Special Vol. 8 (2014), pp.103-111 https://doi.org/10.56424/jts.v8i01.10554

au-Curvature On Kenmotsu Manifold

Venkatesha* and Vishnuvardhana. S. V.

Department of Mathematics
Kuvempu University, Shankaraghatta - 577 451,
Shimoga, Karnataka, India
e-mail: vensmath@gmail.com, svvishnuvardhana@gmail.com
(*corresponding author)
(Received: November 11, 2013)

Abstract

In the present paper we have obtained the necessary and sufficient condition for a extended generalized τ - ϕ -recurrent Kenmotsu manifold to be a generalized ricci-recurrent manifold. Furthermore, we have studied τ - ϕ -symmetric Kenmotsu manifold, τ - ξ -flat Kenmotsu manifold and a Kenmotsu manifold satisfying $\tau(X,Y) \cdot R = 0$.

Keywords and Phrases: τ -curvature tensor, τ - ϕ -symmetric Kenmotsu manifold, extended generalized τ - ϕ -recurrent Kenmotsu manifold, η -Einstein manifold, τ - ξ -flat Kenmotsu manifold.

2000 AMS Subject Classification: 53C05, 53C20, 53C50.

Introduction

As is well known, symmetric spaces plays an important role in differential geometry. The work on local symmetric Riemannian manifolds began by Cartan [2]. This property of a Riemannian manifold has been weakened by many authors [[22], [18], [3], [7], [19], [16], [17]] in several directions such as recurrent manifolds, semi-symmetric manifolds, pseudo-symmetric manifolds, weakly symmetric manifolds. Further, ϕ -recurrent, generalized ϕ -recurrent, extended generalized ϕ -recurrent manifolds were introduced and studied by many geometers.

In 1979 Dubey [8] introduced the notion of generalized recurrent manifold and then such a manifold was studied by De and Guha [6]. The manifold M, n > 2, is called generalized recurrent [8] if its curvature tensor R of type (1,3) satisfies the condition $\nabla R = A \otimes R + B \otimes G$, where G is a tensor of type (1,

3) given by G(X,Y)Z = g(Y,Z)X - g(X,Z)Y, A and B are nowhere vanishing unique 1-forms, defined by $A(\cdot) = g(\cdot, \rho_1)$ and $B(\cdot) = g(\cdot, \rho_2)$, respectively for all vector fields $X, Y, Z \in \chi(M)$, where $\chi(M)$ is the Lie algebra of all smooth vector fields on M and ∇ is the Levi-Civita connection.

In 1952 Patterson [15] introduced Ricci-recurrent manifold. According to Patterson [15] manifold (M,g) of dimension n, is called a Ricci-recurrent if $(\nabla_X S)(Y,Z) = A(X)S(Y,Z)$, for some 1-form A. Ricci-recurrent manifold has been studied by many authors. An extended version of ricci-recurrent manifold is the generalized Ricci-recurrent manifold. A non-flat Riemannian manifold called generalized Ricci-recurrent [5] if its Ricci tensor S of type (0, 2) satisfies the condition $\nabla S = A \otimes S + B \otimes g$, where A and B are two non zero 1-forms. In particular, if B = 0, then the manifold reduces to Ricci-recurrent manifold.

Our work is structured as follows: The first section is a very brief review of Kenmotsu manifold and a τ -curvature tensor. The next section is devoted to the study of τ - ϕ -symmetric kenmotsu manifold for two cases $\tau = 0$ and $\tau \neq 0$. For $\tau = 0$, the Kenmotsu manifold is τ - ϕ -symmetric provided either r is a constant or $a_7 = 0$, this is obviously true if the manifold is W_i flat (i = 0, 1) or conhormonically flat or projectively flat or M-projectively flat. For $\tau \neq 0$ case it is shown that any two conditions of (i) M^{2n+1} is ϕ - τ -symmetric, (ii) M^{2n+1} is ϕ -symmetric, (iii) either $a_7 = 0$ or r is constant, are true then the remaining statement holds. In Section 3, we have proved that the extended generalized τ - ϕ -recurrent Kenmotsu manifold is generalized Riccirecurrent manifold with $a_0 + 2na_1 + a_2 + a_3 \neq 0$ and viceversa. Finally, it is shown that τ - ξ -flat Kenmotsu manifold is a η -Einstein manifold provided $a_4 \neq 0$ and has a scalar curvature r if $a_4 = 0$ and $a_7 \neq 0$. Moreover we have proved that Kenmotsu manifold satisfying $\tau(X,Y) \cdot R = 0$ is a η -Einstein manifold.

1. Preliminaries

Kenmotsu manifold has been introduced and studied by K. Kenmotsu in 1972 [9]. They set up one of the three classes of almost contact metric manifolds whose automorphism group attains the maximum dimension [20]. For such a manifold, the sectional curvature of a plane sections containing ξ is a constant, say c. It has been studied as homogeneous normal contact Riemannian manifolds if c > 0. Global Riemannian products of a line or a circle with a Kahler manifold of constant holomorphic sectional curvature with c = 0, and a warped product space $R \times_f C_n$, if c < 0. Kenmotsu [9] characterized the differential geometric properties of manifold for c < 0 and the structure so obtained is now

known as Kenmotsu structure. A Kenmotsu structure is not Sasakian. Manifolds of c>0 are characterized by some tensor equations, it has a Sasakian structure. Manifolds with c=0 are characterized by a tensorial relation admitting a cosymplectic structure. Kenmotsu obtained some tensorial equations to characterize manifolds of c<0.

An almost contact metric manifold is a differentiable manifold M^{2n+1} endowed with a structure (ϕ, ξ, η, g) given by a tensor field ϕ of type (1,1), a vector field ξ , a 1-form η satisfying

$$\phi^2 = -I + \eta \, o \, \xi, \quad \eta(\xi) = 1,$$
 (1.1)

and a Riemannian metric g such that $g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y)$ for any vector fields X and Y. The fundamental 2-form Φ is defined by $\Phi(X,Y) = g(X,\phi Y)$ for any vector fields X and Y. It is well known that contact metric manifolds are almost contact metric manifolds such that $\Phi = d\eta$.

Thus a manifold M^{2n+1} equipped with this structure is called an almost contact manifold and is denoted by $(M^{2n+1}, \phi, \xi, \eta)$. If g is a Riemannian metric on an almost contact manifold M^{2n+1} such that,

$$(\nabla_X \phi)Y = -\eta(Y)\phi X - g(X, \phi Y)\xi, \tag{1.2}$$

$$\nabla_X \xi = (X - \eta(X)\xi), \tag{1.3}$$

holds, then $(M^{2n+1}, \phi, \xi, \eta)$ is called Kenmotsu manifold. Here ∇ denotes the operator of covariant differentiation with respect to g.

In a Kenmotsu manifold M^{2n+1} , the following relations holds;

$$\eta(R(X,Y)Z) = [g(X,Z)\eta(Y) - g(Y,Z)\eta(X)], \tag{1.4}$$

(a)
$$R(\xi, X)Y = [\eta(Y)X - g(X, Y)\xi]$$
, (b) $R(X, Y)\xi = [\eta(X)Y - \eta(Y)X]$, (1.5)

(a)
$$S(X,Y) = -2nq(X,Y)$$
, (b) $S(X,\xi) = -2n\eta(X)$, (c) $QX = -2nX$, (1.6)

(a)
$$S(\xi,\xi) = -2n$$
, (b) $Q\xi = -2n\xi$, (1.7)

$$(\nabla_W R)(X, Y)\xi = g(W, X)Y - g(W, Y)X - R(X, Y)W, \tag{1.8}$$

$$S(\phi X, \phi Y) = S(X, Y) + 2n\eta(X)\eta(Y). \tag{1.9}$$

In a (2n+1)-dimensional Riemannian manifold M^{2n+1} , the τ -curvature tensor [10] is given by

$$\tau(X,Y)Z = a_0 R(X,Y)Z + a_1 S(Y,Z)X + a_2 S(X,Z)Y + a_3 S(X,Y)Z + a_4 g(Y,Z)QX + a_5 g(X,Z)QY + a_6 g(X,Y)QZ + a_7 r \{g(Y,Z)X - g(X,Z)Y\},$$
(1.10)

where R, S, Q and r are the curvature tensor, the Ricci tensor, the Ricci operator and the scalar curvature respectively. In particular, τ -curvature tensor is reduces to quasi-conformal curvature tensor C*, conformal curvature tensor C, conharmonic curvature tensor L, concircular curvature tensor V, pseudo-projective curvature tensor P*, projective curvature tensor P, M-projective curvature tensor, W_i -curvature tensors $(i = 0, \dots, 9)$ and W_j^* -curvature tensors (j = 0, 1), by assigning particular values to $a_i's$ $(i = 0, 1, \dots, 7)$ in the equation (1.10).

2. τ - ϕ -symmetric Kenmotsu manifold

Definition 2.1. A Kenmotsu manifold M^{2n+1} is said to be ϕ -symmetric [12] if the condition $\phi^2((\nabla_W R)(X,Y)Z) = 0$ holds, for all vector fields $X,Y,Z \in \chi(M)$.

Taking $\tau = 0$ in (1.10) and using (1.6), we get

$$-a_0R(X,Y)Z = -2n(a_1 + a_4)g(Y,Z)X - 2n(a_2 + a_5)g(X,Z)Y$$
$$-2n(a_3 + a_6)g(X,Y)Z + a_7r\{g(Y,Z)X - g(X,Z)Y\}.$$

On covariant differentiation of the above equation with respect to W, and assuming that all vector fields X, Y, Z, W are orthogonal to ξ , one can get

$$-a_0((\nabla_W R)(X,Y)Z) = -a_7 dr(W)g(Y,Z)X + a_7 dr(W)g(X,Z)Y.$$

i.e.,

$$((\nabla_W R)(X,Y)Z) = \frac{a_7}{a_0} dr(W) \{ g(X,Z)Y - g(Y,Z)X \}.$$

Applying ϕ^2 on both sides of the above equation and using (1.1), we get

$$\phi^{2}((\nabla_{W}R)(X,Y)Z) = \frac{a_{7}}{a_{0}}dr(W)\{g(X,Z)Y - g(Y,Z)X\}.$$

Therefore we can state;

Theorem 2.1. A τ -flat Kenmotsu manifold is ϕ -symmetric provided either r is constant or $a_7 = 0$.

From Theorem (2.1), we have the following corollary;

Corollary 2.1. A Kenmotsu manifold is ϕ -symmetric if either r is constant or manifold is W_i flat $(i = 0, \dots, 9)$ or W_j^* flat (i = 0, 1) or conhormonically flat or projectively flat or M-projectively flat.

And if $\tau \neq 0$, then we arrive at

$$\phi^{2}((\nabla_{W}\tau)(X,Y)Z) = \phi^{2}((\nabla_{W}R)(X,Y)Z) + \frac{a_{7}}{a_{0}}dr(W)\{g(Y,Z)X - g(X,Z)Y\}.$$

And so we can state;

Theorem 2.2. If in a Kenmotsu manifold M^{2n+1} any two of the following statements hold then the remaining statement holds

- (a) M^{2n+1} is ϕ - τ -symmetric.
- (b) M^{2n+1} is ϕ -symmetric.
- (c) Either $a_7 = 0$ or r is constant.

3. Extended generalized τ - ϕ - recurrent Kenmotsu manifold

Definition 3.1. A Kenmotsu manifold is said to be a extended generalized τ - ϕ -recurrent manifold if there exists non-zero 1-forms A and B such that

$$\phi^{2}((\nabla_{W}\tau)(X,Y)Z) = A(W)\phi^{2}(\tau(X,Y)Z) + B(W)\phi^{2}(G(X,Y)Z), \tag{3.1}$$

for arbitrary vector fields X,Y,Z,W. If X,Y,Z,W are orthogonal to ξ , then the manifold is called locally ϕ -recurrent manifold. If the 1-form A vanishes, then the manifold reduces to ϕ -symmetric manifold.

Theorem 3.1. Extended generalized τ - ϕ - recurrent Kenmotsu manifold M^{2n+1} , with $a_0 + 2na_1 + a_2 + a_3 \neq 0$ is generalized Ricci-recurrent if and only if the following relation holds:

$$\frac{\{B(W) - A(W)(a_0 - 2n(a_2 + a_3 + a_5 + a_6) - a_7r) + a_7dr(W)\}}{(a_0 + 2na_1 + a_2 + a_3)} \eta(Y)\eta(Z)$$

$$-\frac{\{a_2[S(W, Z) + 2ng(W, Z)]\eta(Y) - a_3[S(W, Y) + 2ng(W, Y)]\eta(Z)\}}{(a_0 + 2na_1 + a_2 + a_3)}$$

$$+\frac{a_5\eta(Z)\eta((\nabla_W Q)Y) + a_6\eta(Y)\eta((\nabla_W Q)Z)}{(a_0 + 2na_1 + a_2 + a_3)} = 0. (3.2)$$

Proof. By taking an account of Definition 3.2 and using (1.1), we obtain

$$-(\nabla_W \tau)(X, Y)Z + \eta((\nabla_W \tau)(X, Y)Z)\xi = A(W)[-\tau(X, Y)Z + \eta(\tau(X, Y)Z)\xi] + B(W)[-G(X, Y)Z + \eta(G(X, Y)Z)\xi].$$

i.e.,

$$\begin{split} g((-\nabla_{W}\tau)(X,Y)Z,U) + & \eta((\nabla_{W}\tau)(X,Y)Z)\eta(U) \\ &= A(W)[g(-\tau(X,Y)Z,U) + \eta(\tau(X,Y)Z)\eta(U)] \\ &+ B(W)[-g(G(X,Y)Z,U) + \eta(G(X,Y)Z)\eta(U)]. \end{split}$$

Let $\{e_i : i = 1, 2, 3, \dots, 2n + 1\}$ be an othonormal basis of the tangent space at any point of the manifold. Setting $X = U = e_i$ in the above and taking

summation over $i, 1 \le i \le 2n+1$ and using (1.10), we have

$$-g((\nabla_W \tau)(e_i, Y)Z, e_i) + \eta((\nabla_W \tau)(e_i, Y)Z)\eta(e_i)$$

$$= A(W)[-g(\tau(e_i, Y)Z, e_i) + \eta(\tau(e_i, Y)Z)\eta(e_i)]$$
(3.3)
$$+B(W)[-g(G(e_i, Y)Z, e_i) + \eta(G(e_i, Y)Z)\eta(e_i)].$$

Using the equations (1.3), (1.6), (1.8) and (1.10) and the symmetric property of Ricci-tensor and the relation $g((\nabla_W R)(X,Y)Z,U) = -g((\nabla_W R)(X,Y)U,Z)$, we have

$$(\nabla_W S)(Y,Z) =$$

$$\frac{\{B(W)-A(W)(a_0-2n(a_2+a_3+a_5+a_6)-a_7r)+a_7dr(W)\}}{(a_0+2na_1+a_2+a_3)}\eta(Y)\eta(Z)$$

$$+\frac{\{(2n-1)B(W)-(a_4+(2n-1)a_7)dr(W)-A(W)((2n-1)a_7r)}{(a_0+2na_1+a_2+a_3)}$$

$$\frac{+(r+2n)a_4+a_0)\}}{g(Y,Z)+[A(W)+\frac{A(W)(a_5+a_6)}{a_0+2na_1+a_2+a_3}]S(Y,Z)}(3.4)$$

$$+\frac{a_5\eta(Z)\eta((\nabla_WQ)Y)+a_6\eta(Y)\eta((\nabla_WQ)Z)}{(a_0+2na_1+a_2+a_3)}$$

$$-\frac{\{a_2[S(W,Z)+2ng(W,Z)]\eta(Y)-a_3[S(W,Y)+2ng(W,Y)]\eta(Z)\}}{(a_0+2na_1+a_2+a_3)}.$$

The above relation will reduces to $\nabla S = A^*S + B^*g$ only when the relation (3.2) holds,

where
$$A^* = [A(W) + \frac{A(W)(a_5 + a_6)}{a_0 + 2na_1 + a_2 + a_3}]$$

and $B^* = \frac{\{(2n-1)B(W) - (a_4 + (2n-1)a_7)dr(W) - A(W)((2n-1)a_7r) - (a_0 + 2na_1 + a_2 + a_3) - (a_0 + 2na_1 + a_2 + a_3) - (a_0 + 2na_1 + a_2 + a_3)\}}{(a_0 + 2na_1 + a_2 + a_3)}$

4. τ - ξ -flat Kenmotsu manifold

Putting $Y = Z = \xi$ in (1.10) and taking inner product with U, we obtain

$$\tau(X,\xi,\xi,U) = a_0 R(X,\xi,\xi,U) + a_1 S(\xi,\xi) g(X,U) + a_2 S(X,\xi) g(\xi,U)$$

$$+ a_3 S(X,\xi) g(\xi,U) + a_4 g(\xi,\xi) g(QX,U) + a_5 g(X,\xi) g(Q\xi,U)$$

$$+ a_6 g(X,\xi) g(Q\xi,U) + a_7 r(g(\xi,\xi) g(X,U) - g(X,\xi) g(\xi,U)).$$
 (4.1)

By virtue of (1.5), (1.6) and the condition of τ - ξ -flat in (4.1), we get

$$0 = a_0 \eta(U) \eta(X) - a_0 g(X, U) + (a_7 r - 2n a_1) g(X, U)$$
$$-2n(a_2 + a_3 + a_5 + a_6) \eta(X) \eta(U) + a_4 S(X, U) - a_7 r \eta(X) \eta(U). \quad (4.2)$$

Simplifying (4.2), we get

$$S(X,U) = \frac{(a_0 + 2na_1 - a_7r)}{a_4} g(X,U) + \frac{(a_7r + 2n(a_2 + a_3 + a_5 + a_6) - a_0)}{a_4} \eta(X) \eta(U).$$

Thus we have the following theorem;

Theorem 4.1. A τ - ξ -flat Kenmotsu manifold is η -Einstein provided $a_4 \neq 0$.

Now suppose $a_4 = 0$ and $a_7 \neq 0$ then from (4.2), we have

$$0 = (a_0 + 2na_1 - a_7r)g(X, U) + (a_7r + 2n(a_2 + a_3 + a_5 + a_6) - a_0)\eta(X)\eta(U).$$

Contracting the above, we get

$$r = \frac{(a_2 + a_3 + a_5 + a_6) + a_0 + (2n+1)a_1}{a_7}. (4.3)$$

Therefore,

Theorem 4.2. In a τ - ξ -flat Kenmotsu manifold with $a_4 = 0$ and $a_7 \neq 0$, the scalar curvature r is given by (4.3).

Next if $a_4 = 0$ and $a_7 = 0$ then (4.2) gives

$$0 = -(2na_1 + a_0)g(X, U) + (a_0 - 2n(a_2 + a_3 + a_5 + a_6))\eta(X)\eta(U),$$

on contraction, we have

$$2n(a_2 + a_3 + a_5 + a_6 + a_0 + (2n+1)a_1) = 0. (4.4)$$

Thus we can state;

Theorem 4.3. In τ - ξ -flat Kenmotsu manifold with $a_4 = 0$ and $a_7 = 0$, $2n(a_2 + a_3 + a_5 + a_6 + a_0 + (2n + 1)a_1) = 0$.

Theorem 4.4. A Kenmotsu manifold M^{2n+1} , satisfying $\tau(X,Y) \cdot R = 0$, is an Einstein manifold provided $a_1 \neq 0$.

Proof. Suppose $\tau(X,Y) \cdot R = 0$. Then we have

$$\tau(X,Y)R(U,V)W - R(\tau(X,Y)U,V)W - R(U,\tau(X,Y)V)W - R(U,V)\tau(X,Y)W = 0.$$
(4.5)

Putting $X = \xi$ in (4.5) and then taking inner product with ξ , we obtain

$$g(\tau(\xi, Y)R(U, V)W, \xi) - g(R(\tau(\xi, Y)U, V)W, \xi) - g(R(U, \tau(\xi, Y)V)W, \xi) - g(R(U, V)\tau(\xi, Y)W, \xi) = 0.$$
(4.6)

By virtue of (1.4), (1.5), (1.6) and (4.6), we get

$$2n(a_2 + a_4 + a_5)g(U,Y)\eta(V)\eta(W) - 2n(a_2 + a_4 + a_5)g(V,Y)\eta(U)\eta(W) - a_1S(Y,U)\eta(V)\eta(W) - a_1S(Y,V)\eta(U)\eta(W) + 4n(a_3 + a_6)g(U,W)\eta(Y)\eta(V) - 4n(a_3 + a_6)g(V,W)\eta(Y)\eta(U).$$
(4.7)

Contracting (4.7), we have

$$S(Y,V) = \frac{2n(a_2 + a_4 + a_5)}{a_1} g(Y,V) + \frac{2n\{a_1 - (a_2 + a_4 + a_5) - 4n(a_3 + a_6)}{a_1} \eta(Y) \eta(V).$$

References

- [1] **Blair**, **D. E.**: Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, 509 Springer-Verlag, Berlin, 1976.
- [2] Cartan, E.: Surune classe remarquable despaces de Riema, Soc. Math., France, 54(1926), 214-264.
- [3] Chaki, M. C.: Some theorems on recurrent and Ricci-recurrent spaces, Rend Semin Math Della Univ Di Padova., 26(1956), 168-176.
- [4] Chaubey, S. K. and Ojha, R. H.: On the m-projective curvature tensor of a Kenmotsu manifold, Diff. Geom. Dyna. Syst., 12 (2010), 52-60.
- [5] De, U. C., Guha, N. and Kamaliya, D.: On generalized Ricci-recurrent manifolds, Tensor N. S., 56 (1995), 312-317.
- [6] De, U. C. and Guha, N.: On generalized recurrent manifolds, J. Nat. Acad. Math. India., 9 (1991), 85-92.
- [7] Deszcz, R.: On pseudosymmetric spaces, Acta Math., Hungarica, 53 (1992), 185-190.
- [8] Dubey, R. S.: Generalized recurrent spaces, Indian J. Pure. Appl. Math., 10 (1979), 1508-1513.
- [9] Kenmotsu, K.: A class of almost contact Riemannian manifolds, Tôhoku Math. J., 24(1972), 93-103.
- [10] Tripathi, M. M. and Gupta, Punam: T-curvature tensor on a semi-Riemannian manifold, J. Adv. Math. Stud., 4 (2011), 117-129.
- [11] **Tripathi, M. M. and Gupta, Punam :** On T-curvature tensor in K-contact and Sasakian manifolds, Int. Electron. J. Geom., 4 (1)(2011), 32-47.
- [12] Nagaraja, H. G. and Somashekhara, G. : τ -curvature tensor in (k, μ) -contact manifolds, Mathematica Aeterna, 2 (2012), no. 6, 523-532.
- [13] Oubina, J. A.: New classes of contact metric structures, Publ. Math. Debrecen., 32 (1985), 187-193.

- [14] **Prakasha, D. G.**: On extended generalized ϕ -recurrent Sasakian manifolds, Journal of the Egyptian Mathematical Society, 21 (2013), 25-31.
- [15] Patterson, E. M.: Some theorems on Ricci-recurrent spaces, J. London Math. Soc., 27 (1952), 287-295.
- [16] Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to dirichlet series, Indian Math. Soc., 20 (1956), 47-87.
- [17] Shaikh, A. A. and Hui, S. K.: On extended generalized ϕ -recurrent β Kenmotsu manifolds, Publ. De LInst. Math., 89 (2011), 77-88.
- [18] **Szabo, Z. I.**: Structure theorems on Riemannian spaces satisfying $R(X,Y) \cdot R = 0$. I. The local version, J. Differential Geom., 17 (1982), 531-582.
- [19] **Tamassy, L. and Binh, T. Q.:** On weakly symmetric and weakly projective symmetric Riemannian manifold, Colloquia Math. Soc., 50 (1989), 663-667.
- [20] **Tanno, S.:** The automorphism groups of almost contact Riemannian manifolds, Tohoku Math. J., 21 (1969), 21-38.
- [21] Venkatesha and Bagewadi, C. S.: On concircular ϕ -recurrent LP-Sasakian manifolds, Differ. Geom. Dyn. Syst., 10 (2008), 312-319.
- [22] Walker, A. A.: On Ruses spaces of recurrent curvature, Proc. London Math. Soc., 52 (1950), 36-64.