Special Vol. 8 (2014), pp.45-52 https://doi.org/10.56424/jts.v8i01.10559

Quarter-Symmetric Metric Connection in P-Sasakian Manifold

Dhruwa Narain and Gajendra Nath Tripathi

Department of Mathematics & Statistics
D. D. U. Gorakhpur University, Gorakhpur, India
(Received: November 11, 2013)

Abstract

The object of the present paper is to study properties of curvature tensor of a quarter symmetric metric connection in a P-Sasakian manifold.

Keywords and Phrases : P-Sasakian manifold, Weyl conformal curvature tensor, connection.

2000 AMS Subject Classification: 53C05, 53C25.

1. Introduction

An n-dimensional differentiable manifold M is called an almost paracontact manifold if it admits an almost para-contact structure (F, ξ, η) consisting of a (1, 1) tensor field F, a vector field ξ , and a 1-form η satisfying

$$(1.1) \overline{(X)} = X - \eta(X)\,\xi,$$

$$(1.2) \overline{X} = F(X),$$

$$\eta(\xi) = 1.$$

Let g be the compatible Riemannian metric with (F, ξ, η) that is

$$(1.4) g(FX, FY) = g(X, Y) - \eta(X) \eta(Y)$$

or equivalently

$$(1.5) g(X, FY) = g(FX, Y)$$

and

(1.6)
$$g(X,\xi) = \eta(X) \text{ for all } X, Y \in TM.$$

Then M becomes almost para-contact Riemannian manifold equipped with an almost para-contact Riemannian structure (F, ξ, η, g) . An almost para-contact

Riemannian manifold is called a P-Sasakian manifold if it satisfies

(1.7)
$$(\nabla_X F) Y = -g(X, Y) \xi - \eta(Y) X + 2\eta(X) \eta(Y) \xi, \quad X, Y \in TM$$

where, ∇ denote the covariant differentiation with respect to g. It follows that

$$(1.8) (\nabla_X \xi) = \overline{X}$$

(1.9)
$$(\nabla_X \eta) Y = (\nabla_Y \eta) X = g(X, \overline{Y}), \qquad X \in TM.$$

In an n-dimensional P-Sasakian manifold M, the curvature tensor R, the Ricci tensor S and the Ricci operator Q, satisfy

$$(1.10) R(X,Y)\xi = \eta(X)Y - \eta(Y)X$$

$$(1.11) R(\xi, X)Y = \eta(Y)X - g(X, Y)\xi$$

$$(1.12) R(\xi, X) \xi = X - \eta(X) \xi$$

(1.13)
$$S(X,\xi) = -(n-1)\eta(X)$$

$$(1.14) Q\xi, = -(n-1)\,\xi,$$

(1.15)
$$\eta (R(X,Y)U) = g(X,U)\eta (Y) - g(Y,U)\eta (X)$$

$$\eta\left(R(X,Y)\,\xi\right) = 0$$

(1.17)
$$\eta\left(R(\xi, X)Y\right) = \eta\left(X\right)\eta\left(Y\right) - g(X, Y)$$

An almost para contact Riemannian manifold M is said to be η -Einstein [4], if the Ricci operator Q satisfying

$$Q(X) = aX + b\eta(X) \xi$$
,

where a and b are smooth function on the manifold. In particular if b = 0, the M is an Einstein manifold.

Let (M, g) be an n-dimensional Riemannian manifold. Then the projective curvature tensor P and the Weyl Conformal tensor C are defined by

(1.18)
$$P(X,Y)Z = R(X,Y)Z - \frac{1}{(n-1)}[S(Y,Z)X - S(X,Z)Y]$$

$$(1.19) \ C(X,Y)U = R(X,Y)U - \frac{1}{(n-2)} \{ S(Y,U)X - S(X,U)Y + (g(Y,U)QX - (g(X,U)QY) \} + \frac{r}{(n-1)(n-2)} \{ g(Y,U)X - g(X,U)Y \}$$

for all $X, Y \in TM$ respectively, where r is the scalar curvature of M.

A linear connection $\tilde{\nabla}$ in a Riemannian manifold M is said to be a quarter symmetric connection if its torsion tensor T satisfies

$$(1.20) T(X,Y) = \eta(Y)\phi(X) - \eta(X)\phi(Y)$$

where η is a 1-form and ϕ is a (1, 1) tensor field [2].

A linear connection $\tilde{\nabla}$ is called a metric connection if

$$(1.21) \qquad \qquad (\tilde{\nabla}_X g)(Y, Z) = 0.$$

A linear connection $\tilde{\nabla}$ satisfying (1.20) and (1.21) is called a quarter symmetric metric connection [3].

2. Curvature Tensor

We consider a linear connection and be a Riemannian connection such that

(2.1)
$$\tilde{\nabla}_X Y = \nabla_X Y + U(X, Y)$$

where U is a tensor of type (1, 2), and

(2.2)
$$T(X,Y) = \eta(Y)\overline{X} - \eta(X)\overline{Y} = U(X,Y) - U(Y,X)$$

If a connection $\tilde{\nabla}$ is metric connection, i.e.

(2.3)
$$(\tilde{\nabla}_X g)(Y, Z) = 0.$$

holds. From (2.2) we have

$$(2.4) 'U(X,Y,Z) + 'U(X,Z,Y) = 0$$

where U(X, Y, Z) = g(U(X, Y), Z). Since

$$(\tilde{\nabla}_X g)(Y,Z) = 0 \square g(\tilde{\nabla}_X Y, Z) + g(Y, \tilde{\nabla}_X Z) = g(\tilde{\nabla}_X Y, Z) + g(Y, \tilde{\nabla}_X Z)$$
$$\square g(U(X,Y), Z) + g(Y, U(X,Z)) = 0$$
$$\square' U(X,Y,Z) + U(X,Z,Y) = 0$$

and also

(2.5)
$$U(X,Y) = \frac{1}{2}[T(X,Y) + T'(X,Y) + T'(Y,X)]$$

where

(2.6)
$$g(T'(Y,X),Z) = g(T(Z,X),Y)$$

Assume that the torsion tensor T(X,Y) of the linear connection is of the form

(2.7)
$$T(X,Y) = \eta(Y)\overline{X} - \eta(X)\overline{Y}.$$

From (2.6) and (2.7), we have

(2.8)
$$T(X,Y) = \eta(X)\overline{Y} - {'F(X,Y)}$$

where F(X,Y) = g(X,Y), η is a 1-form and ξ , is the associated vector field. From (2.5), (2.7) and (2.8), we get

(2.9)
$$U(X,Y) = \eta(Y)\overline{X} - {}'F(X,Y)\xi,$$

From (2.1) and (2.9), we get

(2.10)
$$\tilde{\nabla}_X Y = \nabla_X Y + \eta(Y) \overline{X} - {'F(X, Y)} \xi,$$

Hence a quarter symmetric metric connection $\tilde{\nabla}$ in a P-Sasakian manifold is given by (2.10).

If R and \tilde{R} be the curvature tensors of the connection ∇ and $\tilde{\nabla}$ respectively. Then we have

$$(2.11) R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$$

(2.12)
$$\tilde{R}(X,Y) Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.$$

Using (2.10) and (2.11) in (2.12), we have

(2.13)
$$\tilde{R}(X,Y)Z = R(X,Y)Z + 3'F(X,Z)\overline{Y} - 3'F(Y,Z)\overline{X} + [(\nabla_X F)(Y) (\nabla_Y F)(X)] \eta(Z) - [(\nabla_X F)(Y,Z) - (\nabla_Y F(X,Z))] \xi.$$

From (1.7) and (2.13), we have

(2.14)
$$\tilde{R}(X,Y)Z = R(X,Y)Z + 3'F(X,Z)\overline{Y} - 3'F(Y,Z)\overline{X} + [\eta(X)Y - \eta(Y)X]\eta(Z) - [\eta(X)g(Y,Z) - \eta(Y)g(X,Z)] \xi.$$

From (2.14), we have

(2.15)
$${}'\tilde{R}(X,Y,Z,U) = {}'R(X,Y,Z,U) + 3{}'F(X,Z){}'F(Y,U)$$
$$-3{}'F(Y,Z){}'F(X,U) + \eta(X)\eta(Z)g(Y,U)$$
$$-\eta(Y)\eta(Z)g(X,U) - [\eta(X)g(Y,Z) - \eta(Y)g(X,Z)]\eta(U).$$

A relation between the curvature tensor of M with respect to the quarter-symmetric connection $\tilde{\nabla}$ and the Riemannian connection, ∇ is given by the equation (2.15).

$$\tilde{S}(Y,Z) = S(Y,Z) + \eta(Y)\eta(Z) - n\eta(Y)\eta(Z) - g(Y,Z) + \eta(Y)\eta(Z)$$
(2.16)
$$\tilde{S}(Y,Z) = S(Y,Z) - (n-2)\eta(Y)\eta(Z) - g(Y,Z)$$

Contracting (2.16) with respect to z, we get

where \tilde{r} and r are the scalar curvatures of the connection $\tilde{\nabla}$ and ∇ respectively.

Theorem 1. For a P-Sasakian manifold M with quarter symmetric metric connection $\tilde{\nabla}$, we have

(a)
$$\tilde{R}(X,Y)Z + \tilde{R}(Y,Z)X + \tilde{R}(Z,X)Y = 0$$

(b)
$$'\tilde{R}(X,Y,Z,U) + '\tilde{R}(X,Y,U,Z) = 0$$

(c)
$$'\tilde{R}(X, Y, Z, U) - '\tilde{R}(Z, U, X, Y) = 0$$

(d)
$$'\tilde{R}(X, Y, Z, \xi) = 2'\tilde{R}(X, Y, Z, \xi) = 0$$

(e)
$$\tilde{S}(X,\xi) = 2S(X,\xi)$$
.

Proof: (a) of the theorem we have from (2.14). From (2.15) we have (b) and (c) of the theorem. Putting $U = \xi$ in (2.15) we have (d) of the theorem. Putting $Y = Z = e_i$ in (d) and taking summation over i, we get (e) of the theorem.

Theorem 2. In a P-Sasakian manifold in the Ricci tensor of the quarter symmetric metric connection is symmetric.

Proof: The proof of the theorem obviously follows from (2.16).

The Projective curvature tensor P of type (0, 4) of M with respect to Riemannian connection is given by (2.18)

$$P(X,Y,Z,U) = R(X,Y,Z,U) - \frac{1}{n-1} [S(Y,Z)g(X,U) - S(X,Z)g(Y,U)].$$

Analogous to this definition, we define Projective curvature tensor P of M with respect with respect to the quarter-symmetric metric connection $\tilde{\nabla}$ by (2.19)

$$'\tilde{P}(X,Y,Z,U) = '\tilde{R}(X,Y,Z,U) - \frac{1}{n-1} [\tilde{S}(Y,Z)g(X,U) - \tilde{S}(X,Z)g(Y,U)].$$

From (2.15), (2.16), (2.18) and (2.19), we have (2.20)

$$'\tilde{P}(X,Y,Z,U) = 'P(X,Y,Z,U) + 3'F(X,Z)'F(Y,U) - 3'F(Y,Z)'F(X,U)$$

$$+\frac{1}{n-1}[g(\overline{Y},\overline{Z})g(X,U)-g(\overline{X},\overline{Z})g(Y,U)]+[\eta(Y)g(X,Z)-\eta(X)g(Y,Z)]\,\eta(U).$$

Hence we can state the following theorem.

Theorem 3. In a P-Sasakian manifold the projective curvature tensor \tilde{P} of a quarter-symmetric metric connection $\tilde{\nabla}$ satisfying

$$\begin{split} \text{(i)} \ '\tilde{P}(X,Y,Z,U) &= \ 'P(X,Y,Z,U) + 3\ 'F(X,Z)\ 'F(Y,U) \\ &- 3\ 'F(Y,Z)\ 'F(X,U) + \frac{1}{n-1}[g(\overline{Y},\overline{Z})g(X,U) \\ &- g(\overline{X},\overline{Z})\ g(Y,U)] + [\eta(Y)g(X,Z) - \eta(X)g(Y,Z)]\ \eta(U) \\ \text{(ii)} \ '\tilde{P}(X,Y,Z,U) + '\tilde{P}(Y,Z,X,U) + '\tilde{P}(Z,X,Y,U) = 0 \end{split}$$

(iii)
$$'\tilde{P}(X,Y,Z,\xi) = (\frac{1}{n-1} - 1)[\eta(X)g(Y,Z) - \eta(Y)g(Z,X)].$$

Weyl conformal curvature tensor ${}'C$ of type (0, 4) of M^n with respect to the Riemannian connection is given by

$$C(X,Y,Z,U) = {}'R(X,Y,Z,U) - \frac{1}{n-2} [S(Y,Z)g(X,U) - S(X,Z)]$$

$$(2.21) g(Y,U) + S(X,U)g(Y,Z) - S(Y,U)g(X,Z)] + \frac{r}{(n-1)(n-2)} [g(Y,Z)g(X,U) - g(X,Z)g(Y,U)].$$

Analogous to this definition, we define conformal curvature tensor of M^n with respect to the quarter-symmetric metric connection $\tilde{\nabla}$ by

$$'C(X,Y,Z,U) = 'R(X,Y,Z,U) - \frac{1}{n-2} [\tilde{S}(Y,Z)g(X,U) - \tilde{S}(X,Z)$$

$$(2.22) \qquad g(Y,U) + \tilde{S}(X,U)g(Y,Z) - \tilde{S}(Y,U)g(X,Z)] + \frac{\tilde{r}}{(n-1)(n-2)} [g(Y,Z)g(X,U) - g(X,Z)g(Y,U)].$$

From (2.15), (2.16), (2.17), (2.21) and (2.22), we have

(2.23)
$${}'\tilde{C}(X,Y,Z,U) = {}'C(X,Y,Z,U) + 3{}'F(X,Z){}'F(Y,U)$$
$$-3{}'F(Y,Z){}'F(X,U)$$

(2.24)
$${'\tilde{C}(X,Y,Z,\xi)} = {'C(X,Y,Z,\xi)}.$$

Hence we can state the following theorem:

Theorem 4. In a P-Sasakian manifold the Weyl conformal curvature tensor \tilde{C} of a quarter symmetric metric connection $\tilde{\nabla}$ satisfying

(i)
$${}'\tilde{C}(X,Y,Z,U) = {}'C(X,Y,Z,U) + 3{}'F(X,Z){}'F(Y,U) - 3{}'F(Y,Z){}'F(X,U)$$

(ii)
$${}'\tilde{C}(X,Y,Z,U) + {}'\tilde{C}(Y,Z,X,U) + {}'\tilde{C}(Z,X,Y,U) = 0$$

(iii)
$$'\tilde{C}(X, Y, Z, \xi) = 'C(X, Y, Z, \xi).$$

3. Einstein Manifold with respect to the quarter-symmetric metric connection $\tilde{\nabla}$ in a P-Sasakian Manifold

A Riemannian manifold ${\cal M}^n$ is called an Einstein manifold with respect to Riemannian connection if

$$(3.1) S(X,Y) = -\frac{r}{n}g(X,Y)$$

Analogous to this definition, we define Einstein manifold with respect to quarter-symmetric metric connection $\tilde{\nabla}$ by

(3.2)
$$\tilde{S}(X,Y) = -\frac{\tilde{r}}{n}g(X,Y).$$

From (2.16), (2.17), (3.1) and (3.2), we have

(3.3)

$$\tilde{S}(X,Y) - \frac{\tilde{r}}{n}g(X,Y) = S(X,Y) - (n-2)\eta(X)\eta(Y) - g(X,Y) - \frac{r - (n-2)}{n}g(X,Y).$$

If

(3.4)
$$g(X,Y) = n\left(\frac{n}{2} - 1\right)\eta(X)\eta(Y).$$

Then from (3.3), we get

(3.5)
$$\tilde{S}(X,Y) - \frac{\tilde{r}}{n}g(X,Y) = S(X,Y) - \frac{r}{n}g(X,Y).$$

Hence we can state the following theorem :

Theorem 5. In a P-Sasakian manifold M^n with quarter-symmetric metric connection $\tilde{\nabla}$ if the relation $g(X,Y) = n\left(\frac{n}{2} - 1\right)\eta(X)\eta(Y)$ holds, then the manifold is an Einstein manifold for Riemannian connection if and only if it is Einstein manifold for the connection $\tilde{\nabla}$.

References

- [1] Adati, T. and Miyazawa, T.: Some properties of P-Sasakian manifold, TRU, MATHS, 13(1) (1977), 33-42.
- [2] Golab, S.: On semi-symmetric and quarter-symmetric linear connections, Tensor N. S., 29 (1975), 249-254.
- [3] Yano. K.: On semi-symmetric metric connection, Revue Roumanine de Mathematiques Pures et Appliques, 15 (1970), 1579-1981.
- [4] Adati, T. and Miyazawa, T.: On P-Sasakian manifolds satisfying certain conditions, Tensor N. S., 33 (1979), 173-178.
- [5] De, U. C. and Tarafdar, D.: On a type of P-Sasakian manifold, Math. Balkanica N. S., 7 (1993), 211-215.

- [6] Özgur, C. and Tripathi, M. M.: On P-Sasakian manifolds Satisfying certain conditions on the concircular curvature tensor, Turk J. Math., 30 (2006), 1-9.
- [7] **De, U. C. and Biswas, S. C.:** Quarter-symmetric metric connection in a SP-sasakian manifold, Commun. Fac. Sci. Univ. Ank. Series A1, 46 (1997), 49-56.