-
position of the tangent bundle T'M, namely

TM = ker(Q) @ ker(Q)™.

The orthogonal decompositions above are of importance for discussing the
transverse geometry of foliations.

4. Some Techniques of information geometry

I am interested in pairs (g,V,V*) where both V and V* are symmetric.
This means that both V and V* are torsion free. To (V,V*) one assigns the
following short exact sequences

0= AY (M) = J(V,V*) = Sy (M) =0,
0 — A%(M) — J(V*, V) = S% (M) — 0.
The context above yields the following statements.

Theorem 4.1. (i) For every section @ of Sy (M) the subbundles Ker(Q)
and Ker(Q)* are completely integrable. (ii) For every section w of AY (M)
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the subbundles Ker(w) and Ker(w)™ are completely integrable. (iii) The fo-
liation Ker(Q) is transversaly (pseudo) riemannian. (iv) The foliation Ker(w)
is transversaly symplectic.

The statement above shows how the information geometry techniques help
to construct foliations admitting prescribed transverse geometry. Moreover the
couple (Ker(Q),Ker(Q)") and the couple (Ker(Q),Ker(Q)™") are 2-webs.

4.0.1. The case of dually flat pairs

I intend to use information geometry methods to build examples of lineariz-
able webs. From now on I shall be dealing with dually flat pairs.

Let (g,V,V*) a dually flat pair. This means the torsion tensors and the
curvature tensors of both V and V* vanish identically.

Theorem 4.2. (i) For every section Q of Sy (M) the 2-web (Ker(Q), Ker(Q)*)

is linearizable

Taking into accoumpt the orthogonal decomposition

TM = ker(Q) @ ker(Q)*.

Every vector field in M is presented as it follows
X = (X1, Xo)

with (X1, Xs) € ker(Q) x ker(Q)". Let D stand for the symmetric Koszul
connection defined by the formula

D(x,,x,)-(Y1,Y2) = (Vx,. Y1 + [ X2, Y1]1, Vi, . Y2 + [ X1, Ya]2).

Lemma 4.3. (i) The Koszul connection D is locaaly flat. (ii) The 2-web
(Ker(Q), Ker(Q)™") is totaly geodesic w.r.t. the connection D.

A straightforward consequence of the last lemma is

Theorem 4.4. The 2-web (Ker(Q), Ker(Q)™") is linearizable.

Mutatis mutandis one gets skew symmetric versus of the statements above by
considering a section w of AY (M).

Let Qq,...,Q be k sections of SQV(M). One says that the sections Q); are
in general position if their kernels ker(Q;) are in general position. Thus one
gets the k—web (Ker(Q;).
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Theorem 4.5. Every finite family (Q;)1<;<k of sections of Sy )(M) which are
in general position defines a linearizable k—web.

The proof of the theorem above is based on the flatness of the Koszul
connection V.

5. Statistical manifolds

In this section we apply the materials of the previous sections to the infor-
mation geometry.

Definition 5.1. A statistical manifold is a dual pair (M, g; V, V*) where the
Koszul connections V, V* are torsion free.

According to the sections above a statistical manifold structure yields the
following remarkable short exact sequences
0= AY (M) = J(V,V*) = Sy (M) — 0,
0= AY (M) — J(V*, V)= Sy (M) — 0.

5.1. Gauge morphims and transverse geometry of foliations in sta-
tistical manifolds
Let us assign to a gauge morphism ¢ € J(V, V*) the pair (Q,w) € (S5 (M),
AY (M)) which is defined as it follows
1

QX X) = 5(9(6(X), X') + g(X, 6(X"))),

WX, X') = L (96(X), X) — 9(X, 6(X')).

The differential 2—form w is de Rham closed. Since g is non degenerate
there exists a pair (Phi, Psi) of elements of J(V,V*) suject to the following
requirements

Thereby one has

Ker(w) = Ker(¥),
Those requirements yield

Ker(Q)" = im(®),

Ker(w) = im(¥).
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Since V and V* are torsion free the distributions im(®) and im(¥) are com-
pletely integrable. Of course Ker(Q) admits the transverse riemannian metric
@ and Ker(w) admits the transverse symplectic form w.

Proposition 5.1. Suppose the statistical manifold (M, g, V,V*) to be flat.
Then the 2—webs (Ker(®), im(®) and Ker(¥), im(¥)) are linearizable.

Many objects we have discussed through here have their homological versus.
In the next section I shall introduce the cochain complex which is related to those
previous discussions.

6. A simplicial KV modules attached to a flat statistical manifold
structure

Let (M, g, V, V™) be a flat statistical manifold. Let F(M) be the associative
commutative algebra of real valued smooth functions in M.

I'intend to deal with the real algebra A whose underling vector space is the
vector space of derivations of the algebra F(M). Those derivations are nothing
but the vector space of smooth vector fields in M. The multiplication

AxA— A
is defined by putting
XX =Vx.X

We consider the Z—graded vector C* whose homogeneous vector subspace C'¢
is defined as it follows, (i) if ¢ is a negative integer then

C1=0.
(ii) for ¢ =0
C% = J(F(M))
with f € F(M) iff V2(f) = V(df) = 0.
(iii) if ¢ is a positive integer then
C? = Homg(A®1, F(M)).

Let ¢ € Z with 3 < ¢ and to every couple (i,5) € Z? with i < j < ¢+ 1 one
assigns the linear map

o C1— CTH
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as it follows. Let f € C%and £ = X1 0 Xo®...® X1 € A% (a) If j < g+1
then

X f(X1® RXi®..0X;0...0 X.41)

|
Q
<
~—~ —
><

.®X¢®...®X¢.Xj®...®Xq+1)]
(= 1)][Xjf(X1® OXi®..0X;9...0X1)
—¢f(X1®..9X;.X;®..0X;®...® Xg1)]-

(b) If j=q+1, then
Ol gi1(HE€=D) X f(X1©..0X;®...0...® Xg41)
— qf(Xl X ... ®Xz X ... ®Xi.Xq+1)].

Using the family O'Z-lyj one defines the linear map
d:C?— Ccrtt

by putting

df =Y o} i(f)

1<j

I am going to express the square d? = d o d, namely d?(f) as function de-
pending linearly on anomaly function K'V (., .,.) of the couple A, F(M)). Given
X, X', X" e Aand h € F(M) let one set

KV(X, X' h) = (X.X").h — X.(X"h) — (X' X).h+ X' .(X.h),
KV(X, X' X" =(XX)X"- X (X" X")— (X" X)X"+ X".(X.X").
The smooth function X.h € F(M) is defined by
X.h(z) = dh(X)
where the differential 1-form dh is the differential of the smooth function h.

Given f€ C?7and £ = X1 ® X2 ®@ ... ® Xgq0 € A®IT2d2(f).€ is related to
the anomaly functions as it follows

~

d2(f)£ = Z [(—1)i+j[KX(Xi,Xj, f(Xl X ... XZ', .. .Xj Lo XE...® Xq+2)
1<j<k
X @ Xy X @KV (X, X, X)) @@ Xgyo)]
+ ()R RV(X, X, f(X1 ® . X @ X @ Xp oo ® Xyio))
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+ X1 ®. X @KV (X, Xi, X)) © .. X @ ... @ Xgio)]
+ (1R V(X ), X, f(X1® ... 0 Xi® ... X;® .. X @ ... @ Xyp2))
+f(X1®.. . KV(X), X;, X)) ®...X;®... X, ®...0 Xq+2)]].

Without any assumption neither on the multiplication
(X, X' — xX.Xx'
of the algebra A nor on the action
(X,h) = X.h

one sees that d?(f) depends lineraly on the anomaly functions of the couple
(A, F(M)). When (M, V) is a locally flat manifold the anomaly function van-
ishes identically. Thereby the couple (C*,d) is a cochain complex whose coho-
mology space is denoted by H*(V,R).

6.1. The Hessian geometry in flat statistical manifolds

To a flat statistical manifold (M, g, V, V*) one assigns the pair (A, A*) of
algebras whose underlying vector space is the space of derivations of the as-
sociative commutative algebra F(M). Let us denote by C*(V), C*(V*) their
related cochain complex. Then the riemannian metric tensor g is a 2—cocyle in
both C*(V) and C*(V*). Then this consideration yields a well known fact that
(M,g,V) and (M, g,V*) Hessian manifolds [8], [1]. Following [2] the cohomol-
ogy class [g] € H?(V,R) an obstruction to (M, V) be a locally flat hyperbolic
structure. Of course the same remark holds for (M, V*).

There many other relationships between the Hessian geometry and the ge-
ometry of information, see [6], [4, 5], [9]. Regarding the relationships between
the Hessian geometry and industry the reader is refered to [10]. To end the
discussion about the information geometry I intend to define the notion of sta-
tistical model for measurable sets. 1 suppose the reader knows the notion of
probabilized measurable sets.

6.2. Statistical models

From now on (Z,€) is a measurable set whose Boole algebra is Q C P(E).
At the moment = is provided with the discrete topology. Let I' be the group of
measurable isomorphisms of (£, 2).

I am concerned with special locally trivial smooth I'—bundles whose fiber
type is Z and whose base manifolds are locally flat manifolds in the sense of [3],
[7].
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6.2.1. The dynamics of T
The starting data are the following;:

(1) An m—dimensional locally flat structure (M, V) whose underlying manifod
M is the base manifold of a I'—bundle

m:&—->M
which is locally modeled on =.
(2) Both £ and M admit I'—actions
re — ¢,
MT —- M
such that (3)

w(vy.e) =7(e).y.
Of course the product £ x M admits a left I'—action defined by

v.(e,x) = (y.e,z.y71).

(4) Given an open subset U C M and & = 7~ 1(U) a trivialization of 7 over
U is a couple (P, ¢) where ¢ is an affine diffeomorphism of (U, V) onto an open
subset Oy C R™ and @ is a homeomorphism of &; onto the product Oy x =
such that

¢(m(e)) = p1(2(e))
where p1(z,£) =z V(x,€) € Op x =.

The couple (P, ¢) is called a fibered chart of © whose domain is (Ey, U).
Definition 6.1. Given a fibered chart
(Px¢): &y xU)—0OyxE)xU
a (@, ¢)—supported local statistical model for Z is a real valued function
P:OxZ—-R
subject the following requirements (i) If one fixes £= then the function
€Oy — P0,¢)
is smooth.

(ii) If one fixes 8InOy then the function
§— P(0,€)
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is a probability density, viz
[rega=1

(iii) the (so-caled horizontal) differentiation dp commutes to the integration
w.rt € €=,

To the local statistical model P is asigned the Fisher information which is
the quadratic form g defined in ©y by

9(6).(X, X') = / [dy log (P(8, €)]2 (X, X') dé

where df stands the differential w.r.t. 6. This quadratic form is positive semi
definite.

6.2.2. Compatibility of local models

Let ((®,¢), &y, U; P) as in the last subsubsection and let v € I'. To simplify
let assume that (£y., U.7y) is the domain of a fibered trivialisation

U xp): Eyy x Uy = Opy x Uy
supporting a local model
POy, x Uy — R.
It is obvious that for (z,&) € Oy x Ev.(x,§) € Oy x E.

Definition 6.2. The local models P and P* are compatible if for all (z,&) €
Oy x E one has

P*(v.(x,€)) = P(,£).
6.2.3. Statistical atlas
Now we consider an open covering (U;) of M with a family
O, x ¢;&, U — (0; xE) xUj.
We assume that each (P, ¢;) supports a local model
P :0; xE—R.
For every every e € &y, let us set

(zi(e), &i(e)) = Pi(e).
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Definition 6.3. The data [&;, U;, ®;, ¢4, P;] define a structure of statistical
model in the fibration 7 if the models P; are pairwise compatible. Moreover if
U; NU; # 0 then there exists a mapping

vij :UiNnU; — T
such that for e € y,ny; one has
(zj(e), &j(e)) = vij(wi(e))-(zi(e), &ile)).
The family (U;, ®;, ¢4, P;) is called a statistical atlas.
Definition 6.4. The atlas (U, ®;, ¢;, ;) and the atlas (U], ®7,¢7, P;) are
compatible if their local charts are pairwise compatible.
A statistical model for (Z,) is a class of compatible atlases.
Actually a statistical atlas (U;, ®;, ¢4, P;) gives rise to the global function
p:&€—R
such that
Pi(®i(e)) = p(e)
for all e € &. If (US, @7, 67, P}) and (U;, @i, ¢4, Pi) are compatible then p* = p.
So the global function p depends only on the structure of (global) statistical
model.

Since 7 is locally trivial the function p is (7—)horizontally smooth. So dyp
stands for the horizontal differentiation in £. Of course dy commutes to the
integration along the fibers of .

Let L(M) se the convex set of the Koszul connections in M. To every
D € L(M) is assigned the horizontal quadratic form Q(D) which is defined as
it follows. Given m—projetable vector fields X, X’ let us set

Q(D).(X, X") = [D(dp log (p)).(X, X)].

Consider the category E(M, E) of structures of statistical models for (2, Q) with
the same base manifold M.

Theorem 6.1. The map
De L(M)— QD)
is a characteristic invariant.
I am dealing with fiber morphism

Rxr:ExXM—E* x M.
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In other words Ve € £ one has
mfoR=romw

where

R V/ |
is the fibration of the model £*. The theorem above means that a fiber isomor-
phism R x r sending @ to Q™ is a isomorphism of statistical models, viz

("o R) =p-
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