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Abstract

The purpose of the present paper is to consider the four dimensional Finsler
spaces with Tj;;x = 0 and generalize the idea of Landsberg angle to four dimen-
sional Finsler spaces. The properties of a Finsler space satisfying T'—condition
has been studied in a three dimensional Finsler space by various authors ([2],
(3], [4], [8], [10]). But from the relativistic point of view the importance of four
dimensional Finsler space is not negligible. In relativity the fourth coordinate is
taken as time, from this point of view we discuss the properties of four dimen-
sional Finsler space satisfying T'—condition. The results which are reducible to
the three dimensional case also.

1. Introduction

H. Kawaguchi and M. Matsumoto have introduced the T-tensor in a Finsler
space independently ([6], [5]). It is indicatrised tensor and studied by several
authors ([1], [2], [3], [4], [8]). The vanishing of T'—tensor is called T—condition.
Hashiguchi [1] noticed the importance of T'—tensor from the stand point of
Landsberg spaces. It has been proved by him that a necessary and sufficient
condition for a Landsberg space to be conformally invariant is that it satisfy
T'—condition.

The Landsberg angle 8 was introduced by Landsberg in 1908. The coordi-
nate system (L, ) in a tangent plane M, is regarded as a generalization of the
polar coordinate system (r,#) of a Euclidean plane. M. Matsumoto [9] gave the
idea of Landsberg angle in two and three dimensional Finsler space.

In this paper we have considered four dimensional Finsler space with Tj;;, =
0, and generalized the idea of Landsberg angle to four dimensional Finsler spaces.


https://doi.org/10.56424/jts.v4i01.10427


22 B. N. Prasad, T. N. Pandey and Manoj Kumar Singh

Let M* be four dimensional Finsler space endowed with a fundamental
function L = L(z,y), where x = (2%) is a point and y = (y') is a supporting
element of M*. The metric tensor gi; and (h) hv-torsion tensor Cjj;, of M 4 s
given by

1 9212 L2

1
1.]. Z == 7f7 rL = - .
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If [¢%/] denote the inverse matrix of [g;;] then, we have g;;g'¥ = 6¥. The T—tensor
Tk is defined as

(1.2) Thijk = LChij |k + hCijk + LiChjk + 1iChik + 1xChij »

where I; = L™ ! ¢;,y" and ‘|” denotes the v—covariant derivative with respect
to Cartan connection CT of M*. For instance the v—covariant derivative of a
tensor field T;(x, y) is defined by

(1.3) T; kzakT;‘i‘Tf =T ik >
where ak = ((%i, 8k = %

2. Scalar components in Miron frame

Let M* be a four dimensional Finsler space with the fundamental function
L(z,y). The frame {eg)}, a =1,2,3,4 is called the Miron’s frame of M*, where

ei) = [* = y'/L is the normalized supporting element, eé) =m! = C”/C is the
normalized torsion vector, eé) =n’, efl) = p' are c9nstructed by gije;)e]ﬂ) = 0ap-
Here C' is the length of torsion vector C; = C’Z-jkgjk . The Greek letters «, 8,7, d

varies from 1 to 4. Summation convention is applied for both the Greek and
Latin indices.

In Miron’s frame an arbitrary tensor field can be expressed by scalar com-
ponents along the unit vectors efl), a = 1,2,3,4. For instance, let T; be a
tensor field of type (1, 1), then the scalar components T},3 of T; are defined by
Top = T;ea)ieé) and ‘Phe components TJZ are expressed as T]Z = Taﬁei)eﬁ)j. From

the equation gijeg) ei;) = 0q3, We have

(2.1) 9ij = lilj +mymj +n;n; + pip;.
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The C-tensor Cjj, = %?@j{“ satisfies C,»jklk' = 0 and is symmetric in ¢, j, k there-

fore if C3y be the scalar components of LCjjy, i.e. if

(2.2) LCyji, = Ca/gvea)ieﬁ)jev)k,
then, we have [10]
(2.3) LCijk = Caoamimimy, + Cazzningng + Caaapipipr + C233m i) (Minny)
+C2447 (35) (MiDjPk) + C3aa7 (i) (nipspk) + Ca227 (358 (M)
+Cu33 4k (nimpr) + Caam(ijry (mimpy) + 02347T(ijk){mi(njpk +nipj) s

where 7 ;) denote the cyclic permutation of indices i, j, k and summation. For
instance

mijny (AiBjCr) = AiB;Cy + BiCj Ay + C3A; By
Contracting (2.2) with ¢g/*, we get LC'm; = Cappeayi- Thus if we put
(2.4) Caz = H, Cazs = 1, Cous = K, Cs33 = J,
Cz44 = J', Cig = H', Cuzz =T, Cozs = K,
then we have
(2.5) H+I+K=LC, Cyo0 = — (J + J'), Cyoo=—(H' +171).

The eight scalars H,I,J, K,H', I',J', K’ are called the main scalars of a four
dimensional Finsler space.

The v—covariant derivative of the frame field e_; is given by

(2.6) Leyili = Vaysy€s)i€,;

where V)3, 7 being fixed are given by

Voyzy = =V3)oy =
5 0 a v )3y )2y Y
(2.7) Vagy = (527 B 07 7 and Vo) = —Vyyay = vy
3y Uy Wry _ _
Vayay = =Vayzy = wy

Thus, in a four dimensional Finsler space there exists three v—connection vectors
u;, Vi, w; whose scalar components with respect to the frame {efl)} are u, v, w,
i.e.

(2.8) u; = ue Vi = Vey); w; = we

V)i
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In view of equations (2.8), the equation (2.6) may be explicitly written as

(2 9) Lli‘j =m;mj + n;n; + PiP;j Lmi\j = — limj + niu; + pivy,
Lni|j = —linj — min +piwj, Lpi|j = — lz’pj — mﬂ)j — niwj.
Since m;, n;, p; are homogeneous functions of degree zero in y;, we have
Lmi]jlj = an"jlj = Lpi‘jlj = 0,

which in view of equations (2.8) and (2.9) gives u; = 0, v1 = 0, w; = 0. There-
fore

Lemma (2.1). The first scalar components u, vy, w; of the v—connection
vectors u;, v;, w; vanishes identically, that is u;, v;, w; are orthogonal to .

3. Four-dimensional Finsler space satisfying the T-condition

The scalar derivative of the adopted components T;,3 of T; is defined as [9]
(3.1) Tugry = L(Ok Tap)e)” + TpusViyar + TopVin sy
Thus T,,4,, are adopted components of LT; |k, i.e.
(3.2) LT} | = T; € ep)j€)-
If the tensor field T} is positively homogeneous of degree zero in v, T,z is also
positively homogeneous of degree zero in 4%, so equation (3.1) gives

Topr = TpupViyar + TouVisr,

which in view of (2.7) and lemma (2.1) gives T,3.1 = 0. Therefore we have the
following:

Proposition (3.1). If the tensor field T]Z is positively homogeneous of degree
zero in y', then Topn = 0.

Now, let T]Z be positively homogenous of degree r in y* and T, be the scalar
components of LT}, then L(L™"T}) | = Tag;,yeg)eﬁ)je,y)k = LT} [y —rL7"
I?el)k, which implies

(3.3) L_T—HTj lk = (Tapy + rTaﬁdlv)eg)eﬁ)jev)k‘

Hence we have
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Proposition (3.2). If the tensor field TJZ is positively homogeneous of degree
rin y* and T3 be the scalar components of L*’”T;, then the scalar components
of L_THT]? | are given by Tpg.y + 714,301

Definition (3.1). The Finsler space M* is said to satisfy the T-condition if
the T'—tensor Tj;;x of M 4 vanishes identically.

The C-tensor Cjjy, is positively homogeneous of degree —1 in y', therefore
from proposition (3.2) the scalar components of L?>Cjjy, |, are given by

(3.4) L*Ciji; I = (Capris — Capr016)€a)i€a);€+)kE)h»

And the scalar components T'a3vd of LT}, are given by

(3.5) Topys = Capyis + Cys01a + Carysdis + Capsdiy + Capyois.

We know that the T'—tensor is indicatrized tensor and is symmetric in all indices,

therefore T}, ;1. *=0ie. T apy1 = 0. Therefore, the surviving scalar components
of LT}, are given by

(36) Toeﬂws = Caﬁ'y;(s a,3,v,0 =2,3,4.

Since Chij |k = Chik | , from (3.4) we have
(3.7) Capyis = Capy015 = Coapsry = Capsdiy-

In case of (7,9) = (1,2), (1,3) and (1,4) the above relation is trivial and when
(7,0) = (2, 3), (2, 4), (3, 4), we get

(38) Ca63;2 = Cocﬁ?;?n Caﬁ4;2 = Caﬂ2;4a Ca,@4;3 = Ca53;4-

These equations are trivial for a, 3 = 1. Consequently, we put (o, 3) = (2, 2),

(2, 3), (2, 4), (3, 3), (3.4), (4, 4) in equation (3.8). For instance Caa3.20 = C222.3
etc. In view of (2.4) and (2.7), this equation is explicitly written as

(&'0223)6%) +2Cu23V,)22 + Cr22Vyysze = (8i0222)€é) + 3C22V)1)23,
Or
(3.9)(a) —(J+ )2+ (H=21)uy—2K'vo+ (H' + I') we
=Hs+3(J + J)us +3(H' + I') vs.
Similarly, from (2.4), (2.7) and (3.8), we get
(3.9)(b) I;o —(3J 4+ 2J"Yug — I'vg — 2K ws
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= — (J + J/);g + (H — 2]) uz — 2K’1}3 + (Hl + I,) w3,
(c) K'so—(H + 2N us — (J+2JYvg + (I — K) wsy

= (Hl —I—I/);g —QKI'LL3 + (H — QK) U3 — (J+ J/) w3,
= (J4+ T +(H =20 ug — 2K vg + (H' + I') wy,

(d) Jio +3Tug — 3I' we = I;3 —(3J + 2J Y uz — I'vy — 2K ws,
(e) I/;g +2K/'LL2 + Tvg + (J — 2J')w2

= K/;g—(Hl+2I/)U3 — (J+2J/)1)3 -+ (I— K)w3
=1y —(3J+ QJI)U4 - I,U4 — 2Kvlw47

(f) J/;Q +KU2+2K’U2+(2I’—H,)U)2 = K3 —JIU3—(3H/—|-21/)U3—|—2K/ZU3
= K’;4 —(H’ + QII)U4 — (J + 2J/)’U4 + (I — K)w4,

(9) —(H'+I');2 —2K"uz + (H — 2K)vs — (J + J)w
= H;y +3(J + J)ug + 3(H' + I')vy,
(h) Kio—Jug — (3H' + 21" vy + 2K wo
=—(H' +I')u—2K'us + (H — 2K)vg — (J + J )y,
(1) H';9 +3Kvg + 3J'we = K3y —J'ugy — (3H' + 21" vy + 2K wy,
() I3 +2K"us + Tvs + (J — 2J"Yws = Ji4 +3Tuy — 31wy,

(k) J'3+Kug+2K'vs+ (2I' — H Yws = I';4 +2K ug + Tvg + (J — 20 )wy,
(l) Hl;g +3Kvsg + 3J’w3 = J/;4 +Kuy + 2KI’U4 + (2[/ — H’)’w4.

Since Tp;jp is symmetric in all indices and Tigs = 0, 3,7, = 2,3,4,

therefore, the surviving independent components are fifteen and they are

T5202, 15203, 19204, Th234, Tho4a, Th233,

T5333, 719334, T344, Tosaa, T3333, 13334,

13344, 13444, Thaaa.

In view of (2.4), (2.7), (3.6) and (3.9) these scalar components are explicitly

written as

Toooo = Hio +3(J + J)ug + 3(H' + I')va,
Toooz = Hi3 +3(J + J )us + 3(H' + I')vs
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=—(J+J)0+(H —2us — 2K've + (H' + I')ws,
Tooos = Hig +3(J + J )ug + 3(H' + I')vy

= (H' 4+ I')p—2K"us + (H — 2K )vs — (J + J')ws,
Toogy = — (J + I )su+(H — 21)uy — 2K'vq + (H' + I')wy

= (H'+ )3 —2K"uz + (H — 2K)vs — (J + J')ws

= Ky —(H' +2I)us — (J + 20" vs + (I — K )ws,

Tooas = — (H' 4+ 1')3a —2K'ug + (H — 2K)vy — (J + J')wy

= Ko —J'ug — (3H' + 21" )vg + 2K ws,
Toozs = — (J + J" )3 +(H — 20)uz — 2K'v3 + (H' + I")ws

=TI;0—(3J +2J Yug — I'vg — 2K w9,
Tozss = I;3 —(3J + 2J" Yug — I'vy — 2K'ws = J;o +3Tug — 3T wo,
Tossg = T34 —(3J +2J Yuy — vy — 2K wy

— Ky —(H' 421 )ug — (J + 2 )3 + (I — K)ws

= 1" +2K'ug + Tvg + (J — 2J" )ws,
Tosaa = K'sq —(H' + 21 s — (J + 20" o4 + (I — K)ws

= K;3—Jus — (3H' + 2I')v3 + 2K w3

= Jio+Kug + 2K'vg + (2I' — H )ws,
Tosas = Ky —J'ug — (3H' + 2I")vy + 2K'wy = H';5 +3Kvy + 3J wo,
T3333 = J;3 +3Tus — 3I'ws,
T3334 = J3a +3Iug — 31"wy = I';3 42K ug + Tvz + (J — 2J")ws,
T3344 = sy +2K ug+ Tvg+(J—2JYwy = J';3 + Kug+ 2K vs+ (21’ — H Yws,
T3444 = J'54 +Kuy + 2K'vg + (2I' — H)wy = H';3+3Kv3 + 3J ws,
Tygaa = H' ;4 +3Kvy + 3J wy.

Now, we consider four dimensional Finsler space with vanishing T'—tensor,
then all the scalar components T,,5.6 = 0, o, 3,7,0 = 1,2,3,4. Thus T34 =
T3334 = T3444 = 0 gives

(3.10) —(J+J)u+(H — 20 uy — 2K'vg + (H + I'wy = 0,
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(3.11) Jia+3Iug — 3wy =0,

(3.12) Jsa+Kug + 2K'vg + (2I' — H )wg = 0.
Adding (3.11), (3.12) and (3.10), we get

(3.13) (H+1+ K)ug=0.

Using (2.5) in (3.13) we get LCuy = 0. Since LC # 0, we have ug = 0.

Similarly, from T3 = Th233 = T2333 = Th3aa = T3333 = T3344 = 0, we get
ug = uq = 0. Thus uy, = 0 for a = 1,2, 3,4 which implies u; = 0.

Again Thouq = T3344 = Taaaa = 0 gives

(3.14) - (H, + I/);4 —QK,U4 + (H — 2K)U4 — (J + J')w4 =0,
(3.15) I/;4 +2K/’U,4 + Tvg + (J — 2J')w4 =0,
(3.16) HI;4 +3Kv4 + 3J’w4 =0.

Adding (3.14), (3.15) and (3.16) we get (H + I+ K)vy = 0 which implies vq = 0.

Similarly, Thoos = Too34 = T334 = Togas = T3334 = T3444 = 0 give vy =
0 = v3. Therefore v, = 0 for a = 1,2,3,4 which implies v; = 0. Putting
U = O,U3 = 0,’1)2 = 0, V3 = O,U4 = 0,’1)4 = 0 in T2222 = 0,T2223 = 0 and
Too04 = 0 we get, H;3=10, H;3=0 and H;4y=0. Thus H;,= 0, for a = 2,3, 4.
Putting Ug = 0, Vo = 0 in T2234 = 0, us = 07 V3 = 0 in T2344 = 0 and Uy = 0,
vg = 0 in Thyqq = 0, we get

(3.17) K/;Q +(I — K)wg =0, K/;g +(I — K)wg, K;y +2K wy = 0.
We consider two cases.

Case 1. If [ # K and K’;,= 0 for o = 2,3, 4, then from (3..17) we get w, = 0
for a = 2, 3, 41ie. w; = 0. Hence T,g,s = 0 gives Hyo = ;o= J;0 = Kio=
H;=1;,=J;,=0for a=2,3,4. Since the main scalars H,I,J,K,H' I, .J
are positively homogeneous of degree one in 3, we have H;o = I;q = Jin =
K;o= H';u=I';u= J;a= 0 for « = 1. Hence the main scalars H,I,J, K,
H'.I',J" does not depend on y'. Therefore we have the following:

Theorem (3.1). If main scalar K’ is independent of directional arguments
y', and I # K, the T—condition for a non-Riemannian Finsler space of four
dimension is equivalent to the fact that the v—connection vectors u;, v;, and w;
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vanishes identically and the remaining seven main scalars H,I,J, K, H',I',.J'
are also functions of position alone.

Case 2. If I = K then equation (3.17) gives K';, = 0 for a = 2,3,4. Also
u; = 0, v; = 0 gives H;o, = 0. Putting these values in Tho33 = 0, Tho4q = 0,
To333 = 0, Togaa = 0, Togzq = 0, and Tog4q = 0, we get

(317) I —2K'w2 =0, K;o —|—2K'w2 =0
I3 —2K’w3 =0, K3 +2K’w3 =0,
Iy —2K'wy =0, Ky +2K'wy = 0.

These equations gives I;, +K;o= 0 for a = 2,3,4. Since I = K, we have [,
= K;o= 0 for a = 2,3,4. Putting these values in (3.17) we get wy = w3 =
wy = 0, provided K’ # 0. This implies that w; = 0. Hence Tngys = 0 gives
H.=In=Jw=Kiw=H; =1, =J:;,=0for a =2,3,4. Since the main
scalars H,I,J, K, H',I',J' are positively homogeneous of degree one in y*, we
have H;, = I;o= J;o = K;o= H';=1';, = J';o= 0 for a = 1. Hence all
the eight main scalars H,I,J, K, H',I',J', K’ are functions of position alone.
Therefore we have the following:

Theorem (3.2). If main scalars I and K are equal, and K’ # 0, the T'—condition
for a non-Riemannian Finsler space of four dimensions is equivalent to the fact
that the v—connection vectors wu;, v;, and w; vanishes identically and all the
main scalars H,I,J, K, H',I', J', K’ are functions of position alone.

Remark (3.1). It should be remarked here that the conditions I # K and
K';, = 0 in theorem (3.1) and I = K and K’ # 0 in theorem (3.2) is only
necessary for a Finsler space satisfying T'—condition to vanish v—connection
vectors and all the main scalars to be functions of position alone. On the other
hand if all the v—connection vectors vanish and all the main scalars are functions
of position alone, then a four dimensional Finsler space satisfies T'—condition.

Theorem (3.3)[1]. The tensor Tj;j; vanishes if and only if the tensor P}kl be
invariant under any conformal transformation.

In view of theorems (3.2) and (3.3) we have the following:

Theorem (3.4). If v—connection vectors u;, v;, and w; of a four dimensional
Finsler space M* vanishes, and all the main scalars are functions of position
alone, then (v) hv—curvature tensor P;kl of M* is conformally invariant under
any conformal transformation.
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Theorem (3.5)[1]. A Landsberg space remains to be a Landsberg space by
any conformal transformation if and only if Tj;;, = 0.

In view of theorems (3.5) and (3.2) we have the following:

Theorem (3.6). If v—connection vectors w;, v;, and w; of a four dimensional
Finsler space M* vanishes, and all the main scalars are functions of position
alone, then a Landsberg space remains to be a Landsberg space under any
conformal transformation.

4. Landsberg angle in four dimensional Finsler space

In this section we consider Landsberg angle in four dimensional Finsler
space M*. The Landsberg angle #, ¢ of three dimensional Finsler space with
v—connection vector v; = 0 is given by [9]

(4.1) 0 = L™ m;, 0,0 = L7 n,.

The class of four dimensional Finsler spaces with v-connection vectors
u; = v; = w; = 0 is interested from the view point that we can generalize
the Landsberg angle 6, ¢ of three dimensional Finsler space to four dimensions
as follows:

We consider the differential equations

(4.2) 819 = Lilmi, 8l¢ = Lilni, aﬂ/J = Lilpi,

Proposition (4.1). If the v—connection vectors w;, v; and w; of a four dimen-
sional Finsler space M* vanish identically, there exist three scalar fields 6, ¢ and
1 satisfying the differential equation (4.2).

These scalars 6, ¢, ¥ are defined up to additional functions of position
only and may be called the Landsberg angles of such a special four dimensional
Finsler space.

On account of (2.9) with u; = v; = w; = 0 it is easy to show that these
equations are completely integrable. The L, 0, ¢ and v are regarded as polar
coordinates of a kind of the tangent space and

oyt oyt oy’

oL~ 7 R ¥ S W e

(4.3)

are immediately derived.
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Let g be the determinant of the fundamental tensor g;; then from 0 =
29 C; = 29 C'my, it follows that

dg dg

_ g _

6=

dg

0, and % =0.

Proposition (4.2). The determinant g of the fundamental tensor g;; of a four
dimensional non-Riemannian Finsler space with the vanishing v—connection
vectors u;, v;, w; is of the form g = te20(LC) where t and LC are the functions of
position alone. LC is the unified main scalar and 6 is the first Landsberg angle.
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