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Abstract

Self-similar solutions are obtained for unsteady, one-dimensional adiabatic

(or isothermal) flow behind a strong shock in a perfectly conducting dusty gas

in presence of a magnetic field. The shock wave is driven out by a piston moving

with time according to power law. The initial magnetic field varies as some power

of distance and the initial density of the medium is constant. The dusty gas is

taken as the mixture of a perfect gas and small solid particles. It is assumed

that the equilibrium flow condition is maintained in the flow field, and that

the viscous-stress and heat conduction of the mixture are negligible. Solutions

are obtained, in both cases, when the flow between the shock and the piston is

isothermal or adiabatic. Effects of a change in the mass concentration of the

solid particles in the mixture kp, in the ratio of the density of solid particles to

the initial density of the gas G0 and in the strength of initial magnetic field are

also obtained. It is shown that the presence of magnetic field has decaying effect

on the shock wave, but this effect is decreased on increasing kp when G0 = 1.

Also, a comparison is made between adiabatic and isothermal cases.

Keywords : Shock wave, self-similar solution, dusty gas, magnetic field, adia-

batic flow and isothermal flow.
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1. Introduction

The study of shock wave in a mixture of small solid particles and perfect

gas is of great interest in several branches of engineering and science (Pai et

al. [20]). The dust phase constitutes the total amount of solid particles which

are continuously distributed in perfect gas. The volumetric fraction of the dust
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lowers the compressibility of the mixture, and the mass of the dust load may

increase the total mass, and hence it may add to the inertia of the mixture. Both

effects due to addition of the dust, the decrease of the mixture’s compressibility

and the increase of the mixture’s inertia may markebly influence the shockwave.

Miura and Glass [16] obtained an analytic solution for a planar dusty gas

flow with constant velocities of the shock and piston moving behind it. As

they neglected the volume occupied by the solid particles mixed into the per-

fect gas,the dust virtually has a mass fraction but no volume fraction. Their

results reflect the influence of the additional inertia of the dust upon the shock

propagation. For plane, cylindrical and spherical geometry Vishwakarma [28]

computed a non-similarity solution for the flow field behind a strong shock prop-

agating at non-constant velocity in a dusty gas. He considered exponential time

dependence for the velocity of the shock. As he considered the nonzero volume

fraction of solid particles in dusty gas, his results reflect the effect of both the

decrease of compressibility and the increase of the inertia of the medium on the

shock propagation (Steiner and Hirschler [26], Vishwakarma and Pandey [30]).

The similarity method of Taylor [27] and Sedov [24] well known for piston prob-

lems have been used by several authors, e.g. Finkleman and Baron [6], Gretler

andRegenfelder [9], Helliwell [11], Wang [34], Singh et al. [25], to discuss about

the hyperbolic character of the governing equations and to obtain solutions in

an ideal gas. Steiner and Hirschler [26] have derived similarity solutions for the

flow behind a shock wave propagating in a dusty gas. The shock wave is driven

out by a moving piston with time according to power law.

At high temperatures that prevail in the problems associated with shock

waves a gas is ionized andelectromagnetic effects may also be significant. A

complete analysis of such a problem should therefore consist of the study of

gas dynamic flow and the electromagnetic field simultaneously. The study of

propagation of cylindrical shock waves in a conducting gas in the presence of an

axial or azimuthal magnetic field is relevant to the experiments on pinch effect,

exploding wires, and so on. This problem both in uniform and non-uniform ideal

gas was under taken by many investigators such as Pai [18], Sakurai [23], Bhutani

[2], Cole and Greifinger [4], DebRay [5], Christerand Helliwell [3], Vishwakarma

and Yadav [33], Vishwakarma and Patel [31]. Vishwakarma and Singh [32]

have studied the propagation of diverging shock waves in a low conducting

and uniform or non-uniform gas as a result of time dependent energy input

[31, 14] under the influence of a spatially variable axial magnetic induction.

Vishwakarma et al. [7] have extended the work of Vishwakarma and Singh
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[32] to study the propagation of diverging cylindrical shock waves in a weakly

conducting dusty gas in place of a perfect gas.

The magnetic fields have important roles in a variety of astrophysical sit-

uations. Complex filamentary structure in molecular clouds, shapes and the

shaping of planetary nebulae, synchrotron radiation from supernova remnants,

magnetized stellar winds, galaxies, and galaxy clusters as well as other interest-

ing problems all involve magnetic fields (see [17,10,1]). In the present paper, we

generalize the solution given by Steiner and Hirschler [26] for the propagation

of a strong shock wave in a conducting dusty gasin presence of a magnetic field

driven out by a piston moving according to a power law. The initial magnetic

field varies as some power of distance and the initial density of the medium is

constant. In order to get some essential features of shock propagation in the

presence of a magnetic field, the solid particles are considered as a pseudo-fluid

continuously distributed in the perfect gas and the mixture as perfectly conduct-

ing fluid. It is also assumed that the equilibrium flow condition is maintained

in the flow field, and that the viscous stress and heat conduction of the mixture

are negligible (Pai et al.[20], Higashinoand Suzuki [12]). In this paper, both the

adiabatic and isothermal flows between the shock and the piston are considered.

The assumption of adiabaticity may not be valid for the high temperature flow

where the intense heat transfer takes place such as behind a strong shock. There-

fore, an alternative assumption of zero-temperature gradient throughout the

flow (isothermal flow) may approximately be taken (Korobeinikov [13], Laum-

bach and Probstein [14], Sachdev and Ashraf [22]). The effects of variation of

mass concentration of solid particles (kp), the ratio of density of solid particles

to the initial density of the perfect gas in the mixture (G0) and the parameter

for strength of initial magnetic field (M−2
A ) are obtained. A comparative study

between the solutions of isothermal and adiabatic flows is also made.

2. Fundamental Equations and Boundary Conditions: Adiabatic Flow

The fundamental equations for one-dimensional, unsteady and adiabatic

flow of a perfectly conducting mixture of a gas and small solid particles in the

presence of an azimuthal magnetic field may be written as (c.f. Pai et al. [20],

Whitham [35])

∂ρ

∂t
+ u

∂ρ

∂r
+ ρ

∂u

∂r
+ j

uρ

r
= 0, (2.1)

∂u

∂t
+ u

∂h

∂r
+

1

ρ

∂p

∂r
+

1

ρ

[

µh
∂h

∂r
+
µh2

r

]

= 0, (2.2)
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∂h

∂t
+ u

∂h

∂r
+ h

∂u

∂r
+ (j − 1)

hu

r
= 0, (2.3)

∂e

∂t
+ u

∂e

∂r
−

p

ρ2

[

∂ρ

∂t
+ u

∂ρ

∂r

]

= 0, (2.4)

where ρ is the density, u is the flow velocity, p is the pressure, h is the azimuthal

magnetic field, e is the internal energy per unit mass, µ is the magnetic perme-

ability, r and t are the space and the time coordinates respectively and j = 1, 2

correspond to the cylindrical and the spherical symmetries.

The equation of state of the mixture of a perfect gas and small solid particles

can be written as(Pai [19])

p =
1− kp
1− Z

ρR∗T, (2.5)

where R∗ is the gas constant, kP the mass concentration of the solid particles, T

the temperature and Z the volume fraction of the solid particles in the mixture.

The relation between kp and Z is given by

kp =
Zρsp
ρ

, (2.6)

where ρsp is species density of solid particles.

In the equilibrium flow, kP is a constant in the whole flow-field. Therefore

Z

ρ
= constant. (2.7)

Also we have the relation

Z =
kp

(1− kp)G+ kp
, (2.8)

where G =
ρsp
ρ is the ratio of the density of the solid particles to the density of

the perfect gas in the mixture.

The Internal energy per unit mass of the mixture may be written as

e = [kpCsp + (1− kp)Cv]T = CvmT, (2.9)

where Csp is the specific heat of solid particles, Cv the specific heat of the gas at

constant volume and Cvm the specific heat of the mixture at constant volume

process.

The specific heat of the mixture at constant pressure is

Cpm = kpCsp + (1− kp)Cp, (2.10)
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where Cp is a specific heat of the gas at constant pressure.

The ratio of the specific heats of the mixture is given by (Pai [19], Marble

[15])

Γ =
Cpm

Cvm
=

1 + δβ′

γ

1 + δβ′
, (2.11)

where γ =
Cp

Cv
, δ =

kp
1−kp

and β′ =
Csp

Cv
.

Now,

Cpm − Cvm = (1− kp)(Cp − Cv) = (1− kp)R
∗. (2.12)

The internal energy per unit mass of the mixture is, therefore, given by

e =
p(1− Z)

ρ(Γ− 1)
. (2.13)

The equilibrium speed of soundin the mixture ‘a’ is given by

a2 =
Γp

ρ(1− Z)
. (2.14)

A strong cylindrical or spherical shock is supposed to be propagating in the

undisturbed electrically conducting mixture of an ideal gas and small solid par-

ticles with constant density.

The azimuthal magnetic field in undisturbed dusty gas is assumed to vary

as

h =
A

rl
, (2.15)

where ‘A’ and ‘l’ are constants. The flow variables immediately ahead of the

shock front are

u = u0 = 0, (2.16)

ρ = ρ0 = constant, (2.17)

h = h0 = Ar−l
s , (2.18)

p = p0 =
(1− l)µA2

2lr2ls
, (0 < l < 1), (2.19)

where rs is the shock radius and subscript ‘0’ denotes the conditions immediately

ahead of the shock.

The laws of conservation of mass, magnetic flux, momentum and energy

across the shock front propagating with velocity Us(=
drs
dt ) into a medium (mix-

ture of an ideal gas and small solid particles) of constant density ρ0 at rest
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(u0 = 0) and with negligibly small counter pressure p0 ∼= 0 give the following

shock conditions:

ρ0Us = ρs(Us − us), (2.20)

h0Us = hs(Us − us), (2.21)
1

2
µh20 + ρ0U

2
s = ps + ρs(Us − us)

2 +
1

2
µh2s, (2.22)

U2
s

2
+
µh20
ρ0

= es +
ps
ρs

+
(Us − us)

2

2
+
µh2s
ρs

, (2.23)

Zs

ρs
=
Z0

ρ0
, (2.24)

where the subscript ‘s’ denotes conditions immediately behind the shock front.

The shock conditions (2.20-2.23) reduce to

ρs =
ρ0
β
, (2.25a)

hs =
h0
β
, (2.25b)

Zs =
Z0

β
, (2.25c)

us = (1− β)Us, (2.25d)

ps =

[

(1− β) +
1

2M2
A

(

1−
1

β2

)]

ρ0U
2
s , (2.25e)

where β (0 < β < 1) is given by the relation

β3(Γ+1)−β2{(M−2
A +1)Γ+2Z0−1}+β{Z0+Γ−2}M−2

A +Z0M
−2
A = 0, (2.26)

Z0 being the initial volume fraction of the solid particles in the mixture andMA

the Alfven Mach number.

The expression for the initial volume fraction of the solid particles Z0 is

given by

Z0 =
kp

(1− kp)G0 + kp
, (2.27)

where G0 is the ratio of the density of solid particles to the initial density of the

perfect gas. Also the Alfven Mach number MA is given by

M2
A =

U2
s

µh2
0

ρ0

. (2.28)
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3. Self-similarity Transformations

The flow field is bounded by a spherical (or cylindrical) piston internally and

a spherical (or cylindrical) shock externally. In the framework of self-similarity

(Sedov [7]) the velocity Up of the piston is assumed to follow a power law given

by

Up =
drp
dt

= U0

(

t

t0

)n

, (3.1)

where t0 is the time at a reference state, rp denotes the radius of the piston,

U0 is the piston velocity at t = t0 and n is a constant. The consideration of

ambient pressure p0 and ambient magnetic field h0 imposes restriction on ‘n’

(−1
2 < n < 0) (see equation (3.6)). Thus the piston velocity jumps, almost

instantaneously from zero to infinity leading to the formation of a shock of

high strength in the initial phase. Referring the shock boundary conditions,

self-similarity requires that the velocity of the shock Us is proportional to the

velocity of the piston, that is,

Us =
drs
dt

= CU0

(

t

t0

)n

, (3.2)

where C is a constant. The time and space coordinates can be transformed into

a dimensionless self -similarity variable as follows

λ =
r

rs
=

[

(n+ 1)tn0
CU0

]

[ r

tn+1

]

. (3.3)

Evidently, λ = λp =
rp
rs

at the piston and λ = 1 at the shock.

To obtain the similarity solutions, we write the unknown variables in the fol-

lowing form (c.f. Steiner and Hirschler [4])

u = ϕ(λ)
r

t
, ρ = Λ(λ)ρ0, p = ψ(λ)ρ0

r2

t2
, µ1/2h = ρ

1/2
0

r

t
ϵ(λ), Z = Λ(λ)Z0,

(3.4)

where ϕ, Λ, ψ and ϵ are functions of λ only.

For existence of similarity solutions MA should be a constant, therefore

m =
n

n+ 1
. (3.5)

Since

0 < m < 1, (−
1

2
< n < 0). (3.6)
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The conservation equations (1.1) - (1.4) can be transformed into the fol-

lowing system of ordinary differential equations with respect to λ:

[ϕ− (n+ 1)]
dΛ

dλ
+ Λ

dϕ

dλ
= −

Λϕ(j + 1)

λ
, (3.7)

[ϕ− (n+ 1)]
dϕ

dλ
+

1

Λ

dψ

dλ
+
ϵ

Λ

dϵ

dλ
= −

2(ψ + ϵ2)

Λλ
−

(ϕ2 − ϕ)

λ
, (3.8)

[ϕ− (n+ 1)]
dϵ

dλ
+ ϵ

dϕ

dλ
=
ϵ− ϕϵ(j + 1)

λ
, (3.9)

[ϕ− (n+1)](1−Z0Λ)
dψ

dλ
+ψΓ

dϕ

dλ
= −

2ψ(ϕ− 1)(1− Z)

λ
−
ϕΓψ(j + 1)

λ
, (3.10)

By solving the above four equations, we get

dϕ

dλ
=

(j + 1)ϕψΓ− 2ψ(1− ϕ)(1− Z0Λ) + (j + 1)(1− Z0Λ)ϕϵ
2 − ϵ2(1− Z0Λ)

λ[Λ(1− Z0Λ)(ϕ− (n+ 1))2 − ψΓ− ϵ2(1− Z0Λ)]

−{2(ψ + ϵ2) + (ϕ2 − ϕ)Λ}{ϕ− (n+ 1)}(1− Z0Λ)
, (3.11)

dΛ

dλ
=

[2ψ(1− ϕ) + ϵ2 − (j + 1)Λϕ{ϕ− (n+ 1)}2 + {2(ψ + ϵ2) + (ϕ2 − ϕ)Λ}
λ[Λ(1− Z0Λ)(ϕ− (n+ 1))2 − ψΓ− ϵ2(1− Z0Λ)](ϕ− (n+ 1))

{ϕ− (n+ 1)}]Λ(1− Z0Λ)
, (3.12)

dϵ

dλ
=

{1− (j + 1)ϕ}{ϕ− (n+ 1)}2(1− Z0Λ)Λϵ− ψΓϵ+ 2ϵψ(1− ϕ)(1− Z0Λ)

λ[Λ(1− Z0Λ)(ϕ− (n+ 1))2 − ψΓ− ϵ2(1− Z0Λ)](ϕ− (n+ 1))

+{2(ψ + ϵ2) + (ϕ2 − ϕ)Λ}{ϕ− (n+ 1)}ϵ(1− Z0Λ)
, (3.13)

dψ

dλ
=

{2(1− ϕ)(1− Z0Λ)− (j + 1)Γϕ}{ϕ− (n+ 1)}2Λψ + ϵ2ψΓ− 2ϵ2ψ(1− ϕ)

λ[Λ(1− Z0Λ)(ϕ− (n+ 1))2 − ψΓ− ϵ2(1− Z0Λ)](ϕ− (n+ 1))

(1− Z0Λ) + {2(ψ + ϵ2) + (ϕ2 − ϕ)Λ}{ϕ− (n+ 1)}ψΓ
. (3.14)

The piston’s path coincides at λp =
rp
rs

with a particle path. Using equations

(3.1) and (3.4) the relation

ϕ(λp) = (n+ 1), (3.15)

can be derived.

Using the self-similarity transformations (3.4) and equation (3.2) the shock con-

ditions (2.24) take the form

ϕ(1) = (1− β)(n+ 1), (3.16a)

Λ(1) =
1

β
, (3.16b)
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ϵ(1) =
(n+ 1)

β
M−2

A , (3.16c)

ψ(1) =

[

(1− β) +
1

2
M−2

A

(

1−
1

β2

)]

(n+ 1)2. (3.16d)

Now the differential equations (3.11-3.14) maybe numerically integrated, with

the boundary conditions (3.16) to obtain the flow-field between the shock front

and the piston.

4. Isothermalflow

In this section, we present the similarity solution for the isothermal flow

behind a strong shock driven out by a spherical (or cylindrical) piston moving

according to the powerlaw (3.1), in the case of perfectly conducting dusty gas.

The strong shock conditions, which serve as the boundary conditions for the

problem will be same as the shock conditions (2.20-2.23)in the case of adiabatic

flow.

For isothermal flow, equation (2.4) is replaced by

∂T

∂r
= 0. (4.1)

The equations (2.1), (2.2), and (2.3) can be transformed using equation (3.4)

into

[ϕ− (n+ 1)]
dΛ

dλ
+ Λ

dϕ

dλ
= −

Λϕ(j + 1)

λ
, (4.2)

[ϕ− (n+ 1)]
dϕ

dλ
+H

dΛ

dλ
+
ϵ

Λ

dϵ

dλ
= −

2ϵ2

Λλ
−

(ϕ2 − ϕ)

λ
, (4.3)

[ϕ− (n+ 1)]
dϵ

dλ
+ ϵ

dϕ

dλ
=
ϵ− ϕϵ(j + 1)

λ
, (4.4)

where

H = H(λ) =
ψ(λ)

Λ2(1− ΛZ0)
=

[

(1− β) + 1
2M

−2
A

(

1− 1
β2

)]

(n+ 1)2(β − Z0)

λ2Λ(1− ΛZ0)2
.

(4.5)

Equation (4.1) together with equation of state (2.5) gives

p

ps
=

ρ

ρs

(1− Zs)

(1− Z)
. (4.6)
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Equation (4.6) with the aid of equation (3.4) yields a relation between ψ(λ) and

Λ(λ) in the form

ψ(λ) =

[

(1− β) + 1
2M

−2
A

(

1− 1
β2

)]

(n+ 1)2(β − Z0)Λ(λ)

λ2(1− ΛZ0)
. (4.7)

Solving equations (4.2)-(4.4)for dϕ
dλ ,

dϵ
dλ and dΛ

dλ , we have

dϕ

dλ
=

{

(ϕ− ϕ2)− 2ϵ2

Λ

}

(ϕ− (n+ 1)) +
(

HΛ + ϵ2

Λ

)

(j + 1)ϕ− ϵ2

Λ

λ[(ϕ− (n+ 1)2)−HΛ− ϵ2

Λ ]
, (4.8)

dϵ

dλ
=
ϵ[(1− (j + 1)ϕ)(ϕ− (n+ 1))2 + (ϕ− (n+ 1))

(

2ϵ2

Λ − (ϕ− ϕ2)
)

−HΛ]

λ[(ϕ− (n+ 1)2)−HΛ− ϵ2

Λ ](ϕ− (n+ 1))
,

(4.9)

dΛ

dλ
= −

Λ
[

ϕ(j + 1)(ϕ− (n+ 1))2 +
(

(ϕ− ϕ2)− 2ϵ2

Λ

)

(ϕ− (n+ 1))− ϵ2

Λ

]

λ[(ϕ− (n+ 1)2)−HΛ− ϵ2

Λ ](ϕ− (n+ 1))
,

(4.10)

where

H = H(λ) =

[

(1− β) + 1
2M

−2
A

(

1− 1
β2

)]

(n+ 1)2(β − Z0)

λ2Λ(1− ΛZ0)2
. (4.11)

The transformed shock conditions (3.16) and the kinematic condition (3.15) at

the piston will be same as in the case of adiabatic flow.

The ordinary differential equations (4.8-4.11) with boundary conditions

(3.16) can now be numerically integrated to obtain the solution for the isother-

mal flow behind the shock surface. Normalizing the variables u, p, ? andh with

their respective values at the shock, we obtain

u

us
=

ϕ

ϕ(1)
λ,

ρ

ρs
=

Λ

Λ(1)
,

p

ps
=

ψ

ψ(1)
λ2,

h

hs
=

ϵ

ϵ(1)
λ. (4.12)

5. Results and Discussion

Equations (3.11-3.14) for adiabatic flow and equations (4.8-4.10)for isother-

mal flow with boundary conditions (3.16) were integrated using fourth-order

Runge-kutta algorithm. The flow variables ϕ, Λ, ϵ and ψ as functions of λ

are obtained from the shock front (λ = 1) until the inner expanding surface

(λ = λp) is reached. For the purpose of numerical calculations, the values of

constant parameters are taken to be (Pai et al. [20] Miura and Glass[16], Vish-

wakarma[28], Steiner and Hirschler[26], Rosenau and Frankenthal[21]) j = 2,
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γ = 5
3 , n = −0.15, β′ = 0.25, kp = 0, 0.2, G0 = 1, 100 and M−2

A = 0, 0.005, 0.01.

The value j = 2 corresponds to spherical shock,kp = 0 to the dust-free case

(perfect gas) and M−2
A = 0 to a non-magnetic case. Also, 0.25 may be taken as

a typical value of the ratio of specific heat of dust particles and specific heat at

constant volume of the perfect gas (β′).

The variation of the flow variables u
us
, ρ
ρs
, p
ps

and h
hs

for adiabatic case are

shown in figures (1) to (4) and for isothermal case in figures (5) to (8). Table (1)

shows the values of β and λp at various values of kp, G0 and M−2
A . The density

ratio β remains same in both the adiabatic and isothermal cases. The ratio of

the velocity of the inner surface (piston) and the fluid velocity just behind the

shock is
Up

us
= 1

(1−β)C =
λp

(1−β) which is always greater than 1 from table (1).

Figure (2) shows that the reduced density ρ
ρs

at M−2
A = 0 is rapidly decreased

near the piston (inner contact surface) in the case of adiabatic flow; whereas

this effect is removed in the case of isothermal flow (figure (6)).

Figure (9) shows that variation of λp with respect to kp for different value

of G0 and M−2
A . For G0 = 1, λp noticeably decreases by an increase in kp. It

means that the strength of the shock is decreased when kp is increased. For

G0 = 100, λp increases with increase in kp. It means that the strength of the

shock is increased by an increase in kp. Physically it means that when G0 = 100

the density of the perfect gas in mixture is highly decreased which overcomes

the effect of incompressibility of the mixture and finally makes a small decrease

in the distance between the piston and shock front, and an increase in the shock

strength. Further when magnetic field is applied on flow-field, the value of λp
is decreased which means that effect of magnetic field is to decrease the shock

strength.

It is found that an increase in the value of kp
i. increases the density ratio across the shock β(= ρ0

ρs
) when G0 = 1, but

in case of G0 = 100 the density ratio decreases (see table 1);

ii. increases the distance of piston from the shock front when G0 = 1, and

decreases it when G0 = 100 (see table 1).

iii. increasesthe reduced fluid velocity u
us
, the reduced density ρ

ρs
and the

reduced pressure p
ps

at any point in the flow-field behind the shock when

G0 = 1 and decreases these when G0 = 100 (see figures 1, 2, 3 in

adiabatic flow and 5, 6, 7 in isothermal flow); and

iv. decreases the reduced magnetic field h
hs

when G0 = 1 and increases it

when G0 = 100 (see figure 4 in adiabatic flow and figure 5 in isothermal

flow).
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This shows that an increase in kp decreases the shock strength when G0 = 1

and increases it when G0 = 100. Physical interpretations of these effects are as

follows:

In the mixture, small solid particles of density equal to that of the perfect

gas occupy a significant part of the volume which lowers the compressibility of

the medium at G0 = 1. Also, the compressibility of the mixture is reduced by an

increase in kp which causes an increase in the distance between the shock front

and the piston, a decrease in the shock strength, and the above nature of the

flow variables. In the mixture at G0 = 100, small solid particles of density equal

to 100 times that of the perfect gas occupy a very small portion of the volume,

and therefore compressibility is not lowered much; the inertia of the medium is

increased significantly due to dust load. An increase in kp, from 0.1 to 0.4 in the

mixture for G0 = 100, means that the perfect gas constituting 90% of the total

mass and occupying 99.889% of the total volume now constitutes 60% of the

total mass and occupies 99.338% of the total volume. Due to this reason, the

density of the perfect gas in mixture is highly decreased which overcomes the

effect of incompressibility of the mixture and finally causes a small decrease in

the distance between piston and shock front, an increase in the shock strength,

and the above behavior of flow variables.

Effects of an increase in the value of G0 are

i. to decrease the value of β (i.e. to increase the shock strength)(see table

1);

ii. to decrease the distance of piston from the shock front; and

iii. to decrease the flow variables u
us
, ρ
ρs

and p
ps

and to increase h
hs

(see figures

1, 2, 3, 4 in adiabatic flow and 5, 6, 7, 8 in isothermal flow).

These effects may be physically interpreted as follows:

Due to increase in G0 (at constant kp), there is high decrease in Z0, i.e. the

volume fraction of solid particles in the mixture becomes comparatively very

small. This effect induces comparatively more compression of the mixture in

the region between shock and piston, which displays the above effect.

An increase in the value of the parameter for strength of the magnetic fieldM−2
A

i. decreases λp, i.e. increases the distance of the piston from the shock

front. Physically it means that the gas behind the shock front is less

compressed and the strength of the shock is decreased(see table 1);
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ii. increases the value of β (i.e. decreases the shock strength), which is

same as given in (i) above (see table 1);

iii. decreases the flow variables u
us

and h
hs

at any point in the flow-field

behind the shock front (see figures 1 and 4 (for adiabatic flow) and 5

and 8 (for isothermal flow)); and

iv. increases the flow variable ρ
ρs

and p
ps

(see figures 2 and 3 (for adiabatic

flow) and 6 and 7 (for isothermal flow)).

Table 1. Variation of the density ratio β(= ρ0
ρs
) across the shock front and the

position of the piston surface λp for different values of kp, G0 and M−2
A with

γ = 5
3 , n = −0.15.

β

G0 = 1 G0 = 100

kp M−2

A = 0 M−2

A = 0.005 M−2

A = 0.01 M−2

A = 0 M−2

A = 0.005 M−2

A = 0.01

0.0 0.250000 0.255571 0.261039 0.250000 0.255571 0.261039

0.1 0.320408 0.323181 0.325991 0.245736 0.251445 0.257042

0.2 0.391045 0.392508 0.394002 0.240704 0.246579 0.252331

0.3 0.461983 0.462777 0.463587 0.234685 0.240763 0.246703

0.4 0.533333 0.533763 0.534201 0.227373 0.233704 0.239877

λp (Adiabatic Flow)

0.0 0.902678 0.896105 0.896105 0.902676 0.896105 0.890519

0.1 0.875007 0.870632 0.866715 0.904397 0.897713 0.892047

0.2 0.845084 0.842048 0.839236 0.906424 0.899606 0.893846

0.3 0.812399 0.810235 0.808165 0.908845 0.901866 0.895992

0.4 0.776228 0.774649 0.773102 0.911787 0.904607 0.898592

λp (Isothermal Flow)

0.0 0.912360 0.902459 0.895209 0.912360 0.902459 0.895209

0.1 0.884890 0.878382 0.873099 0.913830 0.903869 0.896585

0.2 0.854980 0.850634 0.846847 0.915560 0.905536 0.898203

0.3 0.822090 0.819150 0.816443 0.917650 0.907535 0.900148

0.4 0.785450 0.783453 0.781514 0.920190 0.909969 0.902518

Also, table 1 shows that the effect of magnetic field on shock strength,

in both the cases (adiabatic and isothermal flows), decreases significantly on

increasing the mass concentration of solid particles kp at G0 = 1; whereas at

G0 = 100 the effect of magnetic field on the shock strength is almost not influ-

enced by increasing kp. Thus the presence of magnetic field has decaying effect

on the shock wave, but this effect is decreased on increasing kp when G0 = 1.
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Comparison between Adiabatic and Isothermal Flows:

i. In isothermal flow atM−2
A = 0 (non-magnetic case) the density is almost

constant in the flow-field behind the shock; whereas atM−2
A = 0.005 and

0.01 (magnetic cases) the density decreases very rapidly near the piston

(see figure 6). But in adiabatic flow in both the magnetic and non-

magnetic cases (M−2
A = 0, 0.005, 0.01) the density decreases very rapidly

near the piston (see figure 2).

ii. From table 1 it is clear that λp (position of the piston surface) in isother-

mal flow is greater than that in the adiabatic flow. Physically, it means

that the gas is more compressed in the isothermal flow in comparison to

that in adiabatic flow. Thus the strength of the shock is higher in the

isothermal flow than that in the adiabatic flow.
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6. Conclusion

In this work, we have studied theself-similar solution for the flow behind

a strong shock wave propagating in a perfectly conducting dusty gas in the

presence of an azimuthal magnetic field. The shock is driven by a piston moving

with velocity obeying a power law. On the basis of this work, one may draw the

following conclusions:

i. An increase in the mass concentration of solid particles (kp) decreases the

shock strength at lower values of G0, and increases it at its higher values.

Also for G0 = 1, it increases the reduced velocity, reduced density and

reduced pressure and decreases the reduced magnetic field at any point

in the flow-field behind shock; whereas for G0 = 100, it decreases the

reduced velocity, reduced density and reduced pressure and increases the

reduced magnetic field.

ii. An increase in the value of the ratio of the density of solid particles

and the initial density of the perfect gas in the mixture (G0) increases

the shock strength and decreases the distance of piston from the shock

front. Also, it decreases the reduced velocity, the reduced density and the

reduced pressure and increases the reduced magnetic field at any point

in the flow field behind the shock. These effects are more impressive at

higher values of kp(= 0.4).

iii. The presence of magnetic field decreases the reduced fluid velocity but

increases the reduced pressure and reduced density at any point in the

flow-field behind the shock. Also, the effect of magnetic field on shock

strength, in both the cases (adiabatic and isothermal flow), decreases

significantly by increasing kp at G0 = 1; whereas at G0 = 100 the

effect of magnetic field on the shock strength is almost not influenced

by increasing kp.

iv. The value of λp (piston position) in isothermal flow is greater than that in

the adiabatic flow i.e.the strength of the shock is higher in the isothermal

flow than that in the adiabatic flow.
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