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Abstract

Self-similar solutions are obtained for unsteady, one-dimensional adiabatic
(or isothermal) flow behind a strong shock in a perfectly conducting dusty gas
in presence of a magnetic field. The shock wave is driven out by a piston moving
with time according to power law. The initial magnetic field varies as some power
of distance and the initial density of the medium is constant. The dusty gas is
taken as the mixture of a perfect gas and small solid particles. It is assumed
that the equilibrium flow condition is maintained in the flow field, and that
the viscous-stress and heat conduction of the mixture are negligible. Solutions
are obtained, in both cases, when the flow between the shock and the piston is
isothermal or adiabatic. Effects of a change in the mass concentration of the
solid particles in the mixture k,, in the ratio of the density of solid particles to
the initial density of the gas G and in the strength of initial magnetic field are
also obtained. It is shown that the presence of magnetic field has decaying effect
on the shock wave, but this effect is decreased on increasing k, when Gog = 1.
Also, a comparison is made between adiabatic and isothermal cases.

Keywords : Shock wave, self-similar solution, dusty gas, magnetic field, adia-
batic flow and isothermal flow.
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1. Introduction

The study of shock wave in a mixture of small solid particles and perfect
gas is of great interest in several branches of engineering and science (Pai et
al. [20]). The dust phase constitutes the total amount of solid particles which
are continuously distributed in perfect gas. The volumetric fraction of the dust
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lowers the compressibility of the mixture, and the mass of the dust load may
increase the total mass, and hence it may add to the inertia of the mixture. Both
effects due to addition of the dust, the decrease of the mixture’s compressibility
and the increase of the mixture’s inertia may markebly influence the shockwave.

Miura and Glass [16] obtained an analytic solution for a planar dusty gas
flow with constant velocities of the shock and piston moving behind it. As
they neglected the volume occupied by the solid particles mixed into the per-
fect gas,the dust virtually has a mass fraction but no volume fraction. Their
results reflect the influence of the additional inertia of the dust upon the shock
propagation. For plane, cylindrical and spherical geometry Vishwakarma [28]
computed a non-similarity solution for the flow field behind a strong shock prop-
agating at non-constant velocity in a dusty gas. He considered exponential time
dependence for the velocity of the shock. As he considered the nonzero volume
fraction of solid particles in dusty gas, his results reflect the effect of both the
decrease of compressibility and the increase of the inertia of the medium on the
shock propagation (Steiner and Hirschler [26], Vishwakarma and Pandey [30]).
The similarity method of Taylor [27] and Sedov [24] well known for piston prob-
lems have been used by several authors, e.g. Finkleman and Baron [6], Gretler
andRegenfelder [9], Helliwell [11], Wang [34], Singh et al. [25], to discuss about
the hyperbolic character of the governing equations and to obtain solutions in
an ideal gas. Steiner and Hirschler [26] have derived similarity solutions for the
flow behind a shock wave propagating in a dusty gas. The shock wave is driven
out by a moving piston with time according to power law.

At high temperatures that prevail in the problems associated with shock
waves a gas is ionized andelectromagnetic effects may also be significant. A
complete analysis of such a problem should therefore consist of the study of
gas dynamic flow and the electromagnetic field simultaneously. The study of
propagation of cylindrical shock waves in a conducting gas in the presence of an
axial or azimuthal magnetic field is relevant to the experiments on pinch effect,
exploding wires, and so on. This problem both in uniform and non-uniform ideal
gas was under taken by many investigators such as Pai [18], Sakurai [23], Bhutani
[2], Cole and Greifinger [4], DebRay [5], Christerand Helliwell [3], Vishwakarma
and Yadav [33], Vishwakarma and Patel [31]. Vishwakarma and Singh [32]
have studied the propagation of diverging shock waves in a low conducting
and uniform or non-uniform gas as a result of time dependent energy input
[31, 14] under the influence of a spatially variable axial magnetic induction.
Vishwakarma et al. [7] have extended the work of Vishwakarma and Singh
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[32] to study the propagation of diverging cylindrical shock waves in a weakly
conducting dusty gas in place of a perfect gas.

The magnetic fields have important roles in a variety of astrophysical sit-
uations. Complex filamentary structure in molecular clouds, shapes and the
shaping of planetary nebulae, synchrotron radiation from supernova remnants,
magnetized stellar winds, galaxies, and galaxy clusters as well as other interest-
ing problems all involve magnetic fields (see [17,10,1]). In the present paper, we
generalize the solution given by Steiner and Hirschler [26] for the propagation
of a strong shock wave in a conducting dusty gasin presence of a magnetic field
driven out by a piston moving according to a power law. The initial magnetic
field varies as some power of distance and the initial density of the medium is
constant. In order to get some essential features of shock propagation in the
presence of a magnetic field, the solid particles are considered as a pseudo-fluid
continuously distributed in the perfect gas and the mixture as perfectly conduct-
ing fluid. It is also assumed that the equilibrium flow condition is maintained
in the flow field, and that the viscous stress and heat conduction of the mixture
are negligible (Pai et al.[20], Higashinoand Suzuki [12]). In this paper, both the
adiabatic and isothermal flows between the shock and the piston are considered.
The assumption of adiabaticity may not be valid for the high temperature flow
where the intense heat transfer takes place such as behind a strong shock. There-
fore, an alternative assumption of zero-temperature gradient throughout the
flow (isothermal flow) may approximately be taken (Korobeinikov [13], Laum-
bach and Probstein [14], Sachdev and Ashraf [22]). The effects of variation of
mass concentration of solid particles (k,), the ratio of density of solid particles
to the initial density of the perfect gas in the mixture (Gy) and the parameter
for strength of initial magnetic field (MZ2) are obtained. A comparative study
between the solutions of isothermal and adiabatic flows is also made.

2. Fundamental Equations and Boundary Conditions: Adiabatic Flow

The fundamental equations for one-dimensional, unsteady and adiabatic
flow of a perfectly conducting mixture of a gas and small solid particles in the
presence of an azimuthal magnetic field may be written as (c.f. Pai et al. [20],
Whitham [35])

ap op ou  up
or Yoy TPt T 0 (2.1)

ou oh 10p 1[hah ,uhQ]
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where p is the density, u is the flow velocity, p is the pressure, h is the azimuthal
magnetic field, e is the internal energy per unit mass, u is the magnetic perme-
ability, 7 and ¢ are the space and the time coordinates respectively and j = 1,2
correspond to the cylindrical and the spherical symmetries.

The equation of state of the mixture of a perfect gas and small solid particles
can be written as(Pai [19])

1-k
p=T PoR*T, (2.5)
where R* is the gas constant, kp the mass concentration of the solid particles, T’
the temperature and Z the volume fraction of the solid particles in the mixture.

The relation between k,, and Z is given by

Zps
kp = 200, (2.6)

P
where p,), is species density of solid particles.

In the equilibrium flow, kp is a constant in the whole flow-field. Therefore

Z
— = constant. (2.7)
p
Also we have the relation
k
/. — 2.8
(1—kp)G+ky (2:8)

where G = p% is the ratio of the density of the solid particles to the density of
the perfect gas in the mixture.

The Internal energy per unit mass of the mixture may be written as
e=[k,Csp+ (1 — kp)Cy]T = Cyp T, (2.9)

where Cj), is the specific heat of solid particles, C,, the specific heat of the gas at
constant volume and C,,, the specific heat of the mixture at constant volume
process.

The specific heat of the mixture at constant pressure is

Com = kpCsp + (1 = kp)C, (2.10)



A Self-similar Solution of a Shock Wave Propagation in a Perfectly Conducting Dusty Gas 13

where C), is a specific heat of the gas at constant pressure.

The ratio of the specific heats of the mixture is given by (Pai [19], Marble

[15])
Yed
C 1+ =
=== oy (2.11)
Com  146f
where v = %’ 0= 15’;% and 3 = %*f
Now,
Cpm — Cym = (1 — kp)(Cp — Cy) = (1 — kp)R". (2.12)
The internal energy per unit mass of the mixture is, therefore, given by
p(l—2)
e= 27 (2.13)
p(I' = 1)
The equilibrium speed of soundin the mixture ‘a’ is given by
I'p
2
a®= ———. (2.14)
p(l—Z2)

A strong cylindrical or spherical shock is supposed to be propagating in the
undisturbed electrically conducting mixture of an ideal gas and small solid par-
ticles with constant density.

The azimuthal magnetic field in undisturbed dusty gas is assumed to vary
as

A
h=— 2.15
(2.15)

where ‘A’ and ‘I’ are constants. The flow variables immediately ahead of the
shock front are

u=wug =0, (2.16)
p = po = constant, (2.17)
h=hy=Ar,!, (2.18)

_ o (1=DpA?
p=po= ST 0<i<1), (2.19)

where 75 is the shock radius and subscript ‘0’ denotes the conditions immediately
ahead of the shock.

The laws of conservation of mass, magnetic flux, momentum and energy

across the shock front propagating with velocity Us(= d;ts) into a medium (mix-

ture of an ideal gas and small solid particles) of constant density pp at rest
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(up = 0) and with negligibly small counter pressure py = 0 give the following
shock conditions:

pOUS = ps(Us - us)7 (220)
hoUs = hs(Us — us), (2.21)
1 1
iﬂh(Q) + P0U52 =ps +ps(Us — US)2 + §Mh§7 (2.22)
U2 h2 s Us — U 2 h2
Us puho _ oy Poy Wamua)” | s (2.23)
2 Po Ps 2 Ps
Zs 7
L—— (2.24)
Ps Po

where the subscript ‘s’ denotes conditions immediately behind the shock front.

The shock conditions (2.20-2.23) reduce to

Ps = %7 (225@)

ho
hs = —, .25b
5 (2.25b)
Zs = ZBO (2.25¢)
us = (1 - B)Us, (2.25d)

1 1

b= |0=0)+ g3 (1= ) | w0 (2.250)

where (0 < 8 < 1) is given by the relation

BIT+1)—-BH(M P24+ 1T +2Z— 1} + B{Zo+T -2} M 2+ ZoM ;> = 0, (2.26)
Zy being the initial volume fraction of the solid particles in the mixture and M4
the Alfven Mach number.

The expression for the initial volume fraction of the solid particles Zj is
given by
kp
(1 — kp)G() + k:p7
where Gy is the ratio of the density of solid particles to the initial density of the

Zy = (2.27)

perfect gas. Also the Alfven Mach number M4 is given by

M3 = U

i (2.28)
0
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3. Self-similarity Transformations

The flow field is bounded by a spherical (or cylindrical) piston internally and
a spherical (or cylindrical) shock externally. In the framework of self-similarity
(Sedov [7]) the velocity U), of the piston is assumed to follow a power law given
by

dr t\"
U =2 =0, = 3.1
P dt 0 <t0> ’ ( )

where t( is the time at a reference state, 7, denotes the radius of the piston,
Uy is the piston velocity at ¢ = ty and n is a constant. The consideration of
ambient pressure pg and ambient magnetic field hg imposes restriction on ‘n’
(=3 < n < 0) (see equation (3.6)). Thus the piston velocity jumps, almost
instantaneously from zero to infinity leading to the formation of a shock of
high strength in the initial phase. Referring the shock boundary conditions,
self-similarity requires that the velocity of the shock Uy is proportional to the
velocity of the piston, that is,
n

U, = % — CU, <tt0) , (3.2)
where C' is a constant. The time and space coordinates can be transformed into
a dimensionless self -similarity variable as follows

P l:(n;-(}o)tg] Lnil} . (3.3)

Evidently, A = A\, = :—’S’ at the piston and A\ = 1 at the shock.
To obtain the similarity solutions, we write the unknown variables in the fol-
lowing form (c.f. Steiner and Hirschler [4])

r r? r
w=o(Ng, p=ANp, p=vWpogg, #h=p V). Z=ANZ,
(3.4)
where ¢, A, 9 and e are functions of A only.

For existence of similarity solutions M 4 should be a constant, therefore

(3.5)

Since

1
0<m<1, (—5 <n <0). (3.6)
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The conservation equations (1.1) - (1.4) can be transformed into the fol-
lowing system of ordinary differential equations with respect to A:

6 (n+ D)5 + A% - A‘b(&“), (3.7)
€ ae 62 2
R (39

[<z>—(n+1)](1_ZOA)i’+¢r ¢ e 1;(1_2)—“”’(1“), (3.10)

By solving the above four equatlons we get

dop _ (j+ 1)yl = 2¢(1 — ¢)(1 — ZoA) + (j + 1)(1 — ZoA)¢e® — €*(1 — ZoA)
d\ ANA(L = ZoA) (¢ — (n+1))2 —yT — €2(1 — ZpA)]

{2+ )+ (¢? — o)A — (n+1)}(1 — ZOA)7 (3.11)

dA 291 —¢) + € — (j + DAG{d — (n+ 1)} + {2(¢ + €%) + (¢ — ¢)A}
dA AA(L = ZoA) (¢ — (n+1))* = gL' = (1 = ZoA)|(¢ — (n + 1))
{¢ = (n+ DA = ZoA)

9

(3.12)

de  {1=(+ Do — (n+ VY1 — ZoA)Ae — $le + 261 — 6) (1 = ZoA)
AT AR - ZoA)(@— (n+1))? — 0T — (1 - ZoA)|(¢ — (n+ 1))

200+ ) £ (¢* — 9AMG — (n+ D}e(1 - ZoA) (3.13)

)

db _ {2(1— 9)(1— ZoA) — (j + DTOHS — (n+ 1)PPAY + YT — 246(1 — ¢)
A NA(= ZoA) (6 — (n+ 1) — 4T — (1~ ZoM)[(§— (n+ 1))
(L= Z00) + {206 ) + (& = Ao~ + D}

The piston’s path coincides at A\, = :—i’ with a particle path. Using equations
(3.1) and (3.4) the relation

d(Ap) = (n+1), (3.15)

can be derived.
Using the self-similarity transformations (3.4) and equation (3.2) the shock con-
ditions (2.24) take the form

#(1) = (1 - B)(n+1), (3.16a)

1
=_ 16b
5 (3.16b)
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M2 (3.16¢)

Y1) = [(1-B)+ %Mf (1 — ﬁlz)] (n+1)>% (3.16d)

Now the differential equations (3.11-3.14) maybe numerically integrated, with
the boundary conditions (3.16) to obtain the flow-field between the shock front
and the piston.

4. Isothermalflow

In this section, we present the similarity solution for the isothermal flow
behind a strong shock driven out by a spherical (or cylindrical) piston moving
according to the powerlaw (3.1), in the case of perfectly conducting dusty gas.

The strong shock conditions, which serve as the boundary conditions for the
problem will be same as the shock conditions (2.20-2.23)in the case of adiabatic
flow.

For isothermal flow, equation (2.4) is replaced by

orT

ar =0 (4.1)
The equations (2.1), (2.2), and (2.3) can be transformed using equation (3.4)
into
do Ap(j+1)
M)_("H)]EJFACM -, (4.2)
do ede 2% (¢*—9)
[¢_(n+1)]5+H5+Kﬁ__/T,\_f’ (4.3)
de  dp e—e(j+1)
[¢_(n+1)]ﬁ+ N U (4.4)
where
) [P (1 )| (04176 - Z)
=HQA) = A2(1—-AZy) N2A(1 — AZg)? :
(4.5)

Equation (4.1) together with equation of state (2.5) gives

p_p(d-Z) (4.6)

ZTS Ps (1_Z)
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Equation (4.6) with the aid of equation (3.4) yields a relation between () and
A()) in the form

(1= 8)+ 30032 (1= &) (n+ 1)2(8 = Zo)A()

Y(A) = N0 —AZy) (4.7)
Solving equations (4.2)-(4.4)for %, C‘ll—f\ and %, we have
6 {0--F}0-(+1)+ (HA+:A2> G+ve-5 ",
dA Al(@— (n+1)2) — HA — §]
de_A1=G+1O)G -+ 1)+ (6= (n+1)) (28 - (6-¢?) - HA
dr M(¢— (n+1)2) — HA = ](¢ — (n+1)) ’
(4.9)
an  AUEDE-mrD)?+ (6-69) %) 6~ (n+1) - 5]
dx M(¢— (n+1)2) — HA = $)(6 — (n+1)) ’
(4.10)
where
O (=) + 3032 (1= &)| (n+1)2(8 - LI

NA(1 — AZo)?
The transformed shock conditions (3.16) and the kinematic condition (3.15) at
the piston will be same as in the case of adiabatic flow.

The ordinary differential equations (4.8-4.11) with boundary conditions
(3.16) can now be numerically integrated to obtain the solution for the isother-
mal flow behind the shock surface. Normalizing the variables u, p, 7 andh with
their respective values at the shock, we obtain

u ) p A D v oo h €
S VA . ey 4.
w60 pe A pe 9D R D) (4-12)

5. Results and Discussion

Equations (3.11-3.14) for adiabatic flow and equations (4.8-4.10)for isother-
mal flow with boundary conditions (3.16) were integrated using fourth-order
Runge-kutta algorithm. The flow variables ¢, A, € and i as functions of A
are obtained from the shock front (A = 1) until the inner expanding surface
(A = )Ap) is reached. For the purpose of numerical calculations, the values of
constant parameters are taken to be (Pai et al. [20] Miura and Glass[16], Vish-
wakarmal[28], Steiner and Hirschler[26], Rosenau and Frankenthal[21]) j = 2,
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v=2,n=-015 8 =025, k,=0,0.2, Gy = 1,100 and M ;> = 0,0.005,0.01.
The value j = 2 corresponds to spherical shock,k, = 0 to the dust-free case
(perfect gas) and MZ2 = 0 to a non-magnetic case. Also, 0.25 may be taken as
a typical value of the ratio of specific heat of dust particles and specific heat at
constant volume of the perfect gas (5').

The variation of the flow variables %, £ 2 and for adiabatic case are

us? )
shown in figures (1) to (4) and for 1sothermaf)ca§e in ﬁgures (5) to (8). Table (1)
shows the values of 8 and A, at various values of k,, Gy and Mgz. The density
ratio 8 remains same in both the adiabatic and isothermal cases. The ratio of
the velocity of the inner surface (piston) and the fluid velocity just behind the

shock is Z—f = (1_15)0 = (1/38) which is always greater than 1 from table (1).

Figure (2) shows that the reduced density p% at MZQ = 0 is rapidly decreased
near the piston (inner contact surface) in the case of adiabatic flow; whereas
this effect is removed in the case of isothermal flow (figure (6)).

Figure (9) shows that variation of A\, with respect to k, for different value
of Gy and MZQ. For Go = 1, )\, noticeably decreases by an increase in k,. It
means that the strength of the shock is decreased when £, is increased. For
Go = 100, )\, increases with increase in k,. It means that the strength of the
shock is increased by an increase in k,. Physically it means that when Go = 100
the density of the perfect gas in mixture is highly decreased which overcomes
the effect of incompressibility of the mixture and finally makes a small decrease
in the distance between the piston and shock front, and an increase in the shock
strength. Further when magnetic field is applied on flow-field, the value of A,
is decreased which means that effect of magnetic field is to decrease the shock
strength.

It is found that an increase in the value of k,
i. increases the density ratio across the shock f(= )’;—S) when Gg = 1, but

in case of Gy = 100 the density ratio decreases (see table 1);

ii. increases the distance of piston from the shock front when Gy = 1, and
decreases it when G = 100 (see table 1).

iii. increasesthe reduced fluid velocity =, the reduced density ,i and the
reduced pressure = P at any point in the flow-field behind the shock when
Gop = 1 and decreases these when Gy = 100 (see figures 1, 2, 3 in
adiabatic flow and 5, 6, 7 in isothermal flow); and

iv. decreases the reduced magnetic field iThs when Gg = 1 and increases it

when G = 100 (see figure 4 in adiabatic flow and figure 5 in isothermal
flow).
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This shows that an increase in k, decreases the shock strength when G = 1
and increases it when Gg = 100. Physical interpretations of these effects are as
follows:

In the mixture, small solid particles of density equal to that of the perfect
gas occupy a significant part of the volume which lowers the compressibility of
the medium at Gy = 1. Also, the compressibility of the mixture is reduced by an
increase in k, which causes an increase in the distance between the shock front
and the piston, a decrease in the shock strength, and the above nature of the
flow variables. In the mixture at Go = 100, small solid particles of density equal
to 100 times that of the perfect gas occupy a very small portion of the volume,
and therefore compressibility is not lowered much; the inertia of the medium is
increased significantly due to dust load. An increase in k,, from 0.1 to 0.4 in the
mixture for Gy = 100, means that the perfect gas constituting 90% of the total
mass and occupying 99.889% of the total volume now constitutes 60% of the
total mass and occupies 99.338% of the total volume. Due to this reason, the
density of the perfect gas in mixture is highly decreased which overcomes the
effect of incompressibility of the mixture and finally causes a small decrease in
the distance between piston and shock front, an increase in the shock strength,
and the above behavior of flow variables.

Effects of an increase in the value of G are

i. to decrease the value of 3 (i.e. to increase the shock strength)(see table
1);
ii. to decrease the distance of piston from the shock front; and
iii. to decrease the flow variables ;*, p% and p% and to increase % (see figures
1, 2, 3, 4 in adiabatic flow and 5, 6, 7, 8 in isothermal flow).

These effects may be physically interpreted as follows:

Due to increase in G (at constant k,), there is high decrease in Zy, i.e. the
volume fraction of solid particles in the mixture becomes comparatively very
small. This effect induces comparatively more compression of the mixture in
the region between shock and piston, which displays the above effect.

An increase in the value of the parameter for strength of the magnetic field M;Q
i. decreases \p, i.e. increases the distance of the piston from the shock

front. Physically it means that the gas behind the shock front is less
compressed and the strength of the shock is decreased(see table 1);
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ii. increases the value of B (i.e. decreases the shock strength), which is
same as given in (i) above (see table 1);

u

iii. decreases the flow variables 2. and h% at any point in the flow-field
behind the shock front (see figures 1 and 4 (for adiabatic flow) and 5
and 8 (for isothermal flow)); and

iv. increases the flow variable p% and p% (see figures 2 and 3 (for adiabatic
flow) and 6 and 7 (for isothermal flow)).

Table 1. Variation of the density ratio 8(= Z—i’) across the shock front and the

position of the piston surface ), for different values of k,, G and MZQ with
_ 5 _
v =73, n=-0.15.

B
Go=1 Go = 100
kp | My =0|M;?=0.005| M,;*=0.01|M;*=0| M;*=0.005| M;*=0.01
0.0 | 0.250000 | 0.255571 0.261039 | 0.250000 | 0.255571 0.261039
0.1 | 0.320408 | 0.323181 0.325991 | 0.245736 | 0.251445 0.257042
0.2 [ 0.391045 [ 0.392508 0.394002 | 0.240704 | 0.246579 0.252331
0.3 | 0.461983 | 0.462777 0.463587 | 0.234685 | 0.240763 0.246703
0.4 | 0533333 | 0.533763 0.534201 | 0.227373 | 0.233704 0.239877
Ap (Adiabatic Flow)
0.0 | 0.902678 | 0.896105 0.896105 | 0.902676 | 0.896105 0.890519
0.1 | 0.875007 |  0.870632 0.866715 | 0.904397 | 0.897713 0.892047
0.2 | 0.845084 | 0.842048 0.839236 | 0.906424 |  0.899606 0.893846
0.3 ] 0.812399 [ 0.810235 0.808165 | 0.908845 | 0.901866 0.895992
0.4 | 0.776228 |  0.774649 0.773102 | 0.911787 |  0.904607 0.898592
Ap (Isothermal Flow)
0.0 | 0.912360 | 0.902459 0.895209 | 0.912360 | 0.902459 0.895209
0.1 [ 0.884890 | 0.878382 0.873099 | 0.913830 | 0.903869 0.896585
0.2 | 0.854980 |  0.850634 0.846847 | 0.915560 | 0.905536 0.898203
0.3 | 0.822090 | 0.819150 0.816443 | 0.917650 | 0.907535 0.900148
0.4 | 0.785450 |  0.783453 0.781514 | 0.920190 |  0.909969 0.902518

Also, table 1 shows that the effect of magnetic field on shock strength,
in both the cases (adiabatic and isothermal flows), decreases significantly on
increasing the mass concentration of solid particles k, at Gp = 1; whereas at
G = 100 the effect of magnetic field on the shock strength is almost not influ-
enced by increasing k,. Thus the presence of magnetic field has decaying effect

on the shock wave, but this effect is decreased on increasing k, when Gg = 1.
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Comparison between Adiabatic and Isothermal Flows:

i.

ii.

In isothermal flow at M = 0 (non-magnetic case) the density is almost
constant in the flow-field behind the shock; whereas at MZ2 = 0.005 and
0.01 (magnetic cases) the density decreases very rapidly near the piston
(see figure 6). But in adiabatic flow in both the magnetic and non-
magnetic cases (MX2 = 0,0.005,0.01) the density decreases very rapidly
near the piston (see figure 2).

From table 1 it is clear that A\, (position of the piston surface) in isother-
mal flow is greater than that in the adiabatic flow. Physically, it means
that the gas is more compressed in the isothermal flow in comparison to
that in adiabatic flow. Thus the strength of the shock is higher in the
isothermal flow than that in the adiabatic flow.

Tlatae 2 Vet ol grdvesd deely
e e o

=i

LY i oz vt

Fzime 3Vt ol redieed pressice io 212 reelon bebind the Sl A N M PR mag it 1A I T e Fragar bl li:
B Ahe ik = = s

Al o T i e e



A Self-similar Solution of a Shock Wave Propagation in a Perfectly Conducting Dusty Gas 23

14
i
13 1
i 1
i 0
L i
v i H k.
| | 0
I| l_ Eongl 4y
i BObE A
L n—H 1 U s
: B omk 4 duwe
| [ o Mde
| Ton i
0 2on3 | Ak
o mzo 2ol
14 |
yug K 305 x
G ¥ =
e velosite e be =aiva Toed e Vgure B; vacarics of peducer. deem rhe szpea beard the
PRI WL e e T 4
B
Y
'
o
!
w
e
[£3

1 the region sebbud Tie Find ¥ ath il

e o

ik 5\\%

na ) i A




24

J. P. Vishwakarma and Prem Lata

6. Conclusion

In this work, we have studied theself-similar solution for the flow behind

a strong shock wave propagating in a perfectly conducting dusty gas in the

presence of an azimuthal magnetic field. The shock is driven by a piston moving

with velocity obeying a power law. On the basis of this work, one may draw the

following conclusions:

i.

ii.

iii.

1v.

An increase in the mass concentration of solid particles (k,) decreases the
shock strength at lower values of G, and increases it at its higher values.
Also for Gy = 1, it increases the reduced velocity, reduced density and
reduced pressure and decreases the reduced magnetic field at any point
in the flow-field behind shock; whereas for Gy = 100, it decreases the
reduced velocity, reduced density and reduced pressure and increases the
reduced magnetic field.

An increase in the value of the ratio of the density of solid particles
and the initial density of the perfect gas in the mixture (Gp) increases
the shock strength and decreases the distance of piston from the shock
front. Also, it decreases the reduced velocity, the reduced density and the
reduced pressure and increases the reduced magnetic field at any point
in the flow field behind the shock. These effects are more impressive at
higher values of k,(= 0.4).

The presence of magnetic field decreases the reduced fluid velocity but
increases the reduced pressure and reduced density at any point in the
flow-field behind the shock. Also, the effect of magnetic field on shock
strength, in both the cases (adiabatic and isothermal flow), decreases
significantly by increasing k, at Go = 1; whereas at Gy = 100 the
effect of magnetic field on the shock strength is almost not influenced
by increasing k.

The value of A, (piston position) in isothermal flow is greater than that in
the adiabatic flow i.e.the strength of the shock is higher in the isothermal
flow than that in the adiabatic flow.
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