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Abstract

In the present paper our study confines to the hypersurface of a Finsler
space with (o, 8) metric a + 5 + aa—_zﬁ We have examined the hypersurfaces as
a hyperplane of first, second and third kinds.

1. Introduction

We consider an n-dimensional Finsler space F" = (M", L) i.e.,a pair con-
sisting of an n-dimensional differentiable manifold M™ equipped with a Funda-
mental function L. The concept of (o, 5), metric L(«, 5) was introduced first of
all by M. Matsumoto [5] and has been studied by many authors [1, 2, 3, 5, 8, 7, 9].

As well known examples are Rander’s metric (« + (), Kropina metric % and

generalized Kropina metric O‘gil (m # 0,—1) whose studies have greatly con-

tributed a lot to the growth of Finsler geometry. A Finsler metric L(z,y) is
called an (a, ) metric if L is a positively homogeneous function of o and § of

degree one, where o = a;;(z)y'y’ is a Riemannian metric and 8 = b;(z)y’ is a
1— form on M™.

2. Preliminaries

We devote to a special Finsler Space F™" = {M", L(«, )} with the metric
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232 202 —2af3
Loo=——— Lgg=——"2, Lop=—
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oL oL dLa OL3 OLa
h Laziy LZ*? cha:ia L = Tan La = a5 °
where e’ P 8B g’ PP o 5= 88

In the Finsler space F™" = {M™, L(«, 3)} the normalized element of support
l; = 0;L and angular metric tensor h;; are given by [5]:

l; = ailLaYi + Lgbi
hij = pai; + qobibj + q-1(b;Y; + b;Y;) + q-2YiY;

where Y; = a;j37. For the fundamental function (2.1) above constants are

4_pd_ g3 3
(2.2) b= LLoa~) = 4o — * — 8a’f + 4af

ala—p)?
4ot — 2022 2/3% — 4028
=Llgg = ——F7 1=LL,ga t="C— — "
D= gt o (a—B)
—40® — 20233 + 8B + aBt — B°
7 =2 _ ~1y _
g—2 = La”*(Loo — Lo ) eI p—cT

Fundamental metric tensor g;; = %(i-a.jLQ and its reciprocal tensor g% for L =
L(a, B) are given by [4, 5]

(2.3) 9ij = paij + pobibj + p—1(biYj + b;Y;) + p-2YiY

where

8at + B + 6a2p% — 803 — 4af?

( ) Po q0 + B (CY — ,8)4 3
_ 2033 — 4033 + (202 + % — 2a)?
—1 — g— L 1 L =
pb-1 q—1+ bLg Oé(Oé —_ B)4
281 4+ 80232 — 6088 + £
21 —2 a
—_92 = (J_— L =
P—2=q-2+p Z(a—p)t

The reciprocal tensor g of gij is given by
(2.5) g7 =pta — sob't — s_1 (b’ + Vy') — s_oy'y’

where b = aijbj and b? = aijbibj
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1
(2.6) 50 = 5{1)}?0 + (pop—2 — p21)a?},
1 2
S—1= ?p{pp_1 + (pop—2 — p21)B},

1
S_2 = ?p{PP—z + (Pop—2 —P%l)b2}’

7 =p(p + pob® + p-18) + (pop—2 — p>1)(a’6* — %)

The hv-torsion tensor Cjjj, = %@gij is given by [10]

(2.7) 2pCijr = p—1(hiymy + hjgm; + hgymy) + yimgmgmy,
where,

_ 9o _ -2
(2.8) M= paiﬂ — 3p-1qo, m; = b; — o~ “BY;

Here m; is a non-vanishing covariant vector orthogonal to the element of support
i

Y.

Let {jZk:} be the component of christoffel symbols of the associated Riemann-

ian space R™ and V}, be the covariant derivative with respect to z* relative to
this christoffel symbol. Now we define,

(2.9) 2E;; = bij + by, 2F;; = bij — bji
where bij == ijl

Let CT = (F;,i, FSZ7F§'1~:) be the cartan connection of F". The difference

tensor D;k = F;‘}f - {jik} of the special Finsler space F™ is given by

(2.10) Dy, = B'Ejj, + FB;j + F} By, + Blbo, + Bjbo;
—bgmgimBjk — lemAZL — Ci;mAgn + CjkmAsmgis
A% (CL, Ot + Cho O — CIECH )

where
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(2.11) By, = pob, + p—1Yy, B'=g"B;, F}=g"F
{p_1(aij — a2Y;Y)) + Fomemy) :
Bi; = 5 2 , Bf =g¢"Bj;

Zl = B]TE()() + BmEko -+ BkFén + BQF]T
A" = B™Eo + 2BoFy",  Bo = Biy'
where ‘0’ denote contraction with 3* except for the quantities pg, go and s.

3. Induced Cartan Connection

Let "~ ! be a hypersurface of F™ given by the equation 2! = x*(u®) (where
a=1,2,3.. (n—1)). The element of support 3 of F™ is to be taken tangential
to F"~L, that is [6],

(3.1) yi = Bl (up®
the metric tensor g.g and hv-tensor Cng, of F' n—1 are given by
9op = 9i;BLBY,  Cagy = CyjBLB,BE
and at each point (u®) of F"~!, a unit normal vector N%(u,v) is defined by

g”{x(u, U)v y(“) U)}BéN] = Oa glj{m(ua U), y(ua ’U)}NZNJ =1

Angular metric tensor h,g of the hypersurface are given by

(3.2) hag = hi; B, B,
(B&, N;) inverse of (B, N?) is given by
By = g*%g;;B,. BB} =64, BfN'=0, BLN;=0
Ni=gijN7, B} =g¢"Bj;, BLB}+ N'N; =0,
The induced connection ICT = (I'y3, G§, C§. ) of F "=1 from the Cartan’s con-
nection CT' = (I';;, I'y., C7p) is given by [6].
% = BX(B,, + T4 BLBY) + Mg H,

G4 = BX(Bl, +IiB%), C4, =BeCY BBk

hijBLN? =0,  hiiN'NJ =1

where
Mgy = N;C; B4BY, Mg = ¢*"Mpg,, Hp= Ni(Bjgz+T5iB))
and

Bi
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The quantities Mg, and Hg are called the second fundamental v-tensor and
normal curvature vector respectively [6]. The second fundamental h-tensor Hg.,
is defined as [6]

(3.3) Hgy = Ny(Bjy, + ;i BLBE) + MgH,
where
(3.4) Mg = N;Cjy BLN*

The relative h and v-covariant derivatives of projection factor Bf, with respect
to ICT are given by

Bls=HapN',  Bils = MasN'
It is obivious form the equation (3.3) that Hpg, is generally not symmetric and
(3.5) Hg,— H,3 = MgH, — M,Hpg
The above equation yield
(36) HO'y = Hq/, H,y() = fI7 + M'yHO
We shall use following lemmas which are due to Matsumoto [6] in the coming

section

Lemma 3.1. The normal curvature Hy = H, Bvﬁ vanishes if and only if the
normal curvature vector Hg vanishes.

Lemma 3.2. A hypersurface F"~! is a hyperplane of the first kind with respect
to connection CT' if and only if H, = 0.

Lemma 3.3. A hypersurface F™~! is a hyperplane of the second kind with
respect to connection CT" if and only if H, = 0 and H,g = 0.

Lemma 3.4. A hypersurface F"~! is a hyperplane of the third kind with respect
to connection CT' if and only if H, =0 and H,g = M3 = 0.

4. Hypersurface F"~!(c) of a special Finsler space

2
Q
Let us consider a Finsler space with the metric L = a4+ 8+ ——, where,
0 —

B
b
vector field b;(x) = pe is a gradient of some scalar function b(z). Now we
x

consider a hypersurface F"~!(c) given by equation b(z) = ¢, a constant [10].

From the parametric equation x' = 2*(u®) of F"~!(c), we get
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0b(x)

ou®
Ob(x) Ox'
dx' Ju™

biBi =0

=0

Above shows that b;(x) are covarient component of a normal vector field of
hypersurface F"~!(c). Further, we have

(4.1) bB: =0 and by' =0 ie [=0
and induced matric L(u,v) of F"~1(c) is given by

(4.2) L(u,v) = aqpv®0®, a5 = aijBéBé
which is a Riemannian metric.

Writing 8 = 0 in the equations (2.2), (2.3) and (2.5) we get

(4.3) p=4, q@=4 q¢1=0 go=—4a"?
po=8 p_i=4dat po=0 T=16(1+b%),
1 1 —b?
sg=———=- S ]=-——— S 9= —-—
0741+ TN 41402 T 4a2(1402)
from (2.4) we get,
(4.4) ij—la"j— ! by — ! by’ + ¥ Z')—i-ilﬂ tyl
9T T a ) s+ TV T e )Y
thus along F"~1(c), (4.4) and (4.1) leads to
y b2
Uhib; = ————~
I8 = g1+ v?)
So we get
(4.5) bi(z(u)) = Py b’ = a¥bb;
' ’ V42" -
where b is the length of the vector b'.
Again from (4.4) and (4.5), we get
; i 4b%(1 + v?) - ab?yt
4.6 b' = a"b; = N*
(46) @ {1+0%(1 —a?)}? * 1+0%(1—a?)

thus we have,
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Theorem 4.1. In a special Finsler hypersurface F"~!(c), the Induced Riemann-
ian metric is given by (4.2) and the scalar function b(x)is given by (4.5) and
(4.6).

Now the angular metric tensor h;; and metric tensor g;; of F" are given by
4 4
(47) hij = 4aij + 4bzbj — ?Y;ij and 9ij = 4aij + 8b1bj + a(bZY} + b]}/l

From equation (4.1), (4.7) and (3.2) it follows that if hg?, denote the angular

metric tensor of the Riemannian a;j(x) then we have along F, (Té;l, hag = h((laﬂ)

_ 8])0 24
n—1 _
Thus along F(C) ' 28 5= o
From equation (2.6) we get

(67

then hv-torsion tensor becomes

6
(4.8) Cijk = hijbk + hjkbl' + hkibj) -+ abibjbk:

1
25
in the special Finsler hypersurface F(’Z)_l Due to fact from (3.2), (3.3), (3.5),
(4.1) and (4.8) we have

1 b2
4.9 Meap = —1| =5 ha d My=0
(4.9) T\ sa ey

Therefore from equation (3.6) it follows that H,s is symmetric. Thus we have

Theorem 4.2. The second fundamental v-tensor of the special Finsler hyper-
surface FZZ;I is given by (4.9) and the second fundamental h-tensor H,gs is
symmetric.

Now from (4.1) we have b; BY, = 0. Then we have
bingé + biBé‘W =0
Therefore, from (3.5) and using b3 = biUBé + bi|; N7 Hg, we have
(4.10) biy; BLBY + by BLNTHy + biHogN' = 0

since b;|; = —thZhj, we get

b; BLN7 =0
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Therefore from equation (4.10) we have,

b2 o
(4.11) IR bz)Hag + by Ba By =0
because b;; is symmetric. Now contracting (4.11) with v? and using (3.1) we
get
b2 o
1 —
(4.12) mHa +b;;BLy’ =0

Again contracting by v equation (4.12) and using (3.1), we have

b2

(4.13) )

Ho+byy'y’ =0

From lemma (3.1) and (3.2), it is clear that the hypersuface F (Z;l is a hyperplane

of first kind if and only if Hy = 0. Thus from (4.13) it is obvious that F(’Z)_l is a

hyperplane of first kind if and only if ¥; jyiyj = 0. This b;; being the covariant

, lj
derivative with respect to CT' of F" defined on y*, but b;; = V;b; is the covariant

derivative with respect to Riemannian connection {jzk‘} constructed from a;;(x).

Hence b;; does not depend on y’. We shall consider the difference b;; —b;; where

li
bij = V;b; in the following. The difference tensor D;k = F;}C — {jzk} is given by
(2.10). Since b; is a gradient vector, then from (2.9) we have

Eij=bj; F;j=0 and Fj=0.

Thus (2.10) reduces to

(4.14) " = B'bjk + Blbor + Biboj — bomg " Bj — Chn AR
—Cim AT + Cirm AT g™ + N(C,,Ci

jm~'sk
% m m i
+Ck:mCsj - Cjk ms)

where
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1 ; 1

4.15 B; = 8b; + 407 1Y;, B'= b+ ——— 9,
(4.15) e eV oY
2 VY, 12
A™ = B"by, Bij= a(aij - 7a2j) + Ebibja
B = i(a@' Y bbb
77 20 V3T a1+ 62)"
(1+6b2)

mbﬁyi7 k= Bj"boo + B byo.
In view of (4.3) and (4.4), the relation in (2.11) becomes to by virture of (4.15)
we have B} = 0, Bjy = 0 which leads AJ* = B™by.

Now contracting (4.14) by y* we get

D;O = Bibjo + B;-b()() — BmC;mboo

Again contracting the above equation with respect to ¢/ we have
Do = B'boo = {(1352)0" + 5y oo

Paying attention to (4.1), along F(’Z)_l, we get

b? 1+ 6b? 1 i
A+ bjo + ( bg) bjboo + 57 0ib™ C},,boo

4.1 biD%y = T A
(4.16) 70 201 + (14 02)

Now we contract (4.16) by 3/ we have

; 1
4.17 biDyy = ——=<b
( ) 00 (1 + b2) 00
From (3.3), (4.5), (4.6), (4.9) and M, = 0, we have
bib™C Bh = b My = 0.

Thus the relation b;; = bj; — b, DJ; the equation (4.16) and (4.17) gives

i =
bi;jy'y? = boo — by Dy = 1552 boo-
Consequently (4.12) and (4.13) may be written as

b2 o+ 1
414027 T 1402

(4.18) bioB:, =0,

T
41+ 0T 142

bo(] :0
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Thus the condition Hy = 0 is equivalent to byg = 0. Using the fact 8 = by’ = 0
the condition bgg = 0 can be written as b;;y'y’ = b;y'b;y’ for some c;(x). Thus
we can write,
(4.19) 2b;; = bicj + bjc;
Now from (4.1) and (4.19) we get
boo =0, b BLB, =0, b;Biy =0.

Hence from (4.18) we get H, = 0, again from (4.19) and (4.15) we get bjpb’ =
60262, A™ =0, AiB} =0 and B;; BB} = %haﬁ.

Now we use equation (3.3), (4.4), (4.5), (4.6), (4.9) and (4.14) then we have
B cob?(4 + 3b%)

4.20 b.DI.B. B, = AT
(4:20) wTeTs 16cv(1 + b2)?

hag

Thus the equation (4.11) reduces to

[ b2 b2 (4 + 3b%)
421 —  Hug+ —— Loy =0
(421) K52 T Tea(l )2 P

Hence the hypersurface F (’Z)_l is umbilic.

Theorem 4.3. The necessary and sufficient condition for F; (Z;l to be a hyper-

plane of first kind is (4.19). In this case the second fundamental tensor of F(’Z)_l

is proportional to its angular metric tensor.

Now from lemma (3.3), F (’Z)_l is a hyperplane of second kind if and only if
H, =0 and Hy,g = 0. Thus from (4.20), we get

co=ci(x)y* =0
Therefore there exist a function 1 (z) such that
ci(x) = (x)bi(x)
Therefore (4.19) we get
2bij = bl(x)w(x)bj(x) + b](x)w(a:)b,(a;)
This can also be written as

bij = ¢ (x)bib;
-1

Theorem 4.4. The necessary and sufficient condition for a hypersurface F, (Té)
to be a hyperplane of second kind is (4.21).
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Again lemma (4.4), together with (4.9) and M, = 0 shows that F(T;)_l does not
become a hyperplane of third kind.

Theorem 4.5. The hypersurface F (’Z)_l is not a hyperplane of the third kind.

(1]
2]
3l
(4]
(5]
(6]
(7]
(8]
(9]

(10]
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