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Abstract

The aim of this paper is establish common fixed point theorems for quadru-

ple of occasionally weakly compatible mapping satisfying properties E.A using

inequality involving quadratic terms.
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1. Introduction

The concept of weakly commuting mappings of Sessa [19] is sharpened

by Rhoades [2] and further generalized by Jungck and Rhoades [2]. Similarly,

noncompatible mapping is generalized by AAamri and Moutawakil [1] called

property (E. A). Noncompatibility is also important to study the fixed point

theory. There may be pairs of mappings which are noncompatible but weakly

compatible. Imdad and Ali [6], Liu et al. [8], Pathak et al. [9] used this concept

to prove existence results in common fixed point theory. Throughout this paper

(X, d) is a metric space which we denote simply by X; and A and T are selfmaps

of X.
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Definition (1.1). (Jungck and Rhoades [10]). Let A and T be selfmaps of a

set X. If Ax = Tx = w (say), w ∈ X, for some x in X, then x is called a

coincidence point of A and T and the set of coincidence points of A and T in X

is denoted by C(A, T ), and w is called a point of coincidence of A and T .

Definition (1.2). The pair (A, T ) is said to

(i) satisfy property (E. A) [1] if there exists a sequence xn in X such

that lim
n→∞

Axn = lim
n→∞

Txn = t, for some t in X be compatible [11]

if lim
n→∞

d(ATxn, TAxn) = 0, whenever xn is a sequence in X such that

lim
n→∞

Axn = lim
n→∞

Txn = t, for some t in X.

(ii) be occasionally weakly compatible (owc) [5] if TAx = ATx for some

x ∈ C(A, T ).

(iii) be compatible [11] if lim
n→∞

d(ATxn, TAxn) = 0, whenever xn is a se-

quence in X such that lim
n→∞

Axn = lim
n→∞

Txn = t, for some t in X.

(iv) be weakly compatible[12] if TAx = ATx whenever Ax = Tx, x ∈ X.

(v) be noncompatible if there is at least one sequence xn in X such that

lim
n→∞

Axn = lim
n→∞

Txn = t, for some t in X, but lim
n→∞

d(ATxn, TAxn) is

either non-zero or non-existent.

Definition (1.3). (Liu et al. [8]). Let (X, d) be a metric space and A, B, S

and T be four selfmaps on X. The pairs (A, S) and (B, T ) are said to satisfy

common property (E. A) if there exist two sequences xn and yn in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = t, for some t in X. In 1996,

Tas et al.[14] proved the following theorem.

Theorem (1.4). (Tas et al. [14]). Let A, B, S and T be selfmaps of a complete

metric space (X, d) such that A(X) ⊆ T (X) and B(X) ⊆ S(X) and satisfying

the inequality,

[d(Ax,By)]2 ≤c1 max{[d(Sx,Ax)]2, [d(Ty,By)]2, [d(Sx, Ty)]2}

+ c2 max{d(Sx,Ax)d(Sx,By), d(Ty,Ax)d(Ty,By)}

+ c3 d(Sx,By)d(Ty,Ax)

(1.1)

for all x, y ∈ X, where c1, c2, c3 ≥ 0, c1 + 2c2 < 1, c1 + c3 < 1. Further, assume

that the pairs (A,S) and (B, T ) are compatible on X. If one of the mappings

A, B, S and T is continuous then A, B, S and T have a unique common fixed

point in X.

Babu and Kameswari [[15], Theorem 2.1] generalized Theorem 1.4.1 by

relaxing the continuity of A, B, S and T ; and replacing the compatible property
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of (A, S) and (B, T ) by weakly compatible. In fact, Kameswari [13] proved the

following theorem.

Theorem (1.5). (Kameswari [13]). Let A, B, S and T be selfmaps of a

complete metric space (X, d) such that A(X) ⊆ T (X) and B(X) ⊆ S(X); and

satisfying the inequality (1.1). Further, assume that the pairs (A,S) and (B, T )

are weakly compatible on X. If either of A(X) or B(X) or S(X) or T (X) is a

complete subspace of X, then A, B, S and T have a unique common fixed point

in X.

Theorem (1.6). (G.V.R. Babu* et al.[7] proof). Let A, B, S, and T be four

selfmaps of a metric space (X, d) satisfying the inequality

[d(Ax,By)]2) ≤c1max{[d(Sx,Ax)]2, [d(Ty,By)]2, [d(Sx, Ty)]2}

+ c2max {d(Sx,Ax)d(Sx,By)d(Ty,By)d(Ty,Ax)}

+ c3d(Sx,By)d(Ty,Ax)

for all x, y ∈ X, where c1, c2, c3 ≥ 0 and c1 + c3 < 1. Suppose that either

(i) B(X) ⊆ S(X), the pair (B, T ) satisfies property (E.A) and T (X) is a closed

subspace of X; or (ii) A(X) ⊆ T (X), the pair (A,S) satisfies property (E.A)

and S(X) is a closed subspace of X, holds. Then C(A,S) ̸= φ and C(B, T ) ̸= φ.

Most recently Savita Gupta et al. [18] proof, Some common fixed point

theorems in metric spaces satisfying an implicit relation involving quadratic

terms.

Theorem (1.7). Let A and S be two self-mappings of a metric space (X, d)

such that

1. A(X) ⊆ S(X),

2. for all x, y ∈ X and some ψ ∈ Ψ,

ψ
(

d2(Ax,Ay), d2(Sx, Sy), d(Sx,Ax)d(Ax, Sy), d(Sy,Ay)d(Sy,Ax),

d(Sx,Ay)d(Sy,Ax), d2(Sy,Ax)
)

≤ 0,
(1.2)

3. A(X) is a complete subspace of X.

Moreover, the mappings A and S have a unique common fixed point in X

provided the pair (A,S) is weakly compatible.

In this paper, we prove the existence of common fixed points for two pairs

of occasionally weakly compatible selfmaps satisfying property (E. A)/common

property (E. A) using an inequality involving quadratic terms.
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2. Main Results

Proposition (2.1). Let A, B, S, and T be four selfmaps of a metric space

(X, d) satisfying the inequality

[d(Ax,By) + p d(Sx, Ty)]d(Ax,By)

≤ c1max {[d(Sx,Ax)]2, [d(Ty,By)]2, [d(Sx, Ty)]2}

+ c2max {d(Sx,Ax)d(Sx,By)d(Ty,By)d(Ty,Ax)}

+ c3d(Sx,By)d(Ty,Ax),

(2.1)

for all x, y ∈ X, where 0 ≤ p < 1, c1, c2, c3 ≥ 0 and c1 + c3 < 1. Suppose that

either

(i) B(X) ⊆ S(X), the pair (B, T ) satisfies property (E.A) and T (X) is a closed

subspace of X; or (ii) A(X) ⊆ T (X), the pair (A,S) satisfies property (E.A)

and S(X) is a closed subspace of X holds. Then C(A,S) ̸= φ and C(B, T ) ̸= φ.

Proof. Suppose (i) holds. Since the pair (B, T ) satisfies property (E. A), there

exists a sequence xn in X such that

lim
n→∞

Bxn = lim
n→∞

Txn = z for some z ∈ X. (2.2)

Since B(X) ⊆ S(X), there exists a sequence yn in X such that

Bxn = Syn.

Hence,

lim
n→∞

Syn = z. (2.3)

First, we claim that lim
n→∞

Ayn = z. For this purpose, we consider

[d(Ayn, Bxn) + p d(Syn, Txn)]d(Ayn, Bxn)

≤ c1max{[d(Syn, Ayn)]2, [d(Txn, Bxn)]2, [d(Syn, Txn)]2}

+ c2max{d(Syn, Ayn)d(Syn, Bxn), d(Txn, Bxn)d(Txn, Ayn)}

+ c3d(Syn, Bxn)d(Txn, Ayn)

= c1max{[d(Bxn, Ayn)]2, [d(Txn, Bxn)]2}

+ c2d(Txn, Bxn)d(Txn, Ayn).

(2.4)

On taking the limit superior in (2.4), using (2.2) and (2.3), we get,

lim
n→∞

sup[d(Ayn, Bxn)]
2 ≤ c1 lim

n→∞

sup[d(Ayn, Syn)]
2

= c1 lim
n→∞

sup[d(Ayn, Bxn)]
2
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so that, lim
n→∞

sup[d(Ayn, Bxn)]
2 = 0 and hence lim

n→∞

[d(Ayn, Bxn)]
2 = 0.

Hence,

lim
n→∞

Ayn = z. (2.5)

Since T (X) is a closed subspace of X, by (2.2), we have

z = Tv for some v ∈ X. (2.6)

If Bv ̸= z, then

[d(Ayn, Bv) + p d(Syn, T v)]d(Ayn, Bv)

≤ c1max [d(Syn, Ayn)]
2, [d(Tv,Bv)]2, [d(Syn, T v)]

2

+ c2max d(Syn, Ayn)d(Syn, Bv), d(Tv,Bv)d(Tv,Ayn)

+ c3d(Syn, Bv)d(Tv,Ayn).

(2.7)

On letting n→ ∞ (2.7), using (2.2), (2.3), (2.5) and (2.6), we have

[d(z,Bv)]2 ≤ c1[d(z,Bv)]
2,

a contradiction. Hence,

Bv = z. (2.8)

Hence, from (2.6) and (2.8), we get

Bv = Tv = z. (2.9)

Hence,

C(B, T ) ̸= φ. (2.10)

Since B(X) ⊆ S(X) and z ∈ B(X), there exists a u ∈ X such that

z = Su. (2.11)

If z ̸= Au, then from (2.9) and (2.11), we get

[d(Au, z) + p d(Su, Tv)]d(Au, z)

= [d(Au,Bv) + pd(Su, Tv)]d(Au,Bv)

≤ c1max [d(Su,Au)]2, [d(Tv,Bv)]2, [d(Su, Tv)]2

+ c2max d(Su,Au)d(Su,Bv), d(Tv,Bv)d(Tv,Au)

+ c3d(Su,Bv)d(Tv,Au)

= c1[d(Au, z)]
2,

a contradiction. Hence,

Au = z. (2.12)
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Hence, from (2.11) and (2.12), we get

Au = Su = z. (2.13)

Hence, C(A,S) ̸= φ.

Similarly, the assertion of the theorem holds under assumption (ii). Hence,

Proposition 2.1 follows.

Theorem (2.2). In addition to the hypotheses of Proposition 2.1 on A, B, S

and T , if both the pairs (A,S) and (B, T ) are owc on X, then the maps A, B,

S and T have a unique common fixed point in X.

Proof. By Proposition 2.1, C(A,S) ̸= φ and C(B, T ) ̸= φ. Since the pair (A,

S) is owc, there exists u
′ ∈ C(A,S) such that

Au
′

= Su
′

= z
′

(say) (2.14)

and

ASu
′

= SAu
′

. (2.15)

Hence, from (2.14) and (2.15), we get

Az
′

= Sz
′

= z
′′

(say). (2.16)

Since the pair (B, T ) is owc, there exists v
′ ∈ C(B, T ) such that

Bv
′

= Tv
′

= w (say) (2.17)

and,

BTv
′

= TBv
′

. (2.18)

Hence, from (2.17) and (2.18), we get

Bw = Tw = w′ (say). (2.19)

Next we claim that

z
′′

= w
′

.

If z
′′

= w
′

, then from (2.16) and (2.19), we have

[d(z
′′

, w
′

) + pd(Sz
′

, Tw)]d(z
′′

, w
′

)

= [d(Az
′

, Bw) + pd(Sz
′

, Tw)]d(Az
′

, Bw)

≤ c1max [d(Sz
′

, Az
′

)]2, [d(Tw,Bw)]2, [d(Sz
′

, Tw)]2

+ c2max d(Sz
′

, Az
′

)d(Sz
′

, Bw), d(Tw,Bw)d(Tw,Az
′

)

+ c3d(Sz
′

, Bw)d(Tw,Az
′

) = (c1 + c3)[d(z
′′

, w
′

)]2,



Common Fixed Point Theorems for Quadruple Mappings.... 41

a contradiction. Hence,

z
′′

= w
′

. (2.20)

Hence, from (2.16) and (2.20), we get

Az
′

= Sz
′

= w
′

. (2.21)

Next we show that w′ = z′.

If w′ ̸= z′, then from (2.14) and (2.21), we obtain

d(z
′

, w
′

) =[d(Au
′

, Bw) + pd(Su
′

, Tw)]d(z
′

, w
′

)

≤ c1max [d(Su
′

, Au
′

)]2, [d(Tw,Bw)]2, [d(Su
′

, Tw)]2

+ c2max d(Su
′

, Au
′

)d(Su
′

, Bw), d(Tw,Bw)d(Tw,Au
′

)

+ c3d(Su
′

, Bw)d(Tw,Au
′

) = (c1 + c3)[d(z
′

, w
′

)]2,

a contradiction. Hence,

w
′

= z
′

. (2.22)

Hence, from (2.19), (2.21) and (2.22), we get

Az
′

= Sz
′

= z
′

, (2.23)

and

Bw = Tw = z
′

. (2.24)

Next we claim that w = z
′

.

If w ̸= z
′

, then from (2.17) and (2.24), we have

d(z
′

, w) =[d(Az
′

, Bv
′

) + pd(Sz
′

, T v
′

)]d(Az
′

, Bv
′

)

≤ c1max [d(Sz
′

, Az
′

)]2, [d(Tv
′

, Bv
′

)]2, [d(Sz
′

, T v
′

)]2

+ c2max d(Sz
′

, Az
′

)d(Sz
′

, Bv
′

), d(Tv
′

, Bv
′

)d(Tv′, Az′)

+ c3d(Sz
′, Bv′)d(Tv′, Az′) = (c1 + c3)[d(z

′

, w)]2,

a contradiction.

Hence,

w = z
′

. (2.25)

Hence, from (2.24) and (2.25), we get

Bz
′

= Tz
′

= z
′

. (2.26)

Therefore, from (2.23) and (2.26), we obtain

Az
′

= Bz
′

= Sz
′

= Tz
′

= z
′

.
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The uniqueness of ‘z′’ follows from the inequality (2.1).

Thus we conclude the theorem.

Proposition (2.3). Let A, B, S and T be four selfmaps of a metric space

(X, d) satisfying the inequality (2.1) of Proposition 2.1. Suppose that (A,S)

and (B, T ) satisfy a common property (E. A) and S(X) and T (X) are closed

subspaces of X. Then C(A,S) = φ and C(B, T ) = φ.

Proof. Suppose that the pairs (A,S) and (B, T ) satisfy a common property (E.

A). Then there exist two sequences xn and yn in X such that

lim inf Ayn = lim inf Syn = lim inf Bxn = lim inf Txn = z for some z ∈ X.

(2.27)

Assume that S(X) and T (X) are closed subspaces of X. Then,

z = Su = Tv for some u, v ∈ X. (2.28)

If Bv ̸= z, then from (2.27) and (2.28), we have

[d(Ayn, Bv) + pd(Syn, T v)]d(Ayn, Bv)

≤ c1max{[d(Syn, Ayn)]2, [d(Tv,Bv)]2, [d(Syn, Tv)]2}

+ c2max{d(Syn, Ayn)d(Syn, Bv), d(Tv,Bv)d(Tv,Ayn)}

+ c3d(Syn, Bv)d(Tv,Ayn).

(2.29)

On letting lim
n→∞

(2.29), using (2.27) and (2.28), we have, [d(z,Bv)]2 ≤

c1[d(z,Bv)]
2, a contradiction. Hence,

Bv = z.k (2.30)

Hence, from (2.28) and (2.30), we get

Bv = Tv = z. (2.31)

Again, if Au ̸= z, then from (2.28) and (2.31), we get

d(Au, z) =[d(Au,Bv) + d(Su, Tv)]d(Au,Bv)

≤ c1 max{[d(Su,Au)]2, [d(Tv,Bv)]2, [d(Su, Tv)]2}

+ c2 max{d(Su,Au)d(Su,Bv), d(Tv,Bv)d(Tv,Au)}

+ c3 d(Su,Bv)d(Tv,Au) = c1[d(Au, z)]
2,

a contradiction. Hence,

Au = z. (2.32)
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Hence, from (2.28) and (2.32), we get

Au = Su = z. (2.33)

Hence, from (2.31) and (2.33), it follows that

C(A,S) ̸= φ and C(B, T ) ̸= φ.

Hence, Proposition 2.3 follows.

Theorem (2.4). In addition to the hypotheses of Proposition 2.3 on A, B, S

and T , if both the pairs (A,S) and (B, T ) are owc on X, then the maps A, B,

S and T have a unique common fixed point in X.

Proof. By Proposition 2.3, C(A,S) ̸= φ and C(B, T ) ̸= φ. The rest of the

proof runs as that of Theorem 2.2.

Example (2.5). Let X = [13 , 1] with the usual metric. We define mappings A,

B, S and T on X by

A(x) =

{

1
3 , if 1

3 ≤ x ≤ 2
3 ;

2
3 , if 2

3 ≤ x ≤ 1
,

B(x) =

{

11
12 , if 1

3 ≤ x ≤ 2
3 ;

2
3 , if 2

3 ≤ x ≤ 1
,

S(x) =

{

5
5 , if 1

3 ≤ x ≤ 2
3 ;

1
3 , if 2

3 ≤ x ≤ 1
and T (x) =

{

1
2 , if 1

3 ≤ x ≤ 2
3 ;

1− 1
2x, if 2

3 ≤ x ≤ 1

Here we observe that both S(X) and T (X) are closed; and neither A(X) ⊆
T (X) nor B(X) ⊆ S(X). The inequality (2.1) holds with c1 = 1

3 , c2 = 33
5

c3 = 1
2 and p = 0. Also, we note that the inequality (2.1) fails to hold for any

c1 + 2c2 < 1 and c1 + c3 < 1 and 0 ≤ p < 1 when x, y ∈ [13 ,
2
3 ]. Further, the

sequence {xn}, xn = 2
3 + 1

n+3 , n = 1, 2, 3, ... is in X such that lim
n→∞

Axn =

lim
n→∞

Sxn = lim
n→∞

Bxn = lim
n→∞

Txn = 2
3 , so that the pairs (A,S) and (B, T )

satisfy common property (E. A). Clearly, the pairs (A, T ) and (B, T ) are owc.

Hence, the selfmaps A, B, S and T satisfy all the conditions of Theorem 2.4

and 2
3 is the unique common fixed point of A, B, S and T .
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