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Abstract

In this paper, we deal with one of the special Finsler spaces such as Cs-like
space and find out Ricci flow equations on Cs-like space with («, f)—metric.
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1. Introduction

Ricci flow is a means by which one can take an arbitrary Riemannian man-
ifold and smooth out the geometry of that manifold to make it look more sym-
metric. It has proven to be a very useful tool in understanding the topology of
such manifolds.

The Ricci flow theory became a very powerful method in understanding the
geometry and topology of Riemannian manifolds ([3], [7]-[9]). The most impor-
tant achievement of this theory was the geometrization conjecture of Thurston.
One consequence of this conjecture is the Poincare conjecture. This conjecture
was formulated by Henri Poincare [4] and proved by Perelman ([7]-[9]). The
proof of Poincare conjecture based on a detailed analysis of Ricci flow surgery
is one of the most impressive recent achievement of modern mathematics.

S. Vacaru ([12]-[18]) studied on nonholonomic Ricci flows, evolution equa-
tions and dynamics, exact solutions in gravity, symmetric and non symmet-
ric metrics, the entropy of Lagrange-Finsler spaces and Ricci flows, spectral
functionals, nonholonomic Dirac operators and non commutative Ricci flows,
Fractional nonholonomic Ricci flows, Nonholonomic ricci flows and parametric
deformations of the solitonic pp-waves and schwarzschild solutions. A. Thayebi,
E. Peyghan and B. Najafi [11] studied on Ricci flow equation on («, 3)—metrics.


User
Typewritten Text
https://doi.org/10.56424/jts.v8i01.10552



122 S. K. Narasimhamurthy and D. M. Vasantha

R. S. Hamilton [3] introduced the following geometric evolution equation
for a Riemannian metric g;; and the corresponding Ricci curvature tensor Ric;;

d )
o (9ij) = —2Ric;j, g(t =0) = go (1.1)

is known as the un-normalized Ricci flow in Riemannian geometry. Hamilton
showed that there is a unique solution to this equation for an arbitrary smooth
metric on a closed manifold over a sufficiently short time.

In this paper, we deal with one of the special Finsler spaces such as Cy—like
space and find out un-normal Ricci flow and normal Ricci flow equations on
Cy—like space with («, ) —metric.

2. Preliminaries

Definition 2.1. A Finsler metric is a scalar field L(x,y) which satisfies the
following three conditions:

(i) Tt is defined and differential for any point of 7M™ \ {0},
(ii) It is positively homogeneous of first degree in 3¢, that is,
L(x,\y) = AL(z,y), forany positive number \,

(iii) It is regular, that is,
9i5(z,y) = 30:0; L%, _
constitute the regular matrix g;;, where 0; = diyl
The manifold M" equipped with a fundamental function L(z,y) is called Finsler
space F™" = (M", L).

The concept of the («, f)—metric was introduced in 1972 by M. Matsumoto
and has been studied by M. Hashiguchi, Y. Ichijyo, S. Kikuchi, C. Shibata and
others ([5], [6] and [10]).

Definition 2.2. The Finsler space F"" = (M™, L) is said to have an («, §)—metric
if L is a positively homogeneous function of degree one in two variables a =
Vaiy'y? and B = b;(z)y’, where « is a Riemannian metric and £ is differential
1—form.

A deformation of Finsler metrics means a 1—parameter family of metrics
gij(x,y,t), such that t € [—¢€,€e] and € > 0 is sufficiently small. For such a
metric w = u;dx’, the volume element as well as the connections attached to
it depend on t. The same equation can be used in the Finsler setting. Another
Ricci flow equation can also be used instead of this tensor evolution equation
[2]. By contracting %gij = —2Ric;; with y* and y’ gives, via Euler’s theorem,
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we get
oL?
— = _2I°R
ot ’

where R = # Ric. That is,
d log L=—R, L(t=0) = L.

This scalar equation directly addresses the evolution of the Finsler metric L and
makes geometrical sense on both the manifold of nonzero tangent vectors 7'M
and the manifold of rays. It is therefore suitable as an un-normalized Ricci flow
for Finsler geometry.

By using the elegance work of Akbar-Zadeh in [1], Bao proposed the fol-
lowing normalised Ricci flow equation for Finsler metrics

d 1
—log L = — —_— av, L(t=0)=1L
dt 08 B+ v /SMR v, Lt =0)= Lo

where the underlying manifold M is compact [2].

It is noted that [11], Chern had asked whether every smooth manifold
admits a Ricci-constant Finsler metric? The weaker case of this question is
that whether every smooth manifold admits a Einstein Finsler metric? His
question has already been settled in the affirmative for dimension 2 because,
by a construction of Thurstons, every Riemannian metric on a two-dimensional
manifold admits a complete Riemannian metric of constant Gaussian curvature.

Let M be an n-dimensional C'°° manifold, 7. M be the tangent space at
x € M and TM = UgcpT,M be the tangent bundle of M. Let x € M and
L, = L|r,m. To measure the non-Euclidean feature of L,, define Cy : T,M ®
T.M T, M — R by
1d
2dt
The family C' = {Cy }yerm, is called the Cartan torsion. It is known that C' =0
if and only if L is Riemannian.

Cy(u,v,w) = [Gy+tw(w, V)] |t=0, u,v,w € Ty M.

For y € T, My, define mean Cartan torsion I, by I, (u) = I;(y)u’, where I; =

gjkC'ijk, Cijk = %gzi,f and v = u’ aii |.. By Deicke’s theorem, L is Riemannian if

and only if I, = 0.

A Finsler metric L is called Cy—like if its Cartan tensor is given by

1
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3. Un-normal Ricci flow equation on Cs-like space with (o, 3)-metrics

Here, we study (o, 3)-metrics satisfying un-normal Ricci flow equation.
First, we prove the following lemmas.

Lemma 3.1. Let L; be a deformation of an («, 8)-metric L, which is Cs-like,
on a manifold M of dimension n > 3. Then the variation of Cartan tensor is
given by the following

.y 1 .y
Cipl'PIF = —2R|I||* - QLQR,Z»J,kaI’f — 3| T2 R, (3.1)

where ||1]|? = I, I™.

Proof. First, assume that L; be a deformation of a Finsler metric on a two-
dimensional manifold M satisfies Ricci flow equation, that is,

d , . L
% = 95 = —2Rici;, dlogL = T = —R, (3.2)

where R = %Ric. By definition of Ricci tensor, we have

1
Ricjj = 5[RLQ]

yiyd
1
= Rgij + §L2R,m‘ + Ry + Ryi, (3.3)
__ OR S 2R . . . .
where R; = oy and R;; = By Taking a vertical derivative of (3.3) and
using y; ; = gij and LLj = y;, yields
. 1
Ricijr = 2RCijr + §LZR,M,I<: +{9kRi + gij Br + grilt 5}
+H{Rjkyi + Rijyr + Ry} (3-4)

Contracting (3.4) with I'I7I* and using y;I' = 4*I; = 0 implies that
o o 1 o
Ricyj ) I'FIF = 2RCj, I'I 1" + 5L2R,i,j,,€ﬂfﬂlk + 3| T||2I™R . (3.5)

The Cartan tensor of an («, #)-metric on n-dimensional manifold M is given by
1

Gk = 1

L. (3.6)
Multiplying (3.6) with I*I/I* yields

Cigp' 1" = ||| (3.7)
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Then by (3.5) and (3.7), we get
Ricy I'FIF = 2R|I||* + %L2R7i,j,k1iljf’f
+3[[I|2I™R . (3.8)

On the other hand, since L; satisfies Ricci flow equation, then

/ _ 1 8921'
kT gyk
. 18(—2Rz’cij)
2 Oy
= —R’L.Cij7k. (39)

By (3.8) and (3.9), we get (3.1).

Lemma 3.2. Let L; be a deformation of an (¢, 8)-metric L, which is Ca-like,
on a manifold M of dimension n > 3. Then C’Z(jkli]jlk is a factor of || I]|%.

Proof. Since g”gj; = 0%, we have
L
(97 95) =0
= 9" gjr + 9" g5 =0
= ¢ gjr + g (—2Ric;,) = 0
= ¢ i — 29" Ricj), = 0, (3.10)

or equivalently, (gij)lgjk = Qginicjk.
Contracting with ¢'* gives

N\ .
(gd> = 2Ric, (3.11)
Then, we have
. /
I = (gjkcijk)
. / .
= (gjk) Cijk + g’ (ciji)

= 2Ricjkcijk + gjk (_Ricij,k:)

= Rid* 83; — (ngchjk> i —i—g]k’ichjk. (3.12)

Since
—dkpia o — (kR ik pso.
g " Ricijp, = 9" Ricjr ) +g ,iRZCgk,
K
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we have
I} = Ric*g — (" Rici) + g™ Ricy
= —p, (3.13)
where p = g/*Ricj, and p; = g;i. Thus
)

= (99) L+ 4L
= 2RicVIj + g7 (~p;)
= 2RicVI; — p'. (3.14)
The variation of y; = LL,; with respect to ¢ is given by
yi = —2Ricimy™.
Therefore, we can compute the variation of angular metric h;; as follows
i = (gij — L™ %y;)
= (gij) — (L_2yiyj>,
— —2Rici; — { L7 [y + v + vy (L)'}
= —2Ricij — L™ [~2Ricimy™y; — 2Ricjmy™yi) — 2L Ry;y;
= —2Ric;; + 2(hij — gij) R + 2 (Ricim L™ y;) L™ 'y™
+2 (Ricjm L™ y;) L 1y™
= —2Ric;j + 2 (hij — 9ij) R+ 2 (Ricimlj + Ricjml;) 1™, (3.15)
where I; = L™'y; and I™ = L~'y™. Thus, we consider the variation of Cartan

tensor

1 /
/

I (L) — LI (||1)2)

[l
(HGIc+ DL+ TLL) oy (1m0, + 100
- [ 1112

 (piliIx + pi iy + pri1;) (1™ + 171} Cij
=" e - HE - (316)




Ricci flow equations on special Finsler space 127
Multiplying (3.16) with I'I7T* gives

(pil® + pj I + pI*) |||

Cz{jkﬂ]jlk - HE
I+ Iy « Lo LI, x I'IPTF
17|12 1712 ’
_ 3™ [(2Ric™ I — ™) Iy + 17 (=) " 17]°
1712 1712 17|
= |I|1> {p™ L — 2 (Ric™ Iy I; + pmd™) } (3.17)

which implies C} ;.1 ‘I7T* is a factor of ||I]|2. This completes the proof.
Next, we prove the following main theorem.

Theorem 3.1. Suppose that L is an (a, 8)-metric on M, which is Cs-like, then
every deformation L; of the metric L satisfying un-normal Riccci flow equation
is an Einstein metric.

Proof. By virtue of lemma and lemma , R; ;s ['I7I* is a factor of ||||?. Since
R, jxI'II* is a factor of ||I]|2, multiplying it with y* or y/ implies R; = 0. It
means that R = R(z) and then L, is an Einstein metric.

4. Normal Ricci flow equation on Cs-like space with («, §)-metrics

If M is a compact manifold, then S(M) is compact and we can normalize
the Ricci flow equation by requiring that the flow keeps the volume of SM
constant. Recalling the Hilbert form w = L,; dz’, that volume is

(=1
su (n—1)!

During the evolution, L, w and consequently the volume form dVgj; and the

n(n—1)

Volsy = w A (dw)" ! = / dVsar.
SM

volume Volgyr, all depend on t. On the other hand, the domain of integration
SM, being the quotient space of T'My under the equivalence relation z ~ 1y,
z = Ay for some A > 0, is totally independent of any Finsler metric and hence
does not depend on t. We have

d d d
L (@Vsar) = |gis 2 gis —n-logL| dVsay.
dt( S ) [g]dtg] no 09] SM

A normalized Ricci flow for Finsler metrics is proposed by Bao as follows

d

1
—logL = R+ ———— RdV, L(t=0)=1L 4.1
ool =Rt goer [ RaV. =0 =L @)
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where the underlying manifold M is compact. Now, we let Vol(SM) = 1. Then
all of Ricci constant metrics are exactly the fixed points of the above flow. Let

. 1,5
Rici; = 3 (L R) iy
and differentiating (4.1) with respect to 3 and 37, the following normal Ricci

flow tensor evaluation equation is concluded.

d 2
dtgj ZCJ+V0Z(S7\[) /SM Gij g( ) go ( )

Starting with any familiar metric on M as the initial data Ly, we may deform
it using the proposed normalized Ricci flow, in the hope of arriving at a Ricci
constant metric.

Theorem 4.1. Suppose that L is an («, §)-metric on M, which is Cs-like, then
every deformation L; of the metric L satisfying normal Riccci flow equation is
an Einstein metric.

Proof. Consider Finsler surfaces which satisfy the normal Ricci flow equation.
Then

dg;; .
9ij = —2RZCij + 2 R dVgij,
dt SM
L/
dloglL = 7= —R +/ R dV. (4.3)
SM

By the same argument in the un-normal Ricci flow case, we can calculate the
variation of mean Cartan tensor as follows

) /
I = (9]kcijk)
. / .
= (9]k) Cijk + 9°* (Ciji)’
— [ZRicjk -2 / R dngk;:| Cije + 97" [Ricjkyi +2 /
— (4.4)

Then we have

R dvcijk}

I/’i

(6"1)) + 9" 1]

= [QRicij —2 / R dvgij] I — g p;. (4.5)
SM
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As the similar way that we used in un-normal Ricci flow, it follows that

1 /
/ — .
= [t
_ (IlmIm + Imﬂn) Cijk B (pinIk + ijiIk + kain) (4 6)
11]2 1112 '

Contracting it with I'I/I*, we can say C;jkﬂ[j]k is a factor of ||I||%. By lemma ,
we deduce that R ; jxI'I7I* is a factor of ||I||?. By the same argument, it results
that every deformation L; of the metric L satisfying normal Ricci flow equation
is an Einstein metric.
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