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Abstract

In the present paper we have obtained the necessary and sufficient condi-
tion for a extended generalized 7-¢-recurrent Kenmotsu manifold to be a gen-
eralized ricci-recurrent manifold. Furthermore, we have studied 7-¢-symmetric
Kenmotsu manifold, 7--flat Kenmotsu manifold and a Kenmotsu manifold sat-
isfying 7(X,Y) - R = 0.
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Introduction

As is well known, symmetric spaces plays an important role in differential
geometry. The work on local symmetric Riemannian manifolds began by Car-
tan [2]. This property of a Riemannian manifold has been weakened by many
authors [ [22], [18], [3], [7], [19], [16], [17] ] in several directions such as recur-
rent manifolds, semi-symmetric manifolds, pseudo-symmetric manifolds, weakly
symmetric manifolds. Further, ¢-recurrent, generalized ¢-recurrent, extended
generalized ¢-recurrent manifolds were introduced and studied by many geome-
ters.

In 1979 Dubey [8] introduced the notion of generalized recurrent manifold
and then such a manifold was studied by De and Guha [6]. The manifold M,
n > 2, is called generalized recurrent [8] if its curvature tensor R of type (1,3)
satisfies the condition VR = A ® R+ B ® GG, where G is a tensor of type (1,
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3) given by G(X,Y)Z = ¢g(Y,Z)X — g(X, Z)Y, A and B are nowhere vanishing
unique 1-forms, defined by A(:) = g(-,p1) and B(:) = g(-, p2), respectively for
all vector fields X, Y, Ze€ x(M), where x(M) is the Lie algebra of all smooth
vector fields on M and V is the Levi-Civita connection.

In 1952 Patterson [15] introduced Ricci-recurrent manifold. According to
Patterson [15] manifold (M, g) of dimension n, is called a Ricci-recurrent if
(VxS (Y, Z) = A(X)S(Y, Z), for some 1-form A. Ricci-recurrent manifold has
been studied by many authors. An extended version of ricci-recurrent manifold
is the generalized Ricci-recurrent manifold. A non-flat Riemannian manifold
called generalized Ricci-recurrent [5] if its Ricci tensor S of type (0, 2) satisfies
the condition VS = A® S + B ® g, where A and B are two non zero 1-forms.
In particular, if B = 0, then the manifold reduces to Ricci-recurrent manifold.

Our work is structured as follows: The first section is a very brief review of
Kenmotsu manifold and a 7-curvature tensor. The next section is devoted to the
study of 7-¢-symmetric kenmotsu manifold for two cases 7 = 0 and 7 # 0. For
7 = 0, the Kenmotsu manifold is 7-¢-symmetric provided either r is a constant
or a7 = 0, this is obviously true if the manifold is W; flat(i = 0,---9) or W7
flat (¢ = 0,1) or conhormonically flat or projectively flat or M-projectively
flat. For 7 # 0 case it is shown that any two conditions of (i) M?**! is ¢-7-
symmetric, (ii) M2+ is ¢-symmetric, (iii) either a; = 0 or r is constant, are
true then the remaining statement holds. In Section 3, we have proved that
the extended generalized T-¢-recurrent Kenmotsu manifold is generalized Ricci-
recurrent manifold with ag 4+ 2na; + as + ag # 0 and viceversa. Finally, it is
shown that 7-£-flat Kenmotsu manifold is a n-Finstein manifold provided a4 # 0
and has a scalar curvature r if a4 = 0 and a7 # 0. Moreover we have proved
that Kenmotsu manifold satisfying 7(X,Y’) - R = 0 is a n-Einstein manifold.

1. Preliminaries

Kenmotsu manifold has been introduced and studied by K. Kenmotsu in
1972 [9]. They set up one of the three classes of almost contact metric manifolds
whose automorphism group attains the maximum dimension [20]. For such a
manifold, the sectional curvature of a plane sections containing £ is a constant,
say c. It has been studied as homogeneous normal contact Riemannian mani-
folds if ¢ > 0. Global Riemannian products of a line or a circle with a Kahler
manifold of constant holomorphic sectional curvature with ¢ = 0, and a warped
product space R x ¢ Cp, if ¢ < 0. Kenmotsu [9] characterized the differential
geometric properties of manifold for ¢ < 0 and the structure so obtained is now
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known as Kenmotsu structure. A Kenmotsu structure is not Sasakian. Man-
ifolds of ¢ > 0 are characterized by some tensor equations, it has a Sasakian
structure. Manifolds with ¢ = 0 are characterized by a tensorial relation admit-
ting a cosymplectic structure. Kenmotsu obtained some tensorial equations to
characterize manifolds of ¢ < 0.

An almost contact metric manifold is a differentiable manifold M?"+1 en-
dowed with a structure (¢, &, 7, g) given by a tensor field ¢ of type (1,1), a vector
field &, a 1-form 7 satisfying

¢* =—I+no& 1) =1, (1.1)

and a Riemannian metric g such that g(¢X, ¢Y) = g(X,Y) —n(X)n(Y) for any
vector fields X and Y. The fundamental 2-form ® is defined by ®(X,Y) =
9(X, @Y )for any vector fields X and Y. It is well known that contact metric
manifolds are almost contact metric manifolds such that ® = dn.

Thus a manifold M?"*+! equipped with this structure is called an almost
contact manifold and is denoted by (M?"*1 ¢, ¢ n). If g is a Riemannian metric
on an almost contact manifold M?"*! such that,

(Vx@)Y = —n(Y)pX — g(X, ¢Y)E, (1.2)
Vx§ = (X = n(X)§), (1.3)

holds, then (M?"+1 ¢, & n) is called Kenmotsu manifold. Here V denotes the
operator of covariant differentiation with respect to g.

In a Kenmotsu manifold M2+, the following relations holds;

(VwR)(X,Y)E = g(W, X)Y —g(W,Y)X — R(X,Y)W,
S(@X,9Y) = S(X,Y) + 2nn(X)n(Y). (

n(R(X,Y)Z) = [g(X, Z)n(Y) = g(Y, Z)n(X)], (1.4)

(a) R(§, X)Y = [n(Y)X — g(X,Y)¢], (b) R(X,Y){ = [n(X)Y —n(Y)X],(L5)
(a) S(X,Y) = —2ng(X,Y), (b) S(X,&) = —2ny(X), (c) QX = —2nX, (1.6)
(a) S(§,€) = —2n, (b) Q¢ = —2n¢, (1.7)
(1.8)

1.9)

In a (2n + 1)-dimensional Riemannian manifold M?" 1 the 7-curvature tensor
[10] is given by
7(X,Y)Z = apR(X,Y)Z + a1S(Y, Z)X + azS(X, 2)Y + a3S(X,Y)Z
+aag(Y, 2)QX +as9(X, Z)QY + asg(X,Y)QZ
+ar{g(Y,Z)X —g(X,Z)Y}, (1.10)
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where R, S, () and r are the curvature tensor, the Ricci tensor, the Ricci operator
and the scalar curvature respectively. In particular, 7-curvature tensor is reduces
to quasi-conformal curvature tensor C*, conformal curvature tensor C, conhar-
monic curvature tensor L, concircular curvature tensor V, pseudo-projective
curvature tensor P*, projective curvature tensor P, M-projective curvature ten-
sor, Wj-curvature tensors (i = 0,---,9) and Wi-curvature tensors (7 =0,1), by
assigning particular values to a}s (¢ = 0,1,---,7) in the equation (1.10).

2. r7-¢p-symmetric Kenmotsu manifold

Definition 2.1. A Kenmotsu manifold M?"*! is said to be ¢-symmetric [12]
if the condition ¢?((VyR)(X,Y)Z) = 0 holds, for all vector fields X,Y,Z €

X(M).
Taking 7 = 0 in (1.10) and using (1.6), we get
—aoR(X,Y)Z = —2n(a1 + a4)g9(Y, Z) X —2n(az + a5)9(X, 2)Y
—2n(az + a6)g9(X,Y)Z + arr{g(Y,Z2)X —g(X, Z2)Y}.

On covariant differentiation of the above equation with respect to W, and
assuming that all vector fields X, Y, Z, W are orthogonal to £, one can get

—ao((VwR)(X,Y)Z) = —azdr(W)g(Y, Z)X + azdr(W)g(X, Z)Y.

ie.,

(VwR)(X,Y)2) = “Tdr(W){g(X, 2)Y —g(¥, Z)X}.
Applying ¢? on both sides of the above equation and using (1.1), we get
F(VwR)(X,Y)Z) = Ldr(W){g(X, 2)Y —g(¥, 2)X}.
Therefore we can state;

Theorem 2.1. A 7-flat Kenmotsu manifold is ¢-symmetric provided either r
is constant or a7 = 0.

From Theorem (2.1), we have the following corollary;

Corollary 2.1. A Kenmotsu manifold is ¢-symmetric if either r is constant or
manifold is W; flat (i = 0,---9) or W} flat (i = 0,1) or conhormonically flat or
projectively flat or M-projectively flat.

And if 7 # 0, then we arrive at
P (Vw)(X,Y)Z) = o*(VwR)(X,Y)Z) + %dT(W){g(K Z)X —g(X,2)Y}.



7-Curvature On Kenmotsu Manifold 107

And so we can state;

Theorem 2.2. If in a Kenmotsu manifold M?"*! any two of the following
statements hold then the remaining statement holds

(a) M2+ is ¢-r-symmetric.

(b) M2+ is ¢-symmetric.

(c) Either a; = 0 or r is constant.

3. Extended generalized 7-¢- recurrent Kenmotsu manifold

Definition 3.1. A Kenmotsu manifold is said to be a extended generalized 7-¢-
recurrent manifold if there exists non-zero 1-forms A and B such that

#*(Vwr)(X,Y)Z) = AW)¢*(r(X,Y)Z) + BW)¢*(G(X,Y)Z),  (3.1)

for arbitrary vector fields X, Y, Z, W. If X,Y,Z, W are orthogonal to &, then
the manifold is called locally ¢-recurrent manifold. If the 1 -form A vanishes,
then the manifold reduces to ¢-symmetric manifold.

Theorem 3.1. Extended generalized 7-¢- recurrent Kenmotsu manifold M2 +1,

with ag + 2na; + a2 4+ ag # 0 is generalized Ricci-recurrent if and only if the
following relation holds:

B(W)—AW)(ag — 2n(as + a3 + a5 + ag) — arr) + ardr(W
{BOV) — A(W)(ao — 2n( )=o) agdr(W))
(ap + 2nai + ag + as)
Aa2[SW, Z) + 2ng(W, Z)[n(Y) — a3[SW,Y) + 2ng(W,Y)|n(Z)}
(ap + 2na1 + a2 + as)
+a577(Z)77((VWQ)Y) +asn(Y)n(Vw@Q)Z)
(ap + 2nar + az + as)

=0.(3.2)

Proof. By taking an account of Definition 3.2 and using (1.1), we obtain
—(Vwn)(X,Y)Z +n((Vw)(X,Y)Z2)§ = AW)[-7(X,Y)Z +1(7(X,Y)Z)¢]
+BW)[-G(X,Y)Z +n(G(X,Y)Z)¢].
9(=Vw)(X,Y)Z,U)+ n(VwT)(X,Y)Z)n(U)
= AW)[g(=7(X,Y)Z,U) +n(r(X,Y) Z)n(U)]
+BW)[-9(G(X,Y)Z,U) +n(G(X,Y)Z)n(U)].

Let {e; : i = 1,2,3,---,2n + 1} be an othonormal basis of the tangent
space at any point of the manifold. Setting X = U = ¢; in the above and taking
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summation over i, 1 < i < 2n+ 1 and using (1.10), we have

—g9((Vw1)(ei, Y)Z, ei)+ n(VwT)(ei, Y)Z)n(e:)
= AW)[~g(7(ei,Y)Z, ei) +n(7(e;, Y)Z)n(ei)]  (3.3)
+B(W)[—g(G(ei,Y)Z,ei) +n(G(ei, Y)Z)n(ei))].

Using the equations (1.3), (1.6), (1.8) and (1.10) and the symmetric prop-
erty of Ricci-tensor and the relation g((Viw R)(X,Y)Z,U) = —g((VwR)(X,Y)
U,Z), we have

(VwS)(Y, Z) =

B(W) — A(W)(ag — 2n(as + a3 + a5 + ag) — azr) + azdr(W
{B(W) — AW )( (a0i2na1+a2+a3)) ) ( )}n(Y)n(Z)
+{(2n —1)B(W) — (as + (2n — D)ay)dr(W) — AW)((2n — 1)arr

(ao + 2na; + ag + a3)
A(W)(as + as)
ap + 2nai + az + ag
asn(Z)n(VwQ)Y) + agn(Y)n(VwQ)Z)
(ap + 2na; + ag + as3)
Ha2[SW, Z) + 2ng(W, Z)In(Y) — a3[S(W,Y) 4+ 2ng(W,Y)|n(Z)}
(ap + 2nay + az + as) '

+(r +2n)aq + ao)}g

Y, 2) + [AW) + 1S(Y,2) (3.4)

—+

The above relation will reduces to VS = A*S + B*g only when the relation

(3.2) holds,
where A* = [A(W) + AW)(a5 + a)
aop + 2nay + as + as

{2n —1)B(W) — (as + (2n — 1)az)dr(W) — A(W)((2n — D)ayr
(ap + 2nay + ag + as3)

and B*=

+(r + 2n)ag + ao)}.

4. r7-¢-flat Kenmotsu manifold
Putting Y = Z = ¢ in (1.10) and taking inner product with U, we obtain
T(X7 57 67 U) = aOR(X7 57 fa U) + als(§7 g)g(Xv U) + GQS(Xv f)g(gv U)
+a3S(X, §)g(&, U) + asg(§,£)9(QX, U) + asg(X, §)g(QE, V)
+as9(X,£)g(Q8, U) 4 arr(g(£,£)9(X, U) — g(X,§)g(&,U)). (4.1)

By virtue of (1.5), (1.6) and the condition of 7-¢-flat in (4.1), we get
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0 = aon(U)n(X) — aog(X,U) + (arr — 2na1)g(X, U)
—2n(ag + az + as + ag)n(X)N(U) + a4S(X,U) — arrn(X)n(U). (4.2)
Simplifying (4.2), we get

2 —
s(x,v) = RO o )
4
2 —
a2l 0005 £00) Z00), ),

Thus we have the following theorem:;
Theorem 4.1. A 7-¢-flat Kenmotsu manifold is n-Einstein provided a4 # 0.

Now suppose a4 = 0 and a7 # 0 then from (4.2), we have
0= (ap + 2na; — arr)g(X,U) + (arr + 2n(az + as + as + ag) — ao)n(X)n(U).
Contracting the above, we get
(a2 + a3 + a5 + ag) +ap + (2n + 1)ay

r= . (4.3)
ar

Therefore,

Theorem 4.2. In a 7-¢-flat Kenmotsu manifold with a4 = 0 and a7 # 0, the
scalar curvature r is given by (4.3).

Next if a4 = 0 and a7 = 0 then (4.2) gives
0= —(2na1 + ap)g(X,U) + (ap — 2n(az + az + as + ag) )n(X)n(U),
on contraction, we have
2n(ag + a3 + as + ag + ap + (2n + 1)a;) = 0. (4.4)
Thus we can state;

Theorem 4.3. In 7-¢-flat Kenmotsu manifold with ay = 0 and a7 = 0, 2n(ag +
as + as + ag + ap + (2n+ 1)ay) = 0.

Theorem 4.4. A Kenmotsu manifold M?"*! satisfying 7(X,Y)- R =0, is an
Finstein manifold provided a; # 0.
Proof. Suppose 7(X,Y) - R = 0. Then we have
(X, Y)R(U, V)W —R(r(X, YU, V)W — R(U,7(X,Y)V)W
—R(UV)T(X, Y)W = 0. (4.5)
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Putting X = ¢ in (4.5) and then taking inner product with &, we obtain

9(r(&Y)R(U, V)W, &) — g(R(7(&,Y)U, V)W, &)
—9(R(U, 7(&,Y)V)W, &) — g(R(U,V)7(§, Y)W, €) = 0. (4.6)

By virtue of (1.4), (1.5), (1.6) and (4.6), we get

2n(ag + as + as5)g(U, Y )n(V)n(W) — 2n(az + as + as)g(V, Y )n(U)n(W)
—arS(Y,Un(V)n(W) — a1 S(Y, V)n(U)n(W)
+4n(as + ag)g(U, W)n(Y)n(V) — 4n(as + ae)g(V, W)n(Y )n(U). (4.7)

Contracting (4.7), we have

[10]
[11]
[12]

[13]

2n(ag + a4 + a5)g

S(Y,V) = - (Y.V)
2 — —4
N n{a; — (a2 + a4 + as) — 4n(as + %)U(Y)TI(V)-
ay
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