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Abstract

In this paper, a nonlinear mathematical model for the control of vector

borne diseases, like malaria is proposed and analyzed. In the modeling process

it is assumed that the mosquito population is controlled by using larvivorous

fish, which partially depends on the larva of mosquito population. It is further

assumed that the mosquito population grows logistically. The equilibria of the

model are obtained and their stability is discussed by using stability theory of

differential equations. Further numerical simulation is performed to verify the

analytically obtained results.

Keywords : Mathematical model, human population, mosquito population,

Larvivorous fish population.

1. Introduction

Vector transmitted diseases are known to induce major behavioral and eco-

nomic changes in tropical and subtropical region, in which mosquito-transmitted

diseases are most prevalent illness and are responsible for many life-threatening

diseases, e.g. malaria, yellow fever, dengue fever and chikangunya etc. Out of

these mosquito borne serious illness, the malaria is a highly complex disease in

humans caused by several species of mosquito-borne parasite (Plasmodium fal-

ciparum, vivax, malariae, knowlesi and ovale) and it is endemic in many parts

of the World, infecting between 350-500 million people per year. Malaria is

transmitted exclusively by genus Anopheles. In the last several years, so many

efforts have been made to reduce the incidence of malaria focusing on reduc-

ing the number of mosquitoes and preventing mosquito bites. However, most

of these efforts, especially the ones that use pesticides, have been banned by
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the environmental protection organizations as they have an adverse effect on

non-targeted population. Despite more than hundred years of a serious efforts

for its control, malaria still ranks as one of the most widespread and prevalent

infectious diseases. Also due to continuous application of pesticides, mosquitoes

have developed resistance to these chemicals and now they are not so effective.

This suggests us that looking for an alternative method of control of mosquitoes

and biological control seems to be environmental friendly method to control

mosquito population. Biological control means introduction or manipulation

of organisms to subdue vector population. Biological control, particularly us-

ing Larvivorous fish plays a very positive role in controlling mosquitoes. The

method of control of mosquito using Larvivorous fish is not new, it has been

implemented since 1937 in many parts of the world. But control of mosquitoes

using pesticides was fast so it suppressed this conventional method of control of

mosquitoes. Now again this method of larval control is accepted and successfully

implemented in many part of world.

Although there are lots of experimental studies to evaluate the efficiency

of this method of control but not many researchers have explored mathematical

modeling of this method of control of vectors.

2. Mathematical model

Let N(t) be the total human population density in the region under con-

sideration at any time t. Which is divided into two subclasses namely, X(t)

as susceptible class and infective class with density as Y (t). Ms(t) as density

of susceptible mosquitoes, Mi(t) as density of infective mosquitoes. B(t) as

population density of Larvivorous fish. A is the constant immigration rate, the

constant β represents the transmission rate of susceptible to the infective class,

constant d and ν denote the natural death rate and recovery rate of human

population respectively. The constant α represents disease induced death rate

and σ denotes growth rate of mosquito population. L is carrying capacity of

mosquitoes. The constant θ is death rate of mosquito due to crowding, constant

θ0 is death rate of mosquitoes and θ1 is the depletion rate of mosquitoes due to

Larvivorous fish. λ is the transmission rate of mosquito population. Constant γ

is growth rate of Larvivorous fish and constant γ0 is the growth rate of fish due

to mosquito population. γ1 is the growth rate of Larvivorous fish due to uptake

of Larva of mosquito population.
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dX

dt
= A− βXMi − dX + νY,

dY

dt
= βXMi − (d+ ν + α)Y,

dMs

dt
= σM − θM2

L
− θ1BM − θ0Ms − λMsY, (2.1)

dMi

dt
= λMsY − θ0Mi,

dB

dt
= γB − γ0B

2

K
+ γ1MB.

Using N = X + Y , M = Ms +Mi and σ − θ0 = θ, the reduced model is

dY

dt
= β(N − Y )Mi − (d+ ν + α)Y,

dN

dt
= A− dN − αY,

dMi

dt
= λ(M −Mi)Y − θ0Mi, (2.2)

dM

dt
= θM(1− M

L
)− θ1BM,

dB

dt
= γB − γ0B

2

K
+ γ1MB.

It suffices to study the model system (2.2).

The region of attraction for all solutions initiating in the positive orthant

is given by

Ω :=

{
(Y,N,Mi,M,B) : 0 ≤ Y ≤ N ≤ A

d
, 0 ≤ Mi ≤ M ≤ Mm, 0 ≤ B ≤ Bm

}
,

where Mm =
Lσ

θ
and Bm =

K

γ0

{
γ +

γ1Lσ

θ

}
.

3. Equilibrium analysis

The model system (2.2) has the following six non-negative equilibria:

(i) E0

(
0, Ad , 0, 0, 0

)
which always exists.

(ii) E1

(
0, Ad , 0, L, 0

)
which always exists.

(iii) E2

(
0, Ad , 0, 0,

Kγ
γ0

)
which always exists.
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(iv) E3

(
0, Ad , 0,M3, B3

)
exists provided

θ − θ1Kγ

γ0
> 0. (3.1)

(v) E4(Y4, N4,Mi4 ,M4, 0) exists provided

βAλL

dθ0(d+ ν + α)
> 1. (3.2)

(vi) E∗(Y ∗, N∗,M∗
i ,M

∗, B∗) exists provided

βAλ
[
θ − θ1Kγ

γ0

]
dθ0(d+ ν + α)

(
θ
L + θ1Kγ1

γ0

) > 1, (3.3)

θ − θ1Kγ

γ0
> 0. (3.4)

Now, it is sufficient to show the existence of equilibria E4 and E∗.

Existence of E4

In the equilibrium E4(Y4, N4,Mi4 ,M4, 0), the values of Y4, N4,Mi4 and M4

may be obtained by solving the following algebraic equations:

β(N − Y )Mi − (d+ ν + α)Y = 0, (3.5)

A− dN − αY = 0, (3.6)

λ(M −Mi)Y − θ0Mi = 0, (3.7)

θ(1− M

L
) = 0. (3.8)

From equation (3.6), we have

N =
A− αY

d
. (3.9)

From equation (3.7), we have

Mi =
λMY

θ0 + λY
. (3.10)

From equation (3.8), we have

M = L. (3.11)

From equation (3.5), we have

β

[
A− (α+ d)Y

d

]
λLY

(θ0 + λY )
− (d+ ν + α)Y = 0. (3.12)
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Let Y ̸= 0, we have

f(Y ) = β

[
A− (α+ d)Y

d

]
λL

(θ0 + λY )
− (d+ ν + α). (3.13)

From equation (3.13), we note the following:

(i) f(0) > 0 provided condition (3.2) is satisfied.

(ii) f

(
A

α+ d

)
< 0.

(iii) f ′(Y ) < 0.

Thus there exists a unique positive root, say Y ∗
2 of equation (3.13) in the interval(

0, A
α+d

)
. Using this value of Y4 in equations (3.9)-(3.11) we can get the values

of N4, Mi4 and M4, respectively. Thus the equilibrium E4(Y4, N4,Mi4 ,M4, 0),

exists if condition (3.2) holds.

Existence of E∗

This equilibrium E∗ may be obtained by solving the following set of alge-

braic equations:

β(N − Y )Mi − (d+ ν + α)Y = 0, (3.14)

A− dN − αY = 0, (3.15)

λ(M −Mi)Y − θ0Mi = 0, (3.16)

θ − θM

L
− θ1B = 0, (3.17)

γ − γ0B

K
+ γ1M = 0. (3.18)

From equation (3.15), we have

N =
A− αY

d
. (3.19)

From equation (3.16), we have

Mi =
λMY

θ0 + λY
. (3.20)

From equation (3.18), we have

B =
K

γ0
(γ + γ1M). (3.21)
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From equation (3.17), we have

M =

[
θ − θ1Kγ

γ0
θ
L + θ1Kγ1

γ0

]
(3.22)

From equation (3.14), we have

β

[
A− (α+ d)Y

d

] [
λY

θ0 + λY

] [
θ − θ1Kγ

γ0
θ
L + θ1Kγ1

γ0

]
− (d+ ν + α)Y = 0. (3.23)

Let Y ̸= 0 then we have

F (Y ) = β

[
A− (α+ d)Y

d

] [
λ

θ0 + λY

] [
θ − θ1Kγ

γ0
θ
L + θ1Kγ1

γ0

]
− (d+ ν + α). (3.24)

From equation (3.24), we note the following

(i) F (0) > 0, provided condition (3.3) is satisfied.

(ii) F

(
A

α+ d

)
< 0.

(iii) F ′(Y ) < 0.

Thus there exists a unique positive root Y ∗ of equation (3.24) if condition

(3.3) is satisfied. Using this value of Y ∗ in equation (3.22), we get positive

value of M(say,M∗) if the condition (3.4) is satisfied. From equations (3.19)-

(3.21), we can get positive values of N∗, M∗
i and B∗. Thus the equilibrium

E∗(Y ∗, N∗,M∗
i ,M

∗, B∗) exists if the conditions (3.3) and (3.4) are satisfied.

4. Stability analysis

In this section, we investigate the local stability of the equilibria E0, E1, E2,

E3, E4 and E∗ by determining the sign of the eigenvalues of Jacobian matrix

corresponding to each equilibria. The Jacobian matrix for the model system

(2.2) is given as follows:

J =


−a11 βMi β(N − Y ) 0 0

−α −d 0 0 0

λ(M −Mi) 0 −a33 λY 0

0 0 0 a44 −θ1M

0 0 0 γ1B a55

 ,

where a11 = βMi + (d + ν + α), a33 = λY + θ0, a44 = θ − 2θM

L
− θ1B and

a55 = γ − 2γ0B

K
+ γ1M.
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Let J0, J1, J2, J3, J4 and J∗ be the Jacobian matrices evaluated at equilibria

E0, E1, E2, E3, E4 and E∗, respectively, which are quite obvious.

The stability behavior of interior equilibrium E∗ is not obvious from the

corresponding Jacobian matrix. The following theorems give sufficient condi-

tions for local and non-linear stability of equilibrium E∗.

Theorem 1. Let the following inequality hold:

β2λ2(N∗ − Y ∗)2(M∗ −M∗
i )

2 <
4

9
(λY ∗ + θ0)

2(βM∗
i + d+ ν + α)2, (4.1)

then E∗ is locally asymptotically stable.

Proof. Linearizing the model system (2.2) about E∗ by using the following

transformations

Y = Y ∗ + y, N = N∗ + n, Mi = M∗
i +mi, M = M∗ +m and

B = B∗ + b.

where y, n,mi,m and b are small perturbations around the equilibrium E∗.

Now using the following positive definite function:

V =
1

2
y2 +

k1
2
n2 +

k2
2
m2

i +
k3

2M∗m
2 +

k4
2B∗ b

2, (4.2)

(where k1, k2, k3 and k4 are positive constants to be chosen appropriately)

Differentiating above equation with respect to t along the solutions of lin-

earized system of (2.2), we get

V̇ = −(βM∗
i + d+ ν + α)y2 − k1dn

2 − k2(λY
∗ + θ0)m

2
i −

k3θ

L
m2

−k4γ0
K

b2 + [βM∗
i − k1α]yn+ [β(N∗ − Y ∗) + λ(M∗ −M∗

i )k2]ymi

+k2λY
∗mim+ [k4γ1 − k3θ1]bm.

Choose k1 =
βM∗

i
α and k4 =

k3θ1
γ1

, we have

V̇ = −(βM∗
i + d+ ν + α)y2 − βM∗

i d

α
n2

−k2(λY
∗ + θ0)m

2
i −

k3θ

L
m2

−k3θ1γ0
γ1K

b2 + β(N∗ − Y ∗)ymi

+k2λ(M
∗ −M∗

i )ymi + k2λY
∗mim.
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V̇ will be negative definite if the following conditions are satisfied

β2(N∗ − Y ∗)2 <
2

3
k2(λY

∗ + θ0)(βM
∗
i + d+ ν + α) (4.3)

k2λ
2(M∗ −M∗

i )
2 <

2

3
(λY ∗ + θ0)(βY

∗ + d+ ν + α) (4.4)

k2λ
2Y ∗2 <

2k3θ

3L
(λY ∗ + θ0) (4.5)

From inequalities (4.3) and (4.4), we can get a positive value of k2 provided the

condition (4.1) holds. Further from the inequalities (4.5), we can get a positive

values of k3, provided the condition (4.1) holds. Hence the proof.

Furthermore, to establish the non-linear stability of the equilibrium E∗, we

employ Liapunov’s stability theory. Thus, we obtain following results regarding

the global stability of equilibrium E∗,

Theorem 2. The equilibrium E∗, if exists, is globally asymptotically stable in

Ω, provided

β2λ2(N∗ − Y ∗)2(M∗ −M∗
i )

2 <
4

9
θ20(d+ ν + α)2. (4.6)

Proof. Consider the following positive definite function:

W =
1

2
(Y − Y ∗)2 +

m1

2
(N −N∗)2 +

m2

2
(Mi −M∗

i )
2

+m3

(
M −M∗ −M∗ ln

M

M∗

)
+m4

(
B −B∗ −B∗ ln

B

B∗

)
.

where m1,m2,m3 and m4 are positive constants to be chosen appropriately.

Now differentiating W with respect to t along the solution of model system

(2.2), we get

Ẇ = −(βMi + d+ ν + α)(Y − Y ∗)2 −m1d(N −N∗)2

−m2(θ0 + λY )(Mi −M∗
i )

2 − m3θ

L
(M −M∗)2

−m4γ0
K

(B −B∗)2 + β(N∗ − Y ∗)(Y − Y ∗)(Mi −M∗
i )

+m2λ(M
∗ −M∗

i )(Y − Y ∗)(Mi −M∗
i )

+m2λY (M −M∗)(Mi −M∗
i )

+[βMi −m1α](Y − Y ∗)(N −N∗)

+[m4γ1 −m3θ1](M −M∗)(B −B∗).



Mathematical model for malaria transmission and biological control 167

Choosing m1 =
βM∗

i
α and m4 =

m3θ1
γ1

, we have

Ẇ = −(βMi + d+ ν + α)(Y − Y ∗)2 −m1d(N −N∗)2

−m2(θ0 + λY )(Mi −M∗
i )

2 − m3θ

L
(M −M∗)2

−m4γ0
K

(B −B∗)2 + β(N∗ − Y ∗)(Y − Y ∗)(Mi −M∗
i )

+m2λ(M
∗ −M∗

i )(Y − Y ∗)(Mi −M∗
i )

+m2λY (M −M∗)(M −M∗
i ).

Ẇ can be made negative definite inside the region of attraction Ω if the following

condition are satisfied

β2(N∗ − Y ∗)2 <
2

3
m2θ0(d+ ν + α), (4.7)

m2λ
2(M∗ −M∗

i )
2 <

2

3
θ0(d+ ν + α), (4.8)

m2λ
2A

2

d2
<

2

3L
m3θθ0, (4.9)

From inequalities (4.7) and (4.8), we can get a positive value of m2 provided

the condition (4.6) holds. Further, from the inequalities (4.9), we can obtain

positive value of m3. provided the condition (4.6) holds. Hence the proof.

5. Numerical simulation

To confirm the analytically obtained results and to illustrate the dynam-

ical behavior of the system, numerical simulation has been carried out using

MATLAB 7.0.5. We have taken the following set of parameter values in model

system (2.2):

A = 10, β = 0.000001, d = 0.00004, ν = 0.2, α = 0.001, λ = 0.00001,

θ0 = 0.2, σ = 0.4, θ = 0.00001, L = 100, θ1 = 0.004, γ = 0.01,

K = 1000, γ0 = 1.2, γ1 = 0.000001.

For the above set of parameter values it may be checked that the condition

of existence of endemic equilibrium E∗ and the global stability condition (i.e.

4.6) are satisfied. The equilibrium components are found as follows:

Y ∗ = 5546.238293, N∗ = 111344.0427, M∗ = 48543.68932, Mi
∗ = 10539.11991,

B∗ = 48.78640777.
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Figure 1. Nonlinear stability of (M∗, B∗) in M −B plane.
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Figure 2. Variation of infected human population and infected

mosquito population with time for different values of β.
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Figure 3. Variation of infected human population and infected

mosquito population with time for different values of λ.
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Figure 4. Variation of infected human population and infected

mosquito population with time for different values of θ1.
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Figure 5. Variation of infected human population and infected

mosquito population with time for different values of γ.
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Figure 6. Variation of infected human population and infected

mosquito population with time for different values of γ1.
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The eigenvalues of the Jacobian matrix corresponding to the equilibrium

E∗ for the model system (2.2) are −0.4352, −0.0316, −0.0002, −0.0317 +0.0936i

and −0.0317 −0.0936i . We note that the three eigenvalues of JE∗ are negative

and the other two eigenvalues have negative real part. Hence, for the above set

of parameter values the endemic equilibrium E∗ is locally asymptotically stable.

With these parameter values, the solution trajectories of the model system

(2.2) have been drawn in figure 1 with different initial starts. From this figure,

we may see that all the trajectories initiating inside the region of attraction are

approaching towards the equilibrium point (M∗, B∗). This shows the non-linear

stability behavior of the endemic equilibrium E∗ in M −B plane.

The variation of infective human population ‘Y (t)’ and infective mosquito

population ‘Mi(t)’ with respect to time ‘t’ for different values of rate of trans-

mission of susceptible human population to infective human population ‘β’ and

the rate of transmission of susceptible mosquito population to infective mosquito

population ‘λ’ are shown in figures 2 and 3, respectively. These figures, illustrate

that as the rate of transmission of susceptible human population to infective hu-

man population and the rate of transmission of susceptible mosquito population

to infective mosquito population increase, infective human population ‘Y (t)’ and

infective mosquito population ‘Mi(t)’ both increase. Further, the variations of

infective human population ‘Y (t)’ and infective mosquito population ‘Mi(t)’

with respect to time ‘t’ for different values of the depletion rate coefficient of

mosquito population due to Larvivorous fish ‘θ1’, growth rate of Larvivorous

fish ‘γ’, growth rate coefficient of Larvivorous fish due to uptake of larva of

mosquito population ‘γ1’ are shown in figures 4, 5 and 6, respectively. From

these figures, it is apparent that as the depletion rate coefficient of mosquito

population due to Larvivorous fish ‘θ1’, growth rate coefficient of Larvivorous

fish due to mosquito population ‘γ1’ increase. infective human population ‘Y (t)’

and infective mosquito population ‘Mi(t)’ decrease.

6. Conclusion

In this paper, A nonlinear mathematical model for malaria is proposed

and analyzed. Equilibria of the model are found and stability behavior of these

equilibria are discussed using variational matrix method. It is found that under

some conditions the mosquito population may present in the atmosphere but the

infected human population is zero. This suggest that under some conditions,the

malaria can be eradicated from the community. Also it is observed that with

the introduction of predatory fish, the equilibrium level of larvae population
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decreases which causes the decrease in the equilibrium level of adult mosquito

population. So introduction of Larvivorous fish has positive impact in control-

ling the transmission of malaria. Further, numerical simulation is performed to

demonstrate the analytical results.

References

[1] Anderson, R. M. and May, R. M. : Population biology of infectious diseases, part-I,

Nature, 280 (1979), 361-367.

[2] Bailey, N. T. J. : The Mathematical Theory of Infectious Diseases and its Applications,

2nd ed.., Griffin , (1975).

[3] Nagwa, G. A. and Shu, W. S. : A mathematical model for endemic malaria with

variable human and mosquito populations, Math. comput. modeling, 32 (2000), 487-513.

[4] Singh, N., Shukla, M. M., Mishra, A. K., Singh, M. P., Paliwal, J. C. and

Dash, A. P. : Malaria control using indoor residual spraying and larvivorous fish: a

case study in Betul, central India, Trop. Med. Int. Health, 11 (2006), 1512-1520.

[5] Hethcote, H. W. : Qualitative analysis of communicable disease models, Math. Biosci.,

28 (1976), 335-356.

[6] Singh, S., Chandra, P. and Shukla, J. B. : Modeling and analysis of the spread

of carrier dependent infectious diseases with environmental effects, J. Biol. Syst., 11 (3)

(2003), 325-335.

[7] Hsu, S. and Zee, A. : Global spread of infectious diseases, J. Biol. Syst., 12 (2004),

289-300.

[8] Misra, A. K., Sharma, A. and Shukla, J. B. : Modeling and analysis of effect

of awarene prorams by media on the spread of infrctious diseases, Mathematical and

computer modelling, 53 (2011), 1221-1228.

[9] Misra, A. K., Sharma, A. and Singh, V. : Effect of awareness programs on controlling

the prevalence of an epidemic with time delay, J. Biol. Syst., 19 (2) (2011), 389-402.

[10] Howard, A. F., Zhou, G. and Omlin, F. X. : Malaria mosquito control using edible

fish in western Kenya: preliminary findings of a controlled study, BMC Publication Health,

7 (2007), 199.

[11] Walker, K. and Lynch, M. : Contribution of anopheles larval control to malaria

suppression in tropical Africa: review of achievements and potential, Med. Vet. Entomol,

21 (2007), 2-21.

[12] Lou, Y. and Zhao, X. Q. : Modelling malaria control by introduction of larvivorous

fish, Bull. Math. Biol., 73 (2011), 384-407.

[13] Castillo-Chavez, C. and Song, B. : Dynamical model of tuberculosis and their appli-

cations, Math. Biosci. Eng., 1 (2004), 361-404.

[14] van den Driessche, P. and Watmough, J. :

Reproduction number and sub-threshold endemic equilibria for compartmental models of

disease transmission, Math. Biosci., 180 (2002), 29-48.

[15] Lashari, A. A. and Zaman, G. : optimal control of a vector borne disease with

horizontal transmission, Nonlinear Anal. RWA, 13 (2012), 203-212.



Mathematical model for malaria transmission and biological control 173

[16] Gtheko, A. K., Ototo, E. N. and Guiyun, Y. : Progress towards understanding the

ecology and epidemiology of malaria in the western kenya highlands: opportunities and

challenges for control under climate change risk, Acta Tropica, 121 (2012), 19-25.

[17] Mharakurwa, S., Thuma, P., Norris, D., Mulenga, M., Chalwe, V., Chipeta,

J., Munyati, S., Mutambu, S. and Mason, P. : Malaria epidemiology and control

in southern africa, Acta Tropica, 121 (2012), 202-206.

[18] Chiyaka, C., Mukandavire, Z., Das, P., Nyabdza, F., Hove-Musekwa, S. and

Mwambi, H. : Theoretical analysis of mixed plasmodium malariae and plasmodium

falsiparum infections with partial cross immunity, J. of Th. Biol., 263 (2010), 169-178.

[19] Hazarika, G. C. and Bhattacharjee, A. : Analysis of malaria model with mosquito-

dependent transmission coefficient for humans, Proc. Ind. Acad. Sci.(Math. Sci.), 121 (1)

(2011), 93-109.

[20] Singh, S., Chandra, P. and Shukla, J. B. : Modeling and analysis of the spread

of carrier dependent infectious diseases with environmental effects,J. of Biol. Sys., 11 (3)

(2003), 325-335.

[21] Shukla, J. B., Misra, A. K. and Singh, V. : Modeling the spread of an infectious

disease with bacteria and carrier in the environment, Nonlinear Anal. RWA, 12 (2011),

2541-2551.

[22] Lawrence Perko : Differential equations and dynamical system, Springer-Verlag, Third

Ed.

[23] Singh, S., Chandra, P. and Shukla, J. B. : Modeling and analysis of the spread of

malaria:environmental and ecological effects, J. Biol. Syst., 13 (1) (2005), 1-11.

[24] Brauer, F. and Castillo-Chavez, C. : Mathematical models Population biology and

epidemiology, Springer-Verlag, Second Edn.

[25] World Health Organization : (2000), The world health report 1999, WHO.

[26] World Health Organization : (2013), The world health report 2013, WHO.

[27] Takeuchi, Y., Iwasa, Y. and Sato, K. : Mathematics for life sciences and medicines,

Springer-Verlag.

[28] Ma, Z. and Li, Jia : Dynamical modeling and analysis of epidemics, World Scientific

Press.

[29] Chitnis, N., Cushing, J. M. and Hyman, J. M. : Bifurcation analysis of a mathe-

matical model for malaria transmission, SIAM J. of Appl. Math. 67 (1) (2006), 24-45.




