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Abstract

Regarding the theory of foliation, some aspects of the theory of riemann-

ian foliations have been brought in completion by the Molino theory. Such a

structure is defined by some finite dimensional Lie subalgebra of the Lie algebra

of transverse vector fields. The problem I am interested in is more modeste. It

is to get sufficient conditions for a smooth manifold admitting foliations with

transverse (pseudo) riemannanian metrics. The investigation is inspired by both

methods of information geometry and the Hessian geometry.

Keywords and Phrases : KV-algebras, twisted KV -modules, twisted KV-

cohomology, twisted KV-homology, Spectral sequence, locally flat manifolds.

AMS Subject Classification : Primary: text.

1. Introduction

This aim of this paper is to discuss two questions in a smooth manifold

M. The first question is related to foliation with transverse riemannian metrics.

Here riemannian metric means non degenerate quadratic form. My aim is to

provide some sufficient conditions for the existence of such foliations. The second

question is to investigate sufficient conditions for some webs being linearizable.

In both cases the sufficient conditions involve the geometry of dual pairs of linear

gauges in riemannian manifolds. Beside the introduction the paper is divided

into five sections.

Section.1 is devoted to recall some differential topology notions such as foliations

and webs. We give main definitions that will be needed in the sequel.
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Section.2 deals with the geometry of linear gauges which are nothing than Koszul

connections in vector bundles. We discuss some notions such as the dualistic

equivalence in riemannian vector bundles. We point out some perspectives in

the transverse geometry of riemannian foliations. For instance we discuss the

dualistic equivalence for Bott connection.

Section.3 is a brief introduction to some methods of the geometric science of

information. We define a remarkable short exact sequence in statistic manifolds

and we discuss its relationships with foliations admitting transverse riemannian

metrics. Those discussions yield the statements of the main results to be proved.

The aim of Section 4. is to describe some materials in both information geom-

etry and Hessian geometry, The theory of statistical models for measurable set

is overviewed. The comparison of statistical models is goal in statistics. We

point out two comparistion problems for fixed dimension statistical models for

the same measurable set. We recall their characteristic invariant which is an

application of (convex) set of linear gauge in the set of random Hessian met-

rics in the base manifold. Another comparison problem deals with the types of

probability density in a fixed base manifold of statistical models. Local answers

of this problem is related to a cohomology vanishing theorem In Section 5. we

describe some cochain complex and we point out its heplness to discuss many

relevant problems in both information geometry and differential topology.

2. Foliations and webs

From now on all ojects defined in a smooth manifold are smooth as well.

We deals connected finite dimensional smooth manifolds.

2.1. Foliation

Let M be an m−dimensional smooth manifold and let q be a non negative

integer with q ̸= m.

Definition 2.1. A q−codimensional foliation in M is a smooth q−codimension

partition F of M by q−codimensional connected submanifolds.

The partition F is a subset of the set P(M) of subsets ofM and its elements

are called leaves of the foliation. Every x ∈M belongs to only one leaf F . Let

D = T F

be the union of tangent bundle of leaves of F . Then D is an involutive differential

system in M . Every section X of D is smooth vector field which is tangent to

leaves of F . The couple (M,F) is called a foliated manifold.
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Definition 2.2. A transverse riemannian (pseudo) metric in (M,F) is a qua-

dratic form g in M such that for every section X of D one has

iXg = 0,

LXg = 0.

Regarding the notion of holonomy group of a leaf of foliation we refer the read-

ers to The notations iX and LX stand for the inner product by X and the Lie

derivative in the direction of X respectivly. The question whether a given man-

ifold does admit a non trivial foliation is a differential topology question which

has no general answer. Suppose a smooth manifold admits foliations, there are

no creteria to decide whether M does admit a foliation with transverse metrics.

In this paper we give sufficient conditions to those existence problems.

Definition 2.3. A structure of riemannian foliation in M is a triplet (M, g,F)

formed by a foliated manifold (M,F) and a riemannian structure (M, g) whose

riemannian metric g is invariant under the holonomy group of every leaf of F .

Some references for a extensive study of riemannian foliations is Molino’s book

[9].

2.2. Webs

Let k be a positive integer and le D1≤j≤k be k regular differential systems.

Thus every Dj is a vector subbundle of the tangent bundle TM .

Definition 2.4. The D′s
j are in general position if for every fixed i ≤ k and at

every point x ∈M one has

dim
( i∑

j

Dj(x)) = min (dim (M),

i∑
j

dim (Dj(x)).

Definition 2.5. Given k foliations (Fj , 1 ≤ j ≤ k) are in general position if

they are defined by a family Dj of subbundles of the tangent bundle TM which

are in general position.

Definition 2.6. A k−web in a manifold M is family Fj , 1 ≤ j ≤ k of foliations

which are in general position.

For example (i) a bilagrangian structure (L1,L2) in a symplectique manifold

(M,ω) is a 2-web; (ii) A parallelism (X1, . . . , Xm) in a m−dimensional compact

manifold M defines a m−web. It must be noticed that different foliations in a

web may have different codimensions.
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2.3. The linearization problem for webs

In the real affine space Rm a k web (Fj)1≤j,k is called a linear web if the

leaves of every foliation Fj are affine subspaces.

Definition 2.7. A k−web in a m−dimensional manifold M is called an lin-

earizable web if it is locally isomorphic to a linear k−web in Rm.

Nowadays the problem of linearization of webs in R2 is discussed.

In [7] I have widely discussed the problem of symplectic linearization of la-

grangian webs. This question is related to the geometry of locally flat manifolds,

[2].

As it has been mentioned in the introduction I plan to discuss both existence

problems for foliations admitting transverse metrics and for linearizable webs.

3. The gauge geometry

Le G be a Lie group whose Lie algebra is denoted by G. Let P be a principal

G−bundle over a manifold M .

In mathematical physics a gauge field in P is a principal connection 1-form

ω in P.

The 1−form ω is a G−valued differential of type ad(G).

Actually I intend to deal with the vector bundle versus of gauge fields.

Thus linear counterparts of principal connection forms are Koszul connections

in vector bundles. So given a vector bundle V over a manifold M a Koszul

connection in V will be denoted by ∇.

The curvature of ∇ the End(V)−valued differential 2-form R∇ defined in

the base manifold M as it follows

R∇(X,X
′).s = ∇X .(∇X′ .s)−∇X′ .(∇X .s)−∇[X,X′].s.

In the formula above X, X ′ are smooth vector fields in M and s is a smooth

section of V.

Let (V, g) be a riemannian vector bundle. At every point x ∈ Mgx is

an inner product in the fiber Vx. Let us recall some method of information

geometry.

3.1. The dualistic relation

The dualistic realtion in (V, g) deals with pairs of Koszul connections in V.
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Definition 3.1. A pair (∇,∇∗) of Koszul connections in (V, g) is called a dual

pair if for all vector field X in M and for all sections s, s′ of V the following

equality holds

X.g(s, s′) = g(∇X .s, s
′) + g(s,∇∗

X .s
′).

The curvature forms R∇, R∇∗ are in dualistic relation as well. This means that

the following identity holds

g(R∇(X,X
′).s, s′) + g(s,R∇∗(X,X ′).s′) = 0.

Thereby (V,∇) is a flat vector bundle iff (V,∇∗) is a flat vector bundle.

A pair (∇,∇∗) is called dually flat pair if R∇ vanishes identically.

3.1.1. α−connections

A given dual pair (g,∇,∇∗) generates a one (real) parameter family (g,∇α,∇−α)

of dual pairs in (V, g). For α ∈ R the connection ∇α is defined by setting

∇α =
1 + α

2
∇+

1− α

2
∇∗.

Thus to every pair (α,−α) ∈ R2 is assigned the dual pair (g,∇α,∇−α).

3.2. Some short exact sequences

Let (∇,∇∗) be a dual pair in (V, g). The vector bundle End(V) of the

vector bundle endomorphisms of V contains the following remarkable vector

subbundle.

The first vector subbundle is denoted by J(∇,∇∗) which stands for the

subbundle of gauge homomorphism of (V,∇) in (V,∇∗). Thus a section ϕ of

J(∇,∇∗) is a vector bundle homomorphism subject to the following requirement

∇∗
X .ϕ(s) = ϕ(∇X .s).

Those ϕ ∈ J(∇,∇∗) are nothing than infinitesimal gauge homomorphisms.

The second vector subbundle is denoted by J(∇,∇∗, g). Its sections are

those sections psi of J(∇,∇∗) subject to the following requirement

g(ψ(s), s′) + g(s, ψ(s′)) = 0.

Let S2(V∗) be the vector bundle of symmetric bi-linear functions in V. Its
sections are inner products in the vector bundle V. Now let us consider the map

q from J(∇,∇∗) to S2(V∗) which is defined by setting

q(ϕ).(s, s′) =
1

2
(g(ϕ(s), s′) + g(s, ϕ(s′))).
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3.2.1. Parallel symmetric forms

Definition 3.2. A section Q of S2(V ∗) is ∇−parallel if the following identity

holds

X.Q(s, s′) = Q(∇X .s, s
′) +Q(s,∇X .s

′)

for all vector field X and for all sections s, s′ of V.

It is easy to prove the following claim.

Lemma 3.1. The image of the map

q : J(∇,∇∗) → S2(V∗)

is the subbunde S∇
2 (V∗) of parallel forms.

3.2.2. Parallel skew symmetric forms

Let ∧2(V∗) be the bundle of skew symmetric bilinear forms in V. We define

the map ω of J(∇,∇∗) in ∧2(V∗) by putting

ω(ϕ).(s, s′) =
1

2
(g(ϕ(s), s′)− g(s, ϕ(s′)).

Lemma 3.2. The image of ω is the subbundle ∧∇
2 (V∗) of parallel skew sym-

metric bilinear forms in the vector bundle V.

Proposition 3.3. The following short sequence of vector bundles is exact

0 → J(∇,∇∗, g) → J(∇,∇∗) → S∇
2 (V∗) → 0.

Actually it is a easy to see the induced map

ω : J(∇,∇∗) → ∧∇
2 (V∗)

is an isomorphism. Therefore one can regard ∧∇
2 (V∗) as a subbundle of J(∇,∇∗).

The viewpoint yields the following short exact sequence

0 → ∧∇
2 (V∗) → J(∇,∇∗) → S∇

2 (V∗) → 0.

Let us fix a couple (V,∇). Then up to isomorphism the vector bundle

J(∇,∇∗) does not depend on the riemannian vector bundle structure (V, g) of
course, given two dual pairs (V, g,∇,∇∗) and (V, g′,∇,∇′∗) is easy to see that

the couples (V,∇∗) and (V,∇′∗) are canonically isomorphic. In other words

there is an automorphism ϕ of V such that

ϕ(∇′∗
X .s) = ∇X .ϕ(s)

for every vector field X in the base manifold of V and for every section s of V.
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3.3. The linear gauges

In this subsection I shall be dealing with Koszul connections in the tangent

bundle of smooth manifolds. So it will not be necessary to explicit the vector

bundles.

Let (g,∇,∇∗) be a dual pair in a riemannian manifold (M, g). The mean

∇̃ =
1

2
(∇+∇∗)

of the couple (∇,∇∗) is the Levi-Civita connection of (M, g). This implies that

their torsion tensors are related as it follows

T∇ + T∇∗ = 0.

Now S2(M) and ∧2(M) stand for S2(T
∗M) and for ∧2(T

∗M) respectively.

I am interested in the following short exact sequence

0 → ∧∇
2 (M) → J(∇,∇∗) → S∇

2 (M) → 0.

Every section ω of ∧∇
2 (M) yields the decomposition of the tangent bundle

as it follows

TM = ker(ω)⊕ ker(ω)+

where ker(ω)+ stands for the g−orthogonal to ker(ω)

Mutatis muntandis every section Q of S∇
2 (M) yields the orthogonal decom-

position of the tangent bundle TM , namely

TM = ker(Q)⊕ ker(Q)+.

The orthogonal decompositions above are of importance for discussing the

transverse geometry of foliations.

4. Some Techniques of information geometry

I am interested in pairs (g,∇,∇∗) where both ∇ and ∇∗ are symmetric.

This means that both ∇ and ∇∗ are torsion free. To (∇,∇∗) one assigns the

following short exact sequences

0 → ∧∇
2 (M) → J(∇,∇∗) → S∇

2 (M) → 0,

0 → ∧∇
∗2(M) → J(∇∗,∇) → S∇

∗2(M) → 0.

The context above yields the following statements.

Theorem 4.1. (i) For every section Q of S∇
2 (M) the subbundles Ker(Q)

and Ker(Q)+ are completely integrable. (ii) For every section ω of ∧∇
2 (M)
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the subbundles Ker(ω) and Ker(ω)+ are completely integrable. (iii) The fo-

liation Ker(Q) is transversaly (pseudo) riemannian. (iv) The foliation Ker(ω)
is transversaly symplectic.

The statement above shows how the information geometry techniques help

to construct foliations admitting prescribed transverse geometry. Moreover the

couple (Ker(Q),Ker(Q)+) and the couple (Ker(Q),Ker(Q)+) are 2-webs.

4.0.1. The case of dually flat pairs

I intend to use information geometry methods to build examples of lineariz-

able webs. From now on I shall be dealing with dually flat pairs.

Let (g,∇,∇∗) a dually flat pair. This means the torsion tensors and the

curvature tensors of both ∇ and ∇∗ vanish identically.

Theorem 4.2. (i) For every section Q of S∇
2 (M) the 2-web (Ker(Q),Ker(Q)+)

is linearizable

Taking into accoumpt the orthogonal decomposition

TM = ker(Q)⊕ ker(Q)+.

Every vector field in M is presented as it follows

X = (X1, X2)

with (X1, X2) ∈ ker(Q) × ker(Q)+. Let D stand for the symmetric Koszul

connection defined by the formula

D(X1,X2).(Y1, Y2) = (∇X1 .Y1 + [X2, Y1]1,∇∗
X2
.Y2 + [X1, Y2]2).

Lemma 4.3. (i) The Koszul connection D is locaaly flat. (ii) The 2-web

(Ker(Q),Ker(Q)+) is totaly geodesic w.r.t. the connection D.

A straightforward consequence of the last lemma is

Theorem 4.4. The 2-web (Ker(Q),Ker(Q)+) is linearizable.

Mutatis mutandis one gets skew symmetric versus of the statements above by

considering a section ω of ∧∇
2 (M).

Let Q1, . . . , Qk be k sections of S∇
2 (M). One says that the sections Qj are

in general position if their kernels ker(Qj) are in general position. Thus one

gets the k−web (Ker(Qj).
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Theorem 4.5. Every finite family (Qj)1≤j≤k of sections of S∇
2 )(M) which are

in general position defines a linearizable k−web.

The proof of the theorem above is based on the flatness of the Koszul

connection ∇.

5. Statistical manifolds

In this section we apply the materials of the previous sections to the infor-

mation geometry.

Definition 5.1. A statistical manifold is a dual pair (M, g;∇,∇∗) where the

Koszul connections ∇, ∇∗ are torsion free.

According to the sections above a statistical manifold structure yields the

following remarkable short exact sequences

0 → ∧∇
2 (M) → J(∇,∇∗) → S∇

2 (M) → 0,

0 → ∧∇∗
2 (M) → J(∇∗,∇) → S∇∗

2 (M) → 0.

5.1. Gauge morphims and transverse geometry of foliations in sta-

tistical manifolds

Let us assign to a gauge morphism ϕ ∈ J(∇,∇∗) the pair (Q,ω) ∈ (S∇
2 (M),

∧∇
2 (M)) which is defined as it follows

Q(X,X ′) =
1

2
(g(ϕ(X), X ′) + g(X,ϕ(X ′))),

ω(X,X ′) =
1

2
(g(ϕ(X), X ′)− g(X,ϕ(X ′))).

The differential 2−form ω is de Rham closed. Since g is non degenerate

there exists a pair (Phi, Psi) of elements of J(∇,∇∗) suject to the following

requirements

Q(X,X ′) = g(Φ(X), X ′),

ω(X,X ′) = g(Ψ(X), X ′).

Thereby one has

Ker(Q) = Ker(Φ),

Ker(ω) = Ker(Ψ),

Those requirements yield

Ker(Q)+ = im(Φ),

Ker(ω) = im(Ψ).
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Since ∇ and ∇∗ are torsion free the distributions im(Φ) and im(Ψ) are com-

pletely integrable. Of course Ker(Q) admits the transverse riemannian metric

Q and Ker(ω) admits the transverse symplectic form ω.

Proposition 5.1. Suppose the statistical manifold (M, g,∇,∇∗) to be flat.

Then the 2−webs (Ker(Φ), im(Φ) and Ker(Ψ), im(Ψ)) are linearizable.

Many objects we have discussed through here have their homological versus.

In the next section I shall introduce the cochain complex which is related to those

previous discussions.

6. A simplicial KV modules attached to a flat statistical manifold

structure

Let (M, g,∇,∇∗) be a flat statistical manifold. Let F(M) be the associative

commutative algebra of real valued smooth functions in M .

I intend to deal with the real algebra A whose underling vector space is the

vector space of derivations of the algebra F(M). Those derivations are nothing

but the vector space of smooth vector fields in M . The multiplication

A×A → A

is defined by putting

X.X ′ = ∇X .X
′.

We consider the Z−graded vector C∗ whose homogeneous vector subspace Cq

is defined as it follows, (i) if q is a negative integer then

Cq = 0.

(ii) for q = 0

C0 = J(F(M))

with f ∈ F(M) iff ∇2(f) = ∇(df) = 0.

(iii) if q is a positive integer then

Cq = HomR(A
⊗q,F(M)).

Let q ∈ Z with 3 ≤ q and to every couple (i, j) ∈ Z2 with i < j ≤ q+1 one

assigns the linear map

σ1i.j : C
q → Cq+1
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as it follows. Let f ∈ Cq and ξ = X1⊗X2⊗ . . .⊗Xq+1 ∈ A⊗q+1. (a) If j < q+1

then

σ1ij(f).ξ =(−1)i [Xi.f(X1 ⊗ . . .⊗ X̂i ⊗ . . .⊗Xj ⊗ . . .⊗Xq+1)

− qf(X1 ⊗ . . .⊗ X̂i ⊗ . . .⊗Xi.Xj ⊗ . . .⊗Xq+1)]

(−1)j [Xj.f(X1 ⊗ . . .⊗Xi ⊗ . . .⊗ X̂j ⊗ . . .⊗Xq+1)

− qf(X1 ⊗ . . .⊗Xj .Xi ⊗ . . .⊗ X̂j ⊗ . . .⊗Xq+1)].

(b) If j = q + 1, then

σ1i,q+1(f).ξ =(−1)i [Xi.f(X1 ⊗ . . .⊗ X̂i ⊗ . . .⊗ . . .⊗Xq+1)

− qf(X1 ⊗ . . .⊗ X̂i ⊗ . . .⊗Xi.Xq+1)].

Using the family σ1i,j one defines the linear map

d : Cq → Cq+1

by putting

df =
∑
i<j

σ1i,j(f).

I am going to express the square d2 = d ◦ d, namely d2(f) as function de-

pending linearly on anomaly function KV (., ., .) of the couple A,F(M)). Given

X,X ′, X ′′ ∈ A and h ∈ F(M) let one set

KV (X,X ′, h) = (X.X ′).h−X.(X ′.h)− (X ′.X).h+X ′.(X.h),

KV (X,X ′, X ′′) = (X.X ′).X ′′ −X.(X ′.X ′′)− (X ′.X).X ′′ +X ′.(X.X ′′).

The smooth function X.h ∈ F(M) is defined by

X.h(x) = dh(X)

where the differential 1-form dh is the differential of the smooth function h.

Given f ∈ Cq and ξ = X1 ⊗X2 ⊗ . . .⊗Xq+2 ∈ A⊗q+2d2(f).ξ is related to

the anomaly functions as it follows

d2(f).ξ =
∑

i<j<k

[(−1)i+j [KX(Xi, Xj , f(X1 ⊗ . . . X̂i, . . . X̂j . . .⊗Xk . . .⊗Xq+2)

+ f(X1 ⊗ . . . X̂i, . . . X̂j . . .⊗KV (Xj , Xi, Xk)⊗ . . .⊗Xq+2)]

+ (−1)1+k[KV (Xi, Xk, f(X1 ⊗ . . . X̂i . . .⊗Xj ⊗ X̂k . . .⊗Xq+2))
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+ f(X1 ⊗ . . . X̂i . . .⊗KV (Xk, Xi, Xj)⊗ . . . X̂k ⊗ . . .⊗Xq+2)]

+ (−1)j+k[KV (Xj , Xk, f(X1 ⊗ . . .⊗Xi⊗ . . . X̂j ⊗ . . . X̂k ⊗ . . .⊗Xq+2))

+ f(X1 ⊗ . . .⊗KV (Xk, Xj , Xi)⊗ . . . X̂j ⊗ . . . X̂k ⊗ . . .⊗Xq + 2)]].

Without any assumption neither on the multiplication

(X,X ′) → X.X ′

of the algebra A nor on the action

(X,h) → X.h

one sees that d2(f) depends lineraly on the anomaly functions of the couple

(A,F(M)). When (M,∇) is a locally flat manifold the anomaly function van-

ishes identically. Thereby the couple (C∗, d) is a cochain complex whose coho-

mology space is denoted by H∗(∇,R).

6.1. The Hessian geometry in flat statistical manifolds

To a flat statistical manifold (M, g,∇,∇∗) one assigns the pair (A,A∗) of

algebras whose underlying vector space is the space of derivations of the as-

sociative commutative algebra F(M). Let us denote by C∗(∇), C∗(∇∗) their

related cochain complex. Then the riemannian metric tensor g is a 2−cocyle in

both C∗(∇) and C∗(∇∗). Then this consideration yields a well known fact that

(M, g,∇) and (M, g,∇∗) Hessian manifolds [8], [1]. Following [2] the cohomol-

ogy class [g] ∈ H2(∇,R) an obstruction to (M,∇) be a locally flat hyperbolic

structure. Of course the same remark holds for (M,∇∗).

There many other relationships between the Hessian geometry and the ge-

ometry of information, see [6], [4, 5], [9]. Regarding the relationships between

the Hessian geometry and industry the reader is refered to [10]. To end the

discussion about the information geometry I intend to define the notion of sta-

tistical model for measurable sets. I suppose the reader knows the notion of

probabilized measurable sets.

6.2. Statistical models

From now on (Ξ,Ω) is a measurable set whose Boole algebra is Ω ⊂ P(Ξ).

At the moment Ξ is provided with the discrete topology. Let Γ be the group of

measurable isomorphisms of (Ξ,Ω).

I am concerned with special locally trivial smooth Γ−bundles whose fiber

type is Ξ and whose base manifolds are locally flat manifolds in the sense of [3],

[7].
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6.2.1. The dynamics of Γ

The starting data are the following:

(1) Anm−dimensional locally flat structure (M,∇) whose underlying manifod

M is the base manifold of a Γ−bundle

π : E →M

which is locally modeled on Ξ.

(2) Both E and M admit Γ−actions

ΓE → E ,

MΓ →M

such that (3)

π(γ.e) = π(e).γ.

Of course the product E ×M admits a left Γ−action defined by

γ.(e, x) = (γ.e, x.γ−1).

(4) Given an open subset U ⊂ M and EU = π−1(U) a trivialization of π over

U is a couple (Φ, ϕ) where ϕ is an affine diffeomorphism of (U,∇) onto an open

subset ΘU ⊂ Rm and Φ is a homeomorphism of EU onto the product ΘU × Ξ

such that

ϕ(π(e)) = p1(Φ(e))

where p1(x, ξ) = x∀(x, ξ) ∈ ΘU × Ξ.

The couple (Φ, ϕ) is called a fibered chart of π whose domain is (EU , U).

Definition 6.1. Given a fibered chart

(Φ× ϕ) : EU × U) → ΘU × Ξ)× U

a (Φ, ϕ)−supported local statistical model for Ξ is a real valued function

P : Θ× Ξ → R

subject the following requirements (i) If one fixes ξΞ then the function

θ ∈ ΘU → P (θ, ξ)

is smooth.

(ii) If one fixes θInΘU then the function

ξ → P (θ, ξ)
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is a probability density, viz ∫
Ξ
P (θ, ξ) dξ = 1.

(iii) the (so-caled horizontal) differentiation dθ commutes to the integration

w.r.t ξ ∈ Ξ.

To the local statistical model P is asigned the Fisher information which is

the quadratic form g defined in ΘU by

g(θ).(X,X ′) =

∫
Ξ
[dθ log (P(θ, ξ)]2 (X,X′) dξ

where dθ stands the differential w.r.t. θ. This quadratic form is positive semi

definite.

6.2.2. Compatibility of local models

Let ((Φ, ϕ), EU , U ;P ) as in the last subsubsection and let γ ∈ Γ. To simplify

let assume that (EU.γ , U.γ) is the domain of a fibered trivialisation

Ψ× ψ) : EU.γ × U.γ → ΘU.γ × U.γ

supporting a local model

P ∗ : ΘU.γ × U.γ → R.

It is obvious that for (x, ξ) ∈ ΘU × Ξγ.(x, ξ) ∈ ΘU.γ × Ξ.

Definition 6.2. The local models P and P ∗ are compatible if for all (x, ξ) ∈
ΘU × Ξ one has

P ∗(γ.(x, ξ)) = P (x, ξ).

6.2.3. Statistical atlas

Now we consider an open covering (Ui) of M with a family

Φi × ϕiEi, Ui → (Θi × Ξ)× Ui.

We assume that each (Φ, ϕi) supports a local model

Pi : Θi × Ξ → R.

For every every e ∈ EUi let us set

(xi(e), ξi(e)) = Φi(e).
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Definition 6.3. The data [Ei, Ui,Φi, ϕi, Pi] define a structure of statistical

model in the fibration π if the models Pi are pairwise compatible. Moreover if

Ui ∩ Uj ̸= ∅ then there exists a mapping

γij : Ui ∩ Uj → Γ

such that for e ∈ EUi∩Uj one has

(xj(e), ξj(e)) = γij(xi(e)).(xi(e), ξi(e)).

The family (Ui,Φi, ϕi, Pi) is called a statistical atlas.

Definition 6.4. The atlas (Ui,Φi, ϕi, Pi) and the atlas (U∗
j ,Φ

∗
j , ϕ

∗
j , P

∗
j ) are

compatible if their local charts are pairwise compatible.

A statistical model for (Ξ,Ω) is a class of compatible atlases.

Actually a statistical atlas (Ui,Φi, ϕi, Pi) gives rise to the global function

p : E → R

such that

Pi(Φi(e)) = p(e)

for all e ∈ Ei. If (U∗
j ,Φ

∗
j , ϕ

∗
j , P

∗
j ) and (Ui,Φi, ϕi, Pi) are compatible then p∗ = p.

So the global function p depends only on the structure of (global) statistical

model.

Since π is locally trivial the function p is (π−)horizontally smooth. So dθp

stands for the horizontal differentiation in E . Of course dθ commutes to the

integration along the fibers of π.

Let L(M) se the convex set of the Koszul connections in M . To every

D ∈ L(M) is assigned the horizontal quadratic form Q(D) which is defined as

it follows. Given π−projetable vector fields X, X ′ let us set

Q(D).(X,X ′) = [D(dH log (p)).(X,X ′)].

Consider the category E(M,Ξ) of structures of statistical models for (Ξ,Ω) with

the same base manifold M .

Theorem 6.1. The map

D ∈ L(M) → Q(D)

is a characteristic invariant.

I am dealing with fiber morphism

R× r : E ×M → E∗ ×M.
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In other words ∀ e ∈ E one has

π∗ ◦ R = r ◦ π

where

π∗ : E∗ →M

is the fibration of the model E∗. The theorem above means that a fiber isomor-

phism R× r sending Q to Q∗ is a isomorphism of statistical models, viz

(p∗ ◦ R) = p.
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