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Abstract

In the present paper we have obtained the necessary and sufficient condi-

tion for a extended generalized τ -ϕ-recurrent Kenmotsu manifold to be a gen-

eralized ricci-recurrent manifold. Furthermore, we have studied τ -ϕ-symmetric

Kenmotsu manifold, τ -ξ-flat Kenmotsu manifold and a Kenmotsu manifold sat-

isfying τ(X,Y ) ·R = 0.
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Introduction

As is well known, symmetric spaces plays an important role in differential

geometry. The work on local symmetric Riemannian manifolds began by Car-

tan [2]. This property of a Riemannian manifold has been weakened by many

authors [ [22], [18], [3], [7], [19], [16], [17] ] in several directions such as recur-

rent manifolds, semi-symmetric manifolds, pseudo-symmetric manifolds, weakly

symmetric manifolds. Further, ϕ-recurrent, generalized ϕ-recurrent, extended

generalized ϕ-recurrent manifolds were introduced and studied by many geome-

ters.

In 1979 Dubey [8] introduced the notion of generalized recurrent manifold

and then such a manifold was studied by De and Guha [6]. The manifold M ,

n > 2, is called generalized recurrent [8] if its curvature tensor R of type (1,3)

satisfies the condition ∇R = A ⊗ R + B ⊗ G, where G is a tensor of type (1,
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3) given by G(X,Y )Z = g(Y, Z)X − g(X,Z)Y, A and B are nowhere vanishing

unique 1-forms, defined by A(·) = g(·, ρ1) and B(·) = g(·, ρ2), respectively for

all vector fields X, Y , Z∈ χ(M), where χ(M) is the Lie algebra of all smooth

vector fields on M and ∇ is the Levi-Civita connection.

In 1952 Patterson [15] introduced Ricci-recurrent manifold. According to

Patterson [15] manifold (M, g) of dimension n, is called a Ricci-recurrent if

(∇XS)(Y,Z) = A(X)S(Y, Z), for some 1-form A. Ricci-recurrent manifold has

been studied by many authors. An extended version of ricci-recurrent manifold

is the generalized Ricci-recurrent manifold. A non-flat Riemannian manifold

called generalized Ricci-recurrent [5] if its Ricci tensor S of type (0, 2) satisfies

the condition ∇S = A ⊗ S + B ⊗ g, where A and B are two non zero 1-forms.

In particular, if B = 0, then the manifold reduces to Ricci-recurrent manifold.

Our work is structured as follows: The first section is a very brief review of

Kenmotsu manifold and a τ -curvature tensor. The next section is devoted to the

study of τ -ϕ-symmetric kenmotsu manifold for two cases τ = 0 and τ ̸= 0. For

τ = 0, the Kenmotsu manifold is τ -ϕ-symmetric provided either r is a constant

or a7 = 0, this is obviously true if the manifold is Wi flat(i = 0, · · · 9) or W ∗
j

flat (i = 0, 1) or conhormonically flat or projectively flat or M -projectively

flat. For τ ̸= 0 case it is shown that any two conditions of (i) M2n+1 is ϕ-τ -

symmetric, (ii) M2n+1 is ϕ-symmetric, (iii) either a7 = 0 or r is constant, are

true then the remaining statement holds. In Section 3, we have proved that

the extended generalized τ -ϕ-recurrent Kenmotsu manifold is generalized Ricci-

recurrent manifold with a0 + 2na1 + a2 + a3 ̸= 0 and viceversa. Finally, it is

shown that τ -ξ-flat Kenmotsu manifold is a η-Einstein manifold provided a4 ̸= 0

and has a scalar curvature r if a4 = 0 and a7 ̸= 0. Moreover we have proved

that Kenmotsu manifold satisfying τ(X,Y ) ·R = 0 is a η-Einstein manifold.

1. Preliminaries

Kenmotsu manifold has been introduced and studied by K. Kenmotsu in

1972 [9]. They set up one of the three classes of almost contact metric manifolds

whose automorphism group attains the maximum dimension [20]. For such a

manifold, the sectional curvature of a plane sections containing ξ is a constant,

say c. It has been studied as homogeneous normal contact Riemannian mani-

folds if c > 0. Global Riemannian products of a line or a circle with a Kahler

manifold of constant holomorphic sectional curvature with c = 0, and a warped

product space R ×f Cn, if c < 0. Kenmotsu [9] characterized the differential

geometric properties of manifold for c < 0 and the structure so obtained is now
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known as Kenmotsu structure. A Kenmotsu structure is not Sasakian. Man-

ifolds of c > 0 are characterized by some tensor equations, it has a Sasakian

structure. Manifolds with c = 0 are characterized by a tensorial relation admit-

ting a cosymplectic structure. Kenmotsu obtained some tensorial equations to

characterize manifolds of c < 0.

An almost contact metric manifold is a differentiable manifold M2n+1 en-

dowed with a structure (ϕ, ξ, η, g) given by a tensor field ϕ of type (1,1), a vector

field ξ, a 1-form η satisfying

ϕ2 = −I + η o ξ, η(ξ) = 1, (1.1)

and a Riemannian metric g such that g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ) for any

vector fields X and Y . The fundamental 2-form Φ is defined by Φ(X,Y ) =

g(X,ϕY )for any vector fields X and Y . It is well known that contact metric

manifolds are almost contact metric manifolds such that Φ = dη.

Thus a manifold M2n+1 equipped with this structure is called an almost

contact manifold and is denoted by (M2n+1, ϕ, ξ, η). If g is a Riemannian metric

on an almost contact manifold M2n+1 such that,

(∇Xϕ)Y = −η(Y )ϕX − g(X,ϕY )ξ, (1.2)

∇Xξ = (X − η(X)ξ), (1.3)

holds, then (M2n+1, ϕ, ξ, η) is called Kenmotsu manifold. Here ∇ denotes the

operator of covariant differentiation with respect to g.

In a Kenmotsu manifold M2n+1, the following relations holds;

η(R(X,Y )Z) = [g(X,Z)η(Y )− g(Y, Z)η(X)], (1.4)

(a) R(ξ,X)Y = [η(Y )X − g(X,Y )ξ], (b) R(X,Y )ξ = [η(X)Y − η(Y )X],(1.5)

(a) S(X,Y ) = −2ng(X,Y ), (b) S(X, ξ) = −2nη(X), (c) QX = −2nX, (1.6)

(a) S(ξ, ξ) = −2n, (b) Qξ = −2nξ, (1.7)

(∇WR)(X,Y )ξ = g(W,X)Y − g(W,Y )X −R(X,Y )W, (1.8)

S(ϕX, ϕY ) = S(X,Y ) + 2nη(X)η(Y ). (1.9)

In a (2n+ 1)-dimensional Riemannian manifold M2n+1, the τ -curvature tensor

[10] is given by

τ(X,Y )Z = a0R(X,Y )Z + a1S(Y, Z)X + a2S(X,Z)Y + a3S(X,Y )Z

+ a4g(Y, Z)QX + a5g(X,Z)QY + a6g(X,Y )QZ

+ a7r{g(Y, Z)X − g(X,Z)Y }, (1.10)
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where R,S,Q and r are the curvature tensor, the Ricci tensor, the Ricci operator

and the scalar curvature respectively. In particular, τ -curvature tensor is reduces

to quasi-conformal curvature tensor C*, conformal curvature tensor C, conhar-

monic curvature tensor L, concircular curvature tensor V, pseudo-projective

curvature tensor P*, projective curvature tensor P, M -projective curvature ten-

sor, Wi-curvature tensors (i = 0, · · · , 9) and W ∗
j -curvature tensors (j = 0, 1), by

assigning particular values to a′is (i = 0, 1, · · · , 7) in the equation (1.10).

2. τ-ϕ-symmetric Kenmotsu manifold

Definition 2.1. A Kenmotsu manifold M2n+1 is said to be ϕ-symmetric [12]

if the condition ϕ2((∇WR)(X,Y )Z) = 0 holds, for all vector fields X,Y, Z ∈
χ(M).

Taking τ = 0 in (1.10) and using (1.6), we get

−a0R(X,Y )Z = −2n(a1 + a4)g(Y, Z)X − 2n(a2 + a5)g(X,Z)Y

−2n(a3 + a6)g(X,Y )Z + a7r{g(Y, Z)X − g(X,Z)Y }.

On covariant differentiation of the above equation with respect to W , and

assuming that all vector fields X, Y , Z, W are orthogonal to ξ, one can get

−a0((∇WR)(X,Y )Z) = −a7dr(W )g(Y, Z)X + a7dr(W )g(X,Z)Y.

i.e.,

((∇WR)(X,Y )Z) =
a7
a0

dr(W ){g(X,Z)Y − g(Y, Z)X}.

Applying ϕ2 on both sides of the above equation and using (1.1), we get

ϕ2((∇WR)(X,Y )Z) =
a7
a0

dr(W ){g(X,Z)Y − g(Y, Z)X}.

Therefore we can state;

Theorem 2.1. A τ -flat Kenmotsu manifold is ϕ-symmetric provided either r

is constant or a7 = 0.

From Theorem (2.1), we have the following corollary;

Corollary 2.1. A Kenmotsu manifold is ϕ-symmetric if either r is constant or

manifold is Wi flat (i = 0, · · · 9) or W ∗
j flat (i = 0, 1) or conhormonically flat or

projectively flat or M -projectively flat.

And if τ ̸= 0, then we arrive at

ϕ2((∇W τ)(X,Y )Z) = ϕ2((∇WR)(X,Y )Z) +
a7
a0

dr(W ){g(Y,Z)X − g(X,Z)Y }.
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And so we can state;

Theorem 2.2. If in a Kenmotsu manifold M2n+1 any two of the following

statements hold then the remaining statement holds

(a) M2n+1 is ϕ-τ -symmetric.

(b) M2n+1 is ϕ-symmetric.

(c) Either a7 = 0 or r is constant.

3. Extended generalized τ-ϕ- recurrent Kenmotsu manifold

Definition 3.1. A Kenmotsu manifold is said to be a extended generalized τ -ϕ-

recurrent manifold if there exists non-zero 1-forms A and B such that

ϕ2((∇W τ)(X,Y )Z) = A(W )ϕ2(τ(X,Y )Z) +B(W )ϕ2(G(X,Y )Z), (3.1)

for arbitrary vector fields X,Y, Z,W . If X,Y, Z,W are orthogonal to ξ, then

the manifold is called locally ϕ-recurrent manifold. If the 1 -form A vanishes,

then the manifold reduces to ϕ-symmetric manifold.

Theorem 3.1. Extended generalized τ -ϕ- recurrent Kenmotsu manifoldM2n+1,

with a0 + 2na1 + a2 + a3 ̸= 0 is generalized Ricci-recurrent if and only if the

following relation holds:

{B(W )−A(W )(a0 − 2n(a2 + a3 + a5 + a6)− a7r) + a7dr(W )}
(a0 + 2na1 + a2 + a3)

η(Y )η(Z)

−{a2[S(W,Z) + 2ng(W,Z)]η(Y )− a3[S(W,Y ) + 2ng(W,Y )]η(Z)}
(a0 + 2na1 + a2 + a3)

+
a5η(Z)η((∇WQ)Y ) + a6η(Y )η((∇WQ)Z)

(a0 + 2na1 + a2 + a3)
= 0. (3.2)

Proof. By taking an account of Definition 3.2 and using (1.1), we obtain

−(∇W τ)(X,Y )Z + η((∇W τ)(X,Y )Z)ξ = A(W )[−τ(X,Y )Z + η(τ(X,Y )Z)ξ]

+B(W )[−G(X,Y )Z + η(G(X,Y )Z)ξ].

i.e.,

g((−∇W τ)(X,Y )Z,U)+ η((∇W τ)(X,Y )Z)η(U)

= A(W )[g(−τ(X,Y )Z,U) + η(τ(X,Y )Z)η(U)]

+B(W )[−g(G(X,Y )Z,U) + η(G(X,Y )Z)η(U)].

Let {ei : i = 1, 2, 3, · · · , 2n + 1} be an othonormal basis of the tangent

space at any point of the manifold. Setting X = U = ei in the above and taking
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summation over i, 1 ≤ i ≤ 2n+ 1 and using (1.10), we have

−g((∇W τ)(ei, Y )Z, ei)+ η((∇W τ)(ei, Y )Z)η(ei)

= A(W )[−g(τ(ei, Y )Z, ei) + η(τ(ei, Y )Z)η(ei)] (3.3)

+B(W )[−g(G(ei, Y )Z, ei) + η(G(ei, Y )Z)η(ei)].

Using the equations (1.3), (1.6), (1.8) and (1.10) and the symmetric prop-

erty of Ricci-tensor and the relation g((∇WR)(X,Y )Z,U) = −g((∇WR)(X,Y )

U,Z), we have

(∇WS)(Y,Z) =

{B(W )−A(W )(a0 − 2n(a2 + a3 + a5 + a6)− a7r) + a7dr(W )}
(a0 + 2na1 + a2 + a3)

η(Y )η(Z)

+
{(2n− 1)B(W )− (a4 + (2n− 1)a7)dr(W )−A(W )((2n− 1)a7r

(a0 + 2na1 + a2 + a3)

+(r + 2n)a4 + a0)}
g(Y, Z) + [A(W ) +

A(W )(a5 + a6)

a0 + 2na1 + a2 + a3
]S(Y, Z) (3.4)

+
a5η(Z)η((∇WQ)Y ) + a6η(Y )η((∇WQ)Z)

(a0 + 2na1 + a2 + a3)

−{a2[S(W,Z) + 2ng(W,Z)]η(Y )− a3[S(W,Y ) + 2ng(W,Y )]η(Z)}
(a0 + 2na1 + a2 + a3)

.

The above relation will reduces to ∇S = A∗S+B∗g only when the relation

(3.2) holds,

where A∗ = [A(W ) +
A(W )(a5 + a6)

a0 + 2na1 + a2 + a3
]

and B∗ =
{(2n− 1)B(W )− (a4 + (2n− 1)a7)dr(W )−A(W )((2n− 1)a7r

(a0 + 2na1 + a2 + a3)

+(r + 2n)a4 + a0)}
.

4. τ-ξ-flat Kenmotsu manifold

Putting Y = Z = ξ in (1.10) and taking inner product with U, we obtain

τ(X, ξ, ξ, U) = a0R(X, ξ, ξ, U) + a1S(ξ, ξ)g(X,U) + a2S(X, ξ)g(ξ, U)

+a3S(X, ξ)g(ξ, U) + a4g(ξ, ξ)g(QX,U) + a5g(X, ξ)g(Qξ,U)

+a6g(X, ξ)g(Qξ,U) + a7r(g(ξ, ξ)g(X,U)− g(X, ξ)g(ξ, U)). (4.1)

By virtue of (1.5), (1.6) and the condition of τ -ξ-flat in (4.1), we get
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0 = a0η(U)η(X)− a0g(X,U) + (a7r − 2na1)g(X,U)

−2n(a2 + a3 + a5 + a6)η(X)η(U) + a4S(X,U)− a7rη(X)η(U). (4.2)

Simplifying (4.2), we get

S(X,U) =
(a0 + 2na1 − a7r)

a4
g(X,U)

+
(a7r + 2n(a2 + a3 + a5 + a6)− a0)

a4
η(X)η(U).

Thus we have the following theorem;

Theorem 4.1. A τ -ξ-flat Kenmotsu manifold is η-Einstein provided a4 ̸= 0.

Now suppose a4 = 0 and a7 ̸= 0 then from (4.2), we have

0 = (a0 + 2na1 − a7r)g(X,U) + (a7r + 2n(a2 + a3 + a5 + a6)− a0)η(X)η(U).

Contracting the above, we get

r =
(a2 + a3 + a5 + a6) + a0 + (2n+ 1)a1

a7
. (4.3)

Therefore,

Theorem 4.2. In a τ -ξ-flat Kenmotsu manifold with a4 = 0 and a7 ̸= 0, the

scalar curvature r is given by (4.3).

Next if a4 = 0 and a7 = 0 then (4.2) gives

0 = −(2na1 + a0)g(X,U) + (a0 − 2n(a2 + a3 + a5 + a6))η(X)η(U),

on contraction, we have

2n(a2 + a3 + a5 + a6 + a0 + (2n+ 1)a1) = 0. (4.4)

Thus we can state;

Theorem 4.3. In τ -ξ-flat Kenmotsu manifold with a4 = 0 and a7 = 0, 2n(a2+

a3 + a5 + a6 + a0 + (2n+ 1)a1) = 0.

Theorem 4.4. A Kenmotsu manifold M2n+1, satisfying τ(X,Y ) ·R = 0, is an

Einstein manifold provided a1 ̸= 0.

Proof. Suppose τ(X,Y ) ·R = 0. Then we have

τ(X,Y )R(U, V )W −R(τ(X,Y )U, V )W −R(U, τ(X,Y )V )W

−R(U, V )τ(X,Y )W = 0. (4.5)
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Putting X = ξ in (4.5) and then taking inner product with ξ, we obtain

g(τ(ξ, Y )R(U, V )W, ξ)− g(R(τ(ξ, Y )U, V )W, ξ)

−g(R(U, τ(ξ, Y )V )W, ξ)− g(R(U, V )τ(ξ, Y )W, ξ) = 0. (4.6)

By virtue of (1.4), (1.5), (1.6) and (4.6), we get

2n(a2 + a4 + a5)g(U, Y )η(V )η(W )− 2n(a2 + a4 + a5)g(V, Y )η(U)η(W )

−a1S(Y, U)η(V )η(W )− a1S(Y, V )η(U)η(W )

+4n(a3 + a6)g(U,W )η(Y )η(V )− 4n(a3 + a6)g(V,W )η(Y )η(U). (4.7)

Contracting (4.7), we have

S(Y, V ) =
2n(a2 + a4 + a5)

a1
g(Y, V )

+
2n{a1 − (a2 + a4 + a5)− 4n(a3 + a6)

a1
η(Y )η(V ).
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