Special Vol. 8 (2014), pp.113-120 https://doi.org/10.56424/jts.v8i01.10553

η -Ricci Solitons in α -Sasakian Manifolds

S. R. Ashoka, C. S. Bagewadi and Gurupadavva Ingalahalli

Department of Mathematics, Kuvempu University, Shankaraghatta - 577 451, Shimoga, Karnataka, INDIA e-mail: srashoka@gmail.com; prof_bagewadi@yahoo.co.in; gurupadavva@gmail.com (Received: November 11, 2013)

Abstract

In this paper we study η -Ricci solitons in α -Sasakian manifolds its shows that a symmetric second order covariant tensors in α -Sasakian manifolds is a constant multiple of metric tensor using this it is shown that $L_V g + 2S + 2\mu\eta \otimes \eta$ is parallel, where V is a given vector field then (g, V, μ) is η -Ricci solitons.

Key Words: Ricci soliton, α -Sasakian manifold, Einstein. **2010 AMS Subject Classification:** 53C15, 53C20, 53C21, 53C25, 53D10.

1. Introduction

A Ricci soliton (g, V, λ) is a generalization of an Einstein metric and is defined on a Riemannian manifold (M, g) by

(1.1)
$$(\mathcal{L}_{V}q)(X,Y) + 2S(X,Y) + 2\lambda q(X,Y) = 0,$$

where V is a complete vector field on M, and λ is a constant. The Ricci soliton is said to be shrinking, steady or expanding according as λ is negative, zero and positive respectively.

A η -Ricci soliton [3, 9] is defined on a Riemannian manifold (M, g) by

$$(1.2) \qquad (\mathcal{L}_V g)(X, Y) + 2S(X, Y) + 2\lambda g(X, Y) + 2\mu \eta \eta(X) \eta(Y) = 0.$$

In [19], Perelman proved that a Ricci soliton on a compact n-manifold is a gradient Ricci soliton. In [23], R. Sharma studied Ricci solitons in K-contact manifolds, where the structure field ξ is Killing and he proved that a complete K-contact gradient soliton is compact Einstein and Sasakian. In [24], M. M. Tripathi studied Ricci solitons in N(k)-contact metric and (k, μ) manifolds. In [1], Amadendu Ghosh and Ramesh Sharma studied K-contact metrics as Ricci solitons. In [18], H. G. Nagaraja and C. R. Premalatha studied Ricci

Solitons in f-Kenmotsu Manifolds and 3-dimensional trans-Sasakian manifolds. Recently, C. S. Bagewadi and Gurupadavva Ingalahalli [4] studied Ricci solitons in Lorentzian α -Sasakian Manifolds. Motivated by the above studies on Ricci solitons, in this paper, we study η -Ricci solitons in an α -Sasakian manifolds, where α is some constant.

2. Preliminaries

Let M be an almost contact metric manifold of dimension n equipped with an almost contact metric structure (ϕ, ξ, η, g) consisting of a (1, 1) tensor field ϕ , a vector field ξ , a 1-form η and a Riemannian metric g, which satisfy

(2.1)
$$\phi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad \eta \circ \phi = 0, \quad \phi \xi = 0,$$

(2.2)
$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad \eta(X) = g(X, \xi),$$

for all $X, Y \in \mathfrak{X}(M)$. An almost contact metric manifold $M(\phi, \xi, \eta, g)$ is said to be α -Sasakian manifold if the following conditions hold:

$$(2.3) \qquad (\nabla_X \phi) Y = \alpha(g(X, Y)\xi - \eta(Y)X),$$

(2.4)
$$\nabla_X \xi = -\alpha \phi X, \quad (\nabla_X \eta) Y = \alpha g(X, \phi Y),$$

holds for some non zero constant α on M.

In an α -Sasakian manifold, the following relations hold:

$$(2.5) R(X,Y)\xi = \alpha^2 [\eta(Y)X - \eta(X)Y],$$

(2.6)
$$R(\xi, X)Y = \alpha^{2}[g(X, Y)\xi - \eta(Y)X],$$

(2.7)
$$\eta(R(X,Y)Z) = \alpha^{2}[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)],$$

(2.8)
$$S(X,\xi) = \alpha^{2}(n-1)\eta(X),$$

(2.9)
$$S(\xi, \xi) = \alpha^2 (n-1),$$

$$(2.10) Q\xi = \alpha^2(n-1)\xi.$$

for all $X, Y, Z \in \mathfrak{X}(M)$, where R is the Riemannian curvature tensor, S is the Ricci tensor and Q is the Ricci operator.

2.1. **Example.** Let $M = \{(x, y, z) \in \mathbb{R}^3\}$. Let (E_1, E_2, E_3) be linearly independent vector fields given by

(2.11)
$$E_1 = e^x \frac{\partial}{\partial y}, \quad E_2 = e^x \left[\frac{\partial}{\partial x} + 2y \frac{\partial}{\partial z} \right], \quad E_3 = \frac{\partial}{\partial z}.$$

Let g be the Riemannian metric defined by $g(E_1, E_2) = g(E_2, E_3) = g(E_1, E_3) = 0$, $g(E_1, E_1) = g(E_2, E_2) = g(E_3, E_3) = 1$, where g is given by

$$g = \frac{1}{e^{2x}} [(1 - 4e^{2x}y^2)dx \otimes dx + dy \otimes dy + e^{2x}dz \otimes dz].$$

Let η be the 1-form defined by $\eta(U) = g(U, E_3)$ for any $U \in \mathfrak{X}(M)$. Let ϕ be the (1,1) tensor field defined by $\phi E_1 = E_2$, $\phi E_2 = -E_1$, $\phi E_3 = 0$. Then using the linearity of ϕ and g yields that $\eta(E_3) = 1$, $\phi^2 U = -U + \eta(U)E_3$ and $g(\phi U, \phi W) = g(U, W) - \eta(U)\eta(W)$ for any vector fields $U, W \in \mathfrak{X}(M)$. Thus for $E_3 = \xi$, (ϕ, ξ, η, g) defines a Sasakian structure on M. By definition of Lie bracket, we have

$$[E_1, E_2] = -e^x E_1 + 2e^{2x} E_3, \quad [E_1, E_3] = [E_2, E_3] = 0.$$

Let ∇ be the Levi-Civita connection with respect to above metric g Koszula formula is given by

$$\begin{array}{rcl} 2g(\nabla_X Y,Z) & = & X(g(Y,Z)) + Y(g(Z,X)) - Z(g(X,Y)) \\ & - & g(X,[Y,Z]) - g(Y,[X,Z]) + g(Z,[X,Y]). \end{array}$$

Then

$$\nabla_{E_1} E_1 = e^x E_2, \qquad \nabla_{E_2} E_2 = 0, \qquad \nabla_{E_3} E_3 = 0,$$

$$(2.13) \qquad \nabla_{E_1} E_2 = -e^x E_1 + e^{2x} E_3, \quad \nabla_{E_2} E_1 = -e^{2x} E_3, \quad \nabla_{E_2} E_3 = e^{2x} E_1,$$

$$\nabla_{E_1} E_3 = -e^{2x} E_2, \qquad \nabla_{E_3} E_1 = -e^{2x} E_2, \quad \nabla_{E_3} E_2 = e^{2x} E_1.$$

Clearly (ϕ, ξ, η, g) structure is an α -Sasakian structure and satisfy,

$$(2.14) \qquad (\nabla_X \phi) Y = \alpha(g(X, Y)\xi - \eta(Y)X), \qquad \nabla_X \xi = -\alpha \phi X,$$

where $\alpha = e^{2x} \neq 0$. Hence (ϕ, ξ, η, g) structure defines α -Sasakian structure. Thus M equipped with α -Sasakian structure is a α -Sasakian manifold. The tangent vectors X and Y to M are expressed as linear combination of E_1, E_2, E_3 , that is $X = \sum_{i=1}^3 a_i E_i$ and $Y = \sum_{i=1}^3 b_i E_i$, where a_i and $b_i (i = 1, 2, 3)$ are scalars.

On α -Sasakian manifold (M, q), we have

$$(2.15) (\mathcal{L}_V g)(X, Y) = g(\nabla_X V, Y) + g(X, \nabla_Y V)$$

where ∇ denotes the Levi-Civita connection of M. Hence if (M, g) is a η -Ricci soliton with potential vector field V, then (1.2) and (2.15), we have

$$(2.16) \quad 2S(X,Y) = -g(\nabla_X V, Y) - g(X, \nabla_Y V) - 2\lambda g(X,Y) - 2\mu \eta \eta(X) \eta(Y).$$

By taking $X = Y = e_i$ where e_i is an orthonormal basis and $1 \le i \le n$, then we have

(2.17)
$$\int_{M} [divV + r + n\lambda + \mu] = 0.$$

On integrating the above equation we have by Green's theorem $\int div V = 0$ and for scalar curvature r, then we have

$$(2.18) (r+n\lambda+\mu)Vol(M) = 0.$$

The above equation implies that

$$(2.19) r = -(n\lambda + \mu).$$

For Ricci solitons $\mu = 0$, then

$$\lambda = -\frac{r}{n}.$$

In α -Sasakian manifolds scalar curvature $r = \alpha^2(n-1)$, we have

(2.21)
$$\lambda = -\frac{\alpha^2(n-1)}{n} < 0.$$

Hence, we state the following:

Theorem 2.1. A η -Ricci soliton in an α -Sasakian is shrinking.

Corollary 2.1. If a metric g in an α -Sasakian manifold is a η -Ricci soliton with $V = \xi$ then it is η -Einstein.

Proof. Putting $V = \xi$ in (1.2), then we have

$$(2.22) (\mathcal{L}_{\xi}g)(X,Y) + 2S(X,Y) + 2\lambda g(X,Y) + 2\mu \eta(X)\eta(Y) = 0$$

where

$$(2.23) (\mathcal{L}_{\xi}g)(X,Y) = g(\nabla_X \xi, Y) + g(X, \nabla_Y \xi) = 0$$

Substituting (2.23) in (2.22), then we get the result.

Proposition 2.1. If an α -Sasakian manifold is a η -Ricci soliton with V pointwise collinear with ξ , then V is a constant multiple of ξ and the manifold is Einstein.

Proof.

(2.24)
$$(\mathcal{L}_{\mathcal{E}}g)(X,Y) + 2S(X,Y) + 2\lambda g(X,Y) + 2\mu\eta\eta(X)\eta(Y) = 0$$

where

$$(2.25) (\mathcal{L}_V g)(X, Y) = g(\nabla_X V, Y) + g(X, \nabla_Y V).$$

Substituting (2.25) in (2.24), then we have

$$(2.26) \ g(\nabla_X V, Y) + g(X, \nabla_Y V) + 2S(X, Y) + 2\lambda g(X, Y) + 2\mu \eta \eta(X) \eta(Y) = 0.$$

Putting $V = a\xi$ in (2.26), we have

$$(2.27) \quad (Xa)\eta(Y) + (Ya)\eta(X) + 2S(X,Y) + 2\lambda g(X,Y) + 2\mu\eta\eta(X)\eta(Y) = 0.$$

Putting $X = Y = \xi$ in (2.27), we have

(2.28)
$$(\xi a) + \alpha^2 (n-1) + \lambda + \mu = 0.$$

Again putting $X = \xi$ in (2.27), we have

(2.29)
$$(Ya) = [-\alpha^2(n-1) - \lambda - \mu]\eta(Y).$$

Equation (2.29) implies that

$$(2.30) da = \left[-\alpha^2(n-1) - \lambda - \mu\right]\eta.$$

Applying d on both sides

(2.31)
$$d^{2}a = [-\alpha^{2}(n-1) - \lambda - \mu]d\eta.$$

Since $d^2a = 0$ but $d\eta$ is nowhere vanishing. Therefore, $-\lambda - \alpha^2(n-1) - \mu = 0$ which implies da = 0 that is, a is constant. On the above hence we state that

Theorem 2.2. On an α -Sasakian manifold, the contact form η is closed if and only if ξ is integrable and the Nijenhuis tensor field of the structural endomorphism ϕ vanishes identically.

Proof. From (2.4), we have

$$(d\eta)(X,Y) = \frac{1}{2}[X(\eta(Y)) - Y(\eta(X)) - \eta([X,Y])]$$

$$= \frac{1}{2}[g(Y,\nabla_X\xi) - g(X,\nabla_Y\xi)] = -\alpha g(\phi X, Y).$$

If ξ is integrable then $d\eta = 0$.

Nijenhuis tensor field of the endomorphism is given by

$$N_{\phi}(X,Y) = \phi^{2}[X,Y] + [\phi X, \phi Y] - \phi[\phi X, Y] - \phi[X, \phi Y]$$

$$= \phi^{2}\{\nabla_{X}Y - \nabla_{Y}X\} + \{\nabla_{\phi X}\phi Y - \nabla_{\phi Y}\phi X\}$$

$$- \phi\{\nabla_{\phi X}Y - \nabla_{Y}\phi X\} - \phi\{\nabla_{X}\phi Y - \nabla_{\phi Y}X\} = 0.$$

3. Parallel symmetric second order tensors and Ricci Solitons in α -Sasakian manifolds

Fix h a symmetric tensor field of (0, 2)-type which we suppose to be parallel with respect to ∇ that is $\nabla h = 0$. Applying the Ricci identity [20]

(3.1)
$$\nabla^2 h(X, Y; Z, W) - \nabla^2 h(X, Y; W, Z) = 0,$$

we obtain the relation

(3.2)
$$h(R(X,Y)Z,W) + h(Z,R(X,Y)W) = 0.$$

Replacing $Z = W = \xi$ in (3.2) and by using (2.5) and by the symmetry of h, we have

(3.3)
$$2\alpha^{2}[\eta(Y)h(X,\xi) - \eta(X)h(Y,\xi)] = 0.$$

Put $X = \xi$ in (3.3) and by virtue of (2.1), we have

(3.4)
$$2\alpha^{2}[\eta(Y)h(\xi,\xi) - h(Y,\xi)] = 0.$$

Since $\alpha^2 \neq 0$, it results

(3.5)
$$h(Y,\xi) = \eta(Y)h(\xi,\xi).$$

Let us call a regular α -Sasakian manifolds with $\alpha^2 \neq 0$ and remark that α -Sasakian manifold is regular, where regularity means the nonvanishing of the Ricci curvature with respect to the generator of α -Sasakian manifolds.

Definition 3.1. ξ is called semi-torse forming vector field for α -Sasakian manifold if, for all vector fields X:

$$(3.6) R(X,\xi)\xi = 0.$$

From (2.5), we have $R(X,\xi)\xi = \alpha^2[X - \eta(X)\xi]$ and therefore, if $X \in ker\xi = \xi^{\perp}$, then $R(X,\xi)\xi = \alpha^2X$ and we obtain:

Proposition 3.1. For an α -Sasakian manifold the following are equivalent:

- (1) is regular,
- (2) ξ is not semi-torse forming,
- (3) $S(\xi,\xi) \neq 0$, that is, ξ is non-degenerate with respect to S,

Now, differentiating the equation (3.5) covariantly with respect to X, we have

$$(\nabla_X h)(Y,\xi) + h(\nabla_X Y,\xi) + h(Y,\nabla_X \xi) = [(\nabla_X \eta)(Y) + \eta(\nabla_X Y)]h(\xi,\xi) + \eta(Y)[(\nabla_X h)(Y,\xi) + 2h(\nabla_X \xi,\xi)].$$

By using the parallel condition $\nabla h = 0$, $\eta(\nabla_X \xi) = 0$ and (3.5) in (3.7), we have

(3.8)
$$h(Y, \nabla_X \xi) = (\nabla_X \eta)(Y) h(\xi, \xi).$$

By using (2.4) in (3.8), we get

$$(3.9) -\alpha h(Y, \phi X) = \alpha g(X, \phi Y) h(\xi, \xi).$$

Replacing $X = \phi X$ in (3.9), we get

(3.10)
$$\alpha[h(Y,X) - g(Y,X)h(\xi,\xi)] = 0.$$

Clearly α is a nonzero smooth function in α -Sasakian manifold this implies that

(3.11)
$$h(X,Y) = g(X,Y)h(\xi,\xi),$$

the above equation implies that $h(\xi, \xi)$ is a constant, via (3.5). Now by considering the above condition we state the following theorem:

Theorem 3.1. A symmetric parallel second order covariant tensor in an α -Sasakian manifold is a constant multiple of the metric tensor.

Theorem 3.2. Let M be a α -Sasakian manifold, the symmetric (0, 2)-tensor field $h := (\mathcal{L}_{\xi}g)(X,Y) + 2S(X,Y) + 2\mu\eta(X)\eta(Y)$ is parallel with respect to the Levi-Civita connection associated to g. Then (g, ξ, λ, μ) yields an η -Ricci soliton.

Proof. Assume $h(\xi,\xi) = (\mathcal{L}_{\xi}g)(\xi,\xi) + 2S(\xi,\xi) + 2\mu\eta(\xi)\eta(\xi)$. Now (2.22), can be written in form

$$(3.12) h(X,Y) = -2\lambda g(X,Y).$$

that is,

(3.13)
$$\lambda = \frac{-1}{2}h(\xi, \xi).$$

Therefore, $(\mathcal{L}_{\xi}g)(\xi,\xi) + 2S(\xi,\xi) + 2\mu\eta(\xi)\eta(\xi) = -2\lambda g(\xi,\xi).$

If $\mu = 0$, then $(\mathcal{L}_{\xi}g)(\xi,\xi) + 2S(\xi,\xi) = -2\lambda g(\xi,\xi)$. Hence we conclude that

Corollary 3.1. On a α -Sasakian manifold the symmetric (0, 2)-tensor field $h := (\mathcal{L}_{\xi}g)(\xi, \xi) + 2S(\xi, \xi)$ is parallel with respect to the Levi-Civita connection associated to g, then the η -Ricci soliton relation defines a Ricci soliton on M.

References

- [1] **Ghosh, Amalendu and Sharma, Ramesh :** K-contact metrics as Ricci solitons, Beitr Algebra Geom, DOI 10.1007/s13366-011-0038-6.
- [2] Ashoka, S. R., Bagewadi, C. S. and Ingalahalli, Gurupadavva : Certain Results on Ricci solitons in α Sasakian Manifolds, Accepted in Hindawi Publishing Corporation Geometry.
- Blaga, Adara M.: η-Ricci solitons on para-Kenmotsu manifolds, arXiv:1402.0223v1 [math.DG] 2 Feb 2014.
- [4] Bagewadi, C. S. and Ingalahalli, Gurupadavva : Ricci Solitons in Lorentzian α -Sasakian Manifolds, Appears in Acta Mathematica Academiae Paedagogicae Nyíregyháziensis.
- [5] Bagewadi, C. S., Ingalahalli, Gurupadavva and Ashoka, S. R.: A Study on Ricci Solitons in Kenmotsu Manifolds, ISRN Geometry, (2013), Article ID 412593, 6 pages.

- [6] Bagewadi, C. S. and Venkatesha: Some Curvature Tensors on a Trans-Sasakian Manifold, Turk J. Math., 31, (2007), 111-121.
- [7] Bennet Chow, Peng Lu and Lei Ni: Hamilton's Ricci flow, Graduate Studies in Mathematics, American Mathematical Society Science Press, (2006).
- [8] Blair, D. E. and Oubina, J. A.: Conformal and related changes of metric on the product of two almost contact metric manifolds, Publ. Matematiques., 34, (1990), 199-207.
- [9] Constantin Calin and Mircea Crasmareanu: Eta-Ricci Solitons On hope Hypersurfaces In Complex Space Forms, Rev. Roumaine Math. Pures Appl., 57 (2012), 1, 55-63.
- [10] Constantin Calin and Mircea Crasmareanu: From the Eisenhart Problem to Ricci Solitons in f-Kenmotsu Manifolds, Bulletin of the Malaysian Mathematical Sciences Society 33 (3), (2010), 361-368.
- [11] **De, U. C., Mine Turan, Ahmet Yildiz and Avik De, :** Ricci solitons and gradient Ricci solitons on 3-dimensional trans-Sasakian manifolds, Filomat 26: (2012), 363-370.
- [12] Ingalahalli, Gurupadavva and Bagewadi, C. S.: Ricci solitons in α -Sasakain manifolds, ISRN Geometry, (2012), 14 pages.
- [13] Hamilton, R. S.: The Ricci flow on surfaces, Mathematics and general relativity, (Santa Cruz. CA, 1986), 237-262, Contemp. Math. 71, American Math. Soc., 1988.
- [14] Ivey, T.: Ricci solitons on compact 3-manifolds, Differential Geom. Appl., 3, (1993), 301307.
- [15] **Kundu, S.**: α -Sasakian 3-Metric As a Ricci solitons, Ukdrainian Mathematical Journal, 65, No.6 (2013).
- [16] **Das, Lovejoy :** Second order parallel tensors on α -Sasakian manifold, Acta Mathematica Academiae Paedagogicae Nyíregyháziensis, 23(1), (2007), 65-69.
- [17] Ali, Musavvir and Zafar Ahsan,: Ricci Solitons and Symmetries of Spacetime Manifolds of General Relativity, Global Journal of Advanced Researchon Classical and Modern Geometries ISSN: 2284-5569, Vol.1, Issue2, pp.75-84.
- [18] Nagaraja, H. G. and Premalatha, C. R.: Ricci Solitons in f-Kenmotsu Manifolds and 3-dimensional Trans-Sasakian Manifolds, CSCanada Progress in Applied Mathematics, 3(2), (2012), 1-6.
- [19] Perelman, G.: The Entropy Formula for the Ricci Flow and Its Geometric Applications, arXiv:math.DG/0211159v1 (2002).
- [20] Toppping, Peter: lectures on the Ricci flow, LMS Lecture notes series in conjunction with cambridge University, Press 2006.
- [21] Shaikh, A. A., Baishya, K. K. and Eyasmin: On D-homothetic deformation of trans-Sasakian structure, Demonstr. Math., XLI(1), (2008), 171 - 188.
- [22] Sharfuddin, A., Zafar, A. and Sharief Deshmukh: A Note on Compact Ricci Solitions, J. T. S., 6, No. 2(2012), 107 - 112.
- [23] Sharma, R.: Certain results on K-contact and (k, μ) -contact manifolds, J. Geom., 89(1-2), (2008), 138-147.
- [24] Tripathi, M. M.: Ricci solitons in contact metric manifolds, arXiv:0801.4222.
- [25] Yano, K.: Integral formulas in Riemannian geometry, Marcel Dekker, Newyork, (1970).