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Abstract

The purpose of the present paper is to consider the four dimensional Finsler
spaces with Thijk = 0 and generalize the idea of Landsberg angle to four dimen-
sional Finsler spaces. The properties of a Finsler space satisfying T−condition
has been studied in a three dimensional Finsler space by various authors ([2],
[3], [4], [8], [10]). But from the relativistic point of view the importance of four
dimensional Finsler space is not negligible. In relativity the fourth coordinate is
taken as time, from this point of view we discuss the properties of four dimen-
sional Finsler space satisfying T−condition. The results which are reducible to
the three dimensional case also.

1. Introduction

H. Kawaguchi and M. Matsumoto have introduced the T-tensor in a Finsler
space independently ([6], [5]). It is indicatrised tensor and studied by several
authors ([1], [2], [3], [4], [8]). The vanishing of T−tensor is called T−condition.
Hashiguchi [1] noticed the importance of T−tensor from the stand point of
Landsberg spaces. It has been proved by him that a necessary and sufficient
condition for a Landsberg space to be conformally invariant is that it satisfy
T−condition.

The Landsberg angle θ was introduced by Landsberg in 1908. The coordi-
nate system (L, θ) in a tangent plane Mx is regarded as a generalization of the
polar coordinate system (r, θ) of a Euclidean plane. M. Matsumoto [9] gave the
idea of Landsberg angle in two and three dimensional Finsler space.

In this paper we have considered four dimensional Finsler space with Thijk =
0, and generalized the idea of Landsberg angle to four dimensional Finsler spaces.

https://doi.org/10.56424/jts.v4i01.10427
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Let M4 be four dimensional Finsler space endowed with a fundamental
function L = L(x, y), where x = (xi) is a point and y = (yi) is a supporting
element of M4. The metric tensor gij and (h) hv-torsion tensor Cijk of M4 is
given by

(1.1) gij =
1
2

∂2L2

∂yi∂yj
, Cijk =

1
2

∂3L2

∂yi∂yj∂yk
.

If [gij ] denote the inverse matrix of [gij ] then, we have gijg
jk = δk

i . The T−tensor
Tijkl is defined as

(1.2) Thijk = LChij |k + lhCijk + liChjk + ljChik + lkChij ,

where li = L−1 giry
r and ‘|’ denotes the v−covariant derivative with respect

to Cartan connection CΓ of M4. For instance the v−covariant derivative of a
tensor field T i

j (x, y) is defined by

(1.3) T i
j

∣∣∣k = ∂̇kT
i
j + T r

j Ci
rk − T i

rC
r
jk ,

where ∂̇k = ∂
∂yi , ∂k = ∂

∂xk .

2. Scalar components in Miron frame

Let M4 be a four dimensional Finsler space with the fundamental function
L(x, y). The frame {ei

α)}, α = 1, 2, 3, 4 is called the Miron’s frame of M4, where
ei
1) = li = yi/L is the normalized supporting element, ei

2) = mi = Ci/C is the

normalized torsion vector, ei
3) = ni, ei

4) = pi are constructed by gije
i
α)e

j
β) = δαβ.

Here C is the length of torsion vector Ci = Cijkg
jk. The Greek letters α, β, γ, δ

varies from 1 to 4. Summation convention is applied for both the Greek and
Latin indices.

In Miron’s frame an arbitrary tensor field can be expressed by scalar com-
ponents along the unit vectors ei

α), α = 1, 2, 3, 4. For instance, let T i
j be a

tensor field of type (1, 1), then the scalar components Tαβ of T i
j are defined by

Tαβ = T i
jeα)ie

j
β)

and the components T i
j are expressed as T i

j = Tαβei
α)eβ)j . From

the equation gije
i
α) ej

β) = δαβ , we have

(2.1) gij = lilj + mimj + ninj + pipj .
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The C-tensor Cijk = 1
2

∂gjk

∂yi satisfies Cijkl
k = 0 and is symmetric in i, j, k there-

fore if Cαβγ be the scalar components of LCijk, i.e. if

(2.2) LCijk = Cαβγe
α)ieβ)jeγ)k,

then, we have [10]

(2.3) LCijk = C222mimjmk + C333ninjnk + C444pipjpk + C233π(ijk)(minjnk)

+C244π(ijk)(mipjpk) + C344π(ijk)(nipjpk) + C322π(ijk)(mimjnk)

+C433π(ijk)(ninjpk) + C422π(ijk)(mimjpk) + C234π(ijk){mi(njpk + nkpj)},
where π(ijk) denote the cyclic permutation of indices i, j, k and summation. For
instance

π(ijk)(AiBjCk) = AiBjCk + BiCjAk + CiAjBk.

Contracting (2.2) with gjk, we get LCmi = Cαββeα)i. Thus if we put

(2.4) C222 = H, C233 = I, C244 = K, C333 = J,

C344 = J ′, C444 = H ′, C433 = I ′, C234 = K ′,

then we have

(2.5) H + I + K = LC, C322 = − (J + J ′), C422 = − (H ′ + I ′).

The eight scalars H, I, J,K, H ′, I ′, J ′,K ′ are called the main scalars of a four
dimensional Finsler space.

The v−covariant derivative of the frame field e
α)i is given by

(2.6) Le
α)i |j = Vα)βγe

β)i
e

γ)j
,

where Vα)βγ , γ being fixed are given by

(2.7) Vα)βγ =




0 δ2γ δ3γ δ4γ

δ2γ 0 uγ vγ

δ3γ −uγ 0 wγ

δ4γ −vγ −wγ 0


 and

V2)3γ = −V3)2γ = uγ

V2)4γ = −V4)2γ = vγ

V3)4γ = −V4)3γ = wγ

Thus, in a four dimensional Finsler space there exists three v−connection vectors
ui, vi, wi whose scalar components with respect to the frame {ei

α)} are u, v, w,
i.e.

(2.8) ui = ueγ)i, vi = veγ)i wi = weγ)i.
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In view of equations (2.8), the equation (2.6) may be explicitly written as

(2.9)
Lli|j = mimj + ninj + pipj Lmi|j = − limj + niuj + pivj ,

Lni|j = −linj −miuj + piwj , Lpi|j = − lipj −mivj − niwj .

Since mi, ni, pi are homogeneous functions of degree zero in yi, we have

Lmi|jlj = Lni|jlj = Lpi|jlj = 0,

which in view of equations (2.8) and (2.9) gives u1 = 0, v1 = 0, w1 = 0. There-
fore

Lemma (2.1). The first scalar components u1, v1, w1 of the v−connection
vectors ui, vi, wi vanishes identically, that is ui, vi, wi are orthogonal to li.

3. Four-dimensional Finsler space satisfying the T-condition

The scalar derivative of the adopted components Tαβ of T i
j is defined as [9]

(3.1) Tαβ;γ = L(∂k Tαβ)eγ)
k + TµβVµ)αγ + TαµVµ)βγ ,

Thus Tαβ;γ are adopted components of LT i
j |k , i.e.

(3.2) LT i
j |k = T ; ei

α)eβ)jeγ)k.

If the tensor field T i
j is positively homogeneous of degree zero in yi, Tαβ is also

positively homogeneous of degree zero in yi, so equation (3.1) gives

Tαβ;1 = TµβVµ)α1 + TαµVµ)β1,

which in view of (2.7) and lemma (2.1) gives Tαβ;1 = 0. Therefore we have the
following:

Proposition (3.1). If the tensor field T i
j is positively homogeneous of degree

zero in yi, then Tαβ;1 = 0.

Now, let T i
j be positively homogenous of degree r in yi and Tαβ be the scalar

components of L−rT i
j , then L(L−rT i

j ) |k = Tαβ;γei
α)eβ)jeγ)k = L−r+1T i

j |k − rL−r

T i
je1)k, which implies

(3.3) L−r+1T i
j |k = (Tαβ;γ + rTαβδ1γ)ei

α)eβ)jeγ)k.

Hence we have
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Proposition (3.2). If the tensor field T i
j is positively homogeneous of degree

r in yi and Tαβ be the scalar components of L−rT i
j , then the scalar components

of L−r+1T i
j |k are given by Tαβ;γ + rTαβδ1γ .

Definition (3.1). The Finsler space M4 is said to satisfy the T-condition if
the T−tensor Thijk of M4 vanishes identically.

The C-tensor Cijk is positively homogeneous of degree −1 in yi, therefore
from proposition (3.2) the scalar components of L2Cijk |h are given by

(3.4) L2Cijk |h = (Cαβγ;δ − Cαβγδ1δ)eα)ieβ)jeγ)keδ)h,

And the scalar components Tαβγδ of LThijk are given by

(3.5) Tαβγδ = Cαβγ;δ + Cβγδδ1α + Cαγδδ1β + Cαβδδ1γ + Cαβγδ1δ.

We know that the T−tensor is indicatrized tensor and is symmetric in all indices,
therefore Thijk lk = 0 i.e. Tαβγ1 = 0. Therefore, the surviving scalar components
of LThijk are given by

(3.6) Tαβγδ = Cαβγ;δ α, β, γ, δ = 2, 3, 4.

Since Chij |k = Chik |j , from (3.4) we have

(3.7) Cαβγ;δ − Cαβγδ1δ = Cαβδ;γ − Cαβδδ1γ .

In case of (γ, δ) = (1, 2), (1, 3) and (1, 4) the above relation is trivial and when
(γ, δ) = (2, 3), (2, 4), (3, 4), we get

(3.8) Cαβ3;2 = Cαβ2;3, Cαβ4;2 = Cαβ2;4, Cαβ4;3 = Cαβ3;4.

These equations are trivial for α, β = 1. Consequently, we put (α, β) = (2, 2),
(2, 3), (2, 4), (3, 3), (3.4), (4, 4) in equation (3.8). For instance C223;2 = C222;3

etc. In view of (2.4) and (2.7), this equation is explicitly written as

(∂̇iC223)ei
2) + 2Cµ23Vµ)22 + Cµ22Vµ)32 = (∂̇iC222)ei

3) + 3Cµ22Vµ)23,

Or

(3.9)(a) − (J + J ′);2 + (H − 2I) u2 − 2K ′v2 + (H ′ + I ′) w2

= H;3 + 3(J + J ′)u3 + 3(H ′ + I ′) v3.

Similarly, from (2.4), (2.7) and (3.8), we get

(3.9)(b) I;2−(3J + 2J ′)u2 − I ′v2 − 2K ′w2
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= − (J + J ′);3 + (H − 2I) u3 − 2K ′v3 + (H ′ + I ′) w3,

(c) K ′;2−(H ′ + 2I ′) u2 − (J + 2J ′) v2 + (I −K) w2

= (H ′ + I ′);3−2K ′u3 + (H − 2K) v3 − (J + J ′) w3,

= (J + J ′);4 +(H − 2I) u4 − 2K ′ v4 + (H ′ + I ′) w4,

(d) J ;2 +3Iu2 − 3I ′w2 = I;3−(3J + 2J ′) u3 − I ′v3 − 2K ′w3,

(e) I ′;2 +2K ′u2 + Iv2 + (J − 2J ′)w2

= K ′;3−(H ′ + 2I ′)u3 − (J + 2J ′)v3 + (I −K)w3

= I;4−(3J + 2J ′)u4 − I ′v4 − 2K ′w4,

(f) J ′;2 +Ku2+2K ′v2+(2I ′−H ′)w2 = K;3−J ′u3−(3H ′+2I ′)v3+2K ′w3

= K ′;4−(H ′ + 2I ′)u4 − (J + 2J ′)v4 + (I −K)w4,

(g) − (H ′ + I ′);2−2K ′u2 + (H − 2K)v2 − (J + J ′)w2

= H;4 +3(J + J ′)u4 + 3(H ′ + I ′)v4,

(h) K;2−J ′u2 − (3H ′ + 2I ′)v2 + 2K ′w2

= − (H ′ + I ′);4−2K ′u4 + (H − 2K)v4 − (J + J ′)w4,

(i) H ′;2 +3Kv2 + 3J ′w2 = K;4−J ′u4 − (3H ′ + 2I ′)v4 + 2K ′w4,

(j) I ′;3 +2K ′u3 + Iv3 + (J − 2J ′)w3 = J ;4 +3Iu4 − 3I ′w4,

(k) J ′;3 +Ku3 +2K ′v3 +(2I ′−H ′)w3 = I ′;4 +2K ′u4 + Iv4 +(J − 2J ′)w4,

(l) H ′;3 +3Kv3 + 3J ′w3 = J ′;4 +Ku4 + 2K ′v4 + (2I ′ −H ′)w4.

Since Thijk is symmetric in all indices and T1βγδ = 0, β, γ, δ = 2, 3, 4,
therefore, the surviving independent components are fifteen and they are

T2222, T2223, T2224, T2234, T2244, T2233,

T2333, T2334, T2344, T2444, T3333, T3334,

T3344, T3444, T4444.

In view of (2.4), (2.7), (3.6) and (3.9) these scalar components are explicitly
written as

T2222 = H;2 +3(J + J ′)u2 + 3(H ′ + I ′)v2,

T2223 = H;3 +3(J + J ′)u3 + 3(H ′ + I ′)v3
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= − (J + J ′);2 +(H − 2I)u2 − 2K ′v2 + (H ′ + I ′)w2,

T2224 = H;4 +3(J + J ′)u4 + 3(H ′ + I ′)v4

= − (H ′ + I ′);2−2K ′u2 + (H − 2K)v2 − (J + J ′)w2,

T2234 = − (J + J ′);4 +(H − 2I)u4 − 2K ′v4 + (H ′ + I ′)w4

= − (H ′ + I ′);3−2K ′u3 + (H − 2K)v3 − (J + J ′)w3

= K ′;2−(H ′ + 2I ′)u2 − (J + 2J ′)v2 + (I −K)w2,

T2244 = − (H ′ + I ′);4−2K ′u4 + (H − 2K)v4 − (J + J ′)w4

= K;2−J ′u2 − (3H ′ + 2I ′)v2 + 2K ′w2,

T2233 = − (J + J ′);3 +(H − 2I)u3 − 2K ′v3 + (H ′ + I ′)w3

= I;2−(3J + 2J ′)u2 − I ′v2 − 2K ′w2,

T2333 = I;3−(3J + 2J ′)u3 − I ′v3 − 2K ′w3 = J ;2 +3Iu2 − 3I ′w2,

T2334 = I;4−(3J + 2J ′)u4 − I ′v4 − 2K ′w4

= K ′;3−(H ′ + 2I ′)u3 − (J + 2J ′)v3 + (I −K)w3

= I ′;2 +2K ′u2 + Iv2 + (J − 2J ′)w2,

T2344 = K ′;4−(H ′ + 2I ′)u4 − (J + 2J ′)v4 + (I −K)w4

= K;3−J ′u3 − (3H ′ + 2I ′)v3 + 2K ′w3

= J ′;2 +Ku2 + 2K ′v2 + (2I ′ −H ′)w2,

T2444 = K;4−J ′u4 − (3H ′ + 2I ′)v4 + 2K ′w4 = H ′;2 +3Kv2 + 3J ′w2,

T3333 = J ;3 +3Iu3 − 3I ′w3,

T3334 = J ;4 +3Iu4 − 3I ′w4 = I ′;3 +2K ′u3 + Iv3 + (J − 2J ′)w3,

T3344 = I ′;4 +2K ′u4+Iv4+(J−2J ′)w4 = J ′;3 +Ku3+2K ′v3+(2I ′−H ′)w3,

T3444 = J ′;4 +Ku4 + 2K ′v4 + (2I ′ −H ′)w4 = H ′;3 +3Kv3 + 3J ′w3,

T4444 = H ′;4 +3Kv4 + 3J ′w4.

Now, we consider four dimensional Finsler space with vanishing T−tensor,
then all the scalar components Tαβγδ = 0, α, β, γ, δ = 1, 2, 3, 4. Thus T2234 =
T3334 = T3444 = 0 gives

(3.10) − (J + J ′);4 +(H − 2I)u4 − 2K ′v4 + (H ′ + I ′)w4 = 0,
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(3.11) J ;4 +3Iu4 − 3I ′w4 = 0,

(3.12) J ′;4 +Ku4 + 2K ′v4 + (2I ′ −H ′)w4 = 0.

Adding (3.11), (3.12) and (3.10), we get

(3.13) (H + I + K)u4 = 0.

Using (2.5) in (3.13) we get LCu4 = 0. Since LC 6= 0, we have u4 = 0.

Similarly, from T2223 = T2233 = T2333 = T2344 = T3333 = T3344 = 0, we get
u3 = u4 = 0. Thus uα = 0 for α = 1, 2, 3, 4 which implies ui = 0.

Again T2244 = T3344 = T4444 = 0 gives

(3.14) − (H ′ + I ′);4−2K ′u4 + (H − 2K)v4 − (J + J ′)w4 = 0,

(3.15) I ′;4 +2K ′u4 + Iv4 + (J − 2J ′)w4 = 0,

(3.16) H ′;4 +3Kv4 + 3J ′w4 = 0.

Adding (3.14), (3.15) and (3.16) we get (H +I +K)v4 = 0 which implies v4 = 0.

Similarly, T2224 = T2234 = T2334 = T2444 = T3334 = T3444 = 0 give v2 =
0 = v3. Therefore vα = 0 for α = 1, 2, 3, 4 which implies vi = 0. Putting
u2 = 0, u3 = 0, v2 = 0, v3 = 0, u4 = 0, v4 = 0 in T2222 = 0, T2223 = 0 and
T2224 = 0 we get, H;2 = 0, H;3 = 0 and H;4 = 0. Thus H;α = 0, for α = 2, 3, 4.
Putting u2 = 0, v2 = 0 in T2234 = 0, u3 = 0, v3 = 0 in T2344 = 0 and u4 = 0,
v4 = 0 in T2444 = 0, we get

(3.17) K ′;2 +(I −K)w2 = 0, K ′;3 +(I −K)w3, K;4 +2K ′w4 = 0.

We consider two cases.

Case 1. If I 6= K and K ′;α = 0 for α = 2, 3, 4, then from (3..17) we get wα = 0
for α = 2, 3, 4 i.e. wi = 0. Hence Tαβγδ = 0 gives H;α = I;α = J ;α = K;α =
H ′;α = I ′;α = J ′;α = 0 for α = 2, 3, 4. Since the main scalars H, I, J,K, H ′, I ′, J ′

are positively homogeneous of degree one in yi, we have H;α = I;α = J ;α =
K;α = H ′;α = I ′;α = J ′;α = 0 for α = 1. Hence the main scalars H, I, J,K,

H ′, I ′, J ′ does not depend on yi. Therefore we have the following:

Theorem (3.1). If main scalar K ′ is independent of directional arguments
yi, and I 6= K, the T−condition for a non-Riemannian Finsler space of four
dimension is equivalent to the fact that the v−connection vectors ui, vi, and wi
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vanishes identically and the remaining seven main scalars H, I, J,K, H ′, I ′, J ′

are also functions of position alone.

Case 2. If I = K then equation (3.17) gives K ′;α = 0 for α = 2, 3, 4. Also
ui = 0, vi = 0 gives H;α = 0. Putting these values in T2233 = 0, T2244 = 0,
T2333 = 0, T2344 = 0, T2334 = 0, and T2444 = 0, we get

(3.17) I;2−2K ′w2 = 0, K;2 +2K ′w2 = 0

I;3−2K ′w3 = 0, K;3 +2K ′w3 = 0,

I;4−2K ′w4 = 0, K;4 +2K ′w4 = 0.

These equations gives I;α +K;α = 0 for α = 2, 3, 4. Since I = K, we have I;α
= K;α = 0 for α = 2, 3, 4. Putting these values in (3.17) we get w2 = w3 =
w4 = 0, provided K ′ 6= 0. This implies that wi = 0. Hence Tαβγδ = 0 gives
H;α = I;α = J ;α = K;α = H ′;α = I ′;α = J ′;α = 0 for α = 2, 3, 4. Since the main
scalars H, I, J,K, H ′, I ′, J ′ are positively homogeneous of degree one in yi, we
have H;α = I;α = J ;α = K;α = H ′;α = I ′;α = J ′;α = 0 for α = 1. Hence all
the eight main scalars H, I, J,K, H ′, I ′, J ′,K ′ are functions of position alone.
Therefore we have the following:

Theorem (3.2). If main scalars I and K are equal, and K ′ 6= 0, the T−condition
for a non-Riemannian Finsler space of four dimensions is equivalent to the fact
that the v−connection vectors ui, vi, and wi vanishes identically and all the
main scalars H, I, J,K, H ′, I ′, J ′,K ′ are functions of position alone.

Remark (3.1). It should be remarked here that the conditions I 6= K and
K ′;α = 0 in theorem (3.1) and I = K and K ′ 6= 0 in theorem (3.2) is only
necessary for a Finsler space satisfying T−condition to vanish v−connection
vectors and all the main scalars to be functions of position alone. On the other
hand if all the v−connection vectors vanish and all the main scalars are functions
of position alone, then a four dimensional Finsler space satisfies T−condition.

Theorem (3.3)[1]. The tensor Thijk vanishes if and only if the tensor P i
j kl be

invariant under any conformal transformation.

In view of theorems (3.2) and (3.3) we have the following:

Theorem (3.4). If v−connection vectors ui, vi, and wi of a four dimensional
Finsler space M4 vanishes, and all the main scalars are functions of position
alone, then (v) hv−curvature tensor P i

j kl of M4 is conformally invariant under
any conformal transformation.
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Theorem (3.5)[1]. A Landsberg space remains to be a Landsberg space by
any conformal transformation if and only if Thijk = 0.

In view of theorems (3.5) and (3.2) we have the following:

Theorem (3.6). If v−connection vectors ui, vi, and wi of a four dimensional
Finsler space M4 vanishes, and all the main scalars are functions of position
alone, then a Landsberg space remains to be a Landsberg space under any
conformal transformation.

4. Landsberg angle in four dimensional Finsler space

In this section we consider Landsberg angle in four dimensional Finsler
space M4. The Landsberg angle θ, φ of three dimensional Finsler space with
v−connection vector vi = 0 is given by [9]

(4.1) ∂̇iθ = L−1mi, ∂̇iφ = L−1ni.

The class of four dimensional Finsler spaces with v-connection vectors
ui = vi = wi = 0 is interested from the view point that we can generalize
the Landsberg angle θ, φ of three dimensional Finsler space to four dimensions
as follows:

We consider the differential equations

(4.2) ∂̇iθ = L−1mi, ∂̇iφ = L−1ni, ∂̇iψ = L−1pi,

Proposition (4.1). If the v−connection vectors ui, vi and wi of a four dimen-
sional Finsler space M4 vanish identically, there exist three scalar fields θ, φ and
ψ satisfying the differential equation (4.2).

These scalars θ, φ, ψ are defined up to additional functions of position
only and may be called the Landsberg angles of such a special four dimensional
Finsler space.

On account of (2.9) with ui = vi = wi = 0 it is easy to show that these
equations are completely integrable. The L, θ, φ and ψ are regarded as polar
coordinates of a kind of the tangent space and

(4.3)
∂yi

∂L
= li,

∂yi

∂θ
= Lmi,

∂yi

∂φ
= Lni,

∂yi

∂ψ
= Lpi,

are immediately derived.
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Let g be the determinant of the fundamental tensor gij then from ∂̇i =
2g Ci = 2g Cmi, it follows that

∂g

∂L
= 0,

∂g

∂θ
= 2(LC)g,

∂g

∂φ
= 0, and

∂g

∂ψ
= 0.

Proposition (4.2). The determinant g of the fundamental tensor gij of a four
dimensional non-Riemannian Finsler space with the vanishing v−connection
vectors ui, vi, wi is of the form g = te2θ(LC) where t and LC are the functions of
position alone. LC is the unified main scalar and θ is the first Landsberg angle.
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