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Abstract

Takano [2] have studied decomposition of curvature tensor in a recurrent
space. Sinha and Singh [3] have been studied and defined decomposition of
recurrent curvature tensor field in a Finsler space. Singh and Negi studied
decomposition of recurrent curvature tensor field in a Kéehlerian space. Negi
and Rawat [6] have studied decomposition of recurrent curvature tensor field
in Kéehlerian space. Rawat and Silswal [11] studied and defined decomposi-
tion of recurrent curvature tensor fields in a Tachibana space. Further, Rawat
and Kunwar Singh [12] studied the decomposition of curvature tensor field in
Kéehlerian recurrent space of first order.

In the present paper, we have studied the decomposition of curvature ten-

sor fields R?jk in terms of two non-zero vectors and a tensor field in Einstein-

Kaehlerian recurrent space of first order and several theorem have been estab-
lished and proved.
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1. Introduction

An n(= 2m) dimensional Kéehlerian space K, is a Riemannian space,
which admits a tensor field Fih satisfying the conditions

FMF) = —¢! (1.1)

Fij = —=Fj, (Fij = F{ ga;) (1.2)
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and
Flh =0, (1.3)

Z?j =
where the (,) followed by on index denotes the operation of covariant differen-
tiation with respect to the metric tensor g;; of the Riemannian space.

The Riemannian curvature tensor thj & is given by

S T A S TR S TR R

The Ricci tensor and the scalar Curvature tensor are respectively given by
Rz‘j = Rgz’j and R = 9ij Rij. (1.4)
It is well known that these tensors satisfies the following identities
Rk = Rjki — Rirj, (1.5)
R; =2R},,
F‘iaRaj = _RiaF;L?
and
FfR. = ROF!. (1.8)
The holomorphically projective curvature tensor ng is defined by
1
h h h h h h h
Pz’jk = Rijk + m(le(SJ - Rjkéi + Siij — S]kSZ + QSZ'ij ), (1.9)
where Sij = F{'Rg;.

Let us suppose that a Kaehlerian space is Einstein one, and then the Ricci

tensor satisfies

R
Rij:ggija R,=0

from which, we obtain
Rij,a =0, Sija=0
and Sij = % .FZJ

The Bianchi identity for Einstein-Kéaehlerian space are given by

thjk + R;‘Lki + Rsz =0, (1.10)
and
R?jk,a + R?ka,j + R?aj,k' (111)

The Commutative formulae for the Curvature tensor fields are given as follows

Yk — They = T R, (1.12)
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T, =T, =TeRM  —Th RS . (1.13)

iml — tilm aml
A Einstein-Kéehlerian space is said to be Einstein-Kéaehlerian recurrent space
of first order, if its curvature tensor field satisfy the condition

Rl o = Ao Ry (1.14)
where )\, is a non-zero vector and is known as recurrence vector field.
The following relations follow immediately from equation (1.14),
Rij o = A Rij (1.15)
and
R,=MR. (1.16)

1. Decomposition of Curvature Tensor Field Ré‘jk

We Consider the decomposition of recurrent curvature tensor field R?jk in
the following form

Rl = Vi, (2.1)
where the non-zero tensor field Vih and vector ¢;, 1, are such that
MV =P, (2.2)

Theorem (2.1): Under the decomposition (2.1), the Bianchi identities for R?jk
takes the forms

Pigjr + Piopvi + Prdiy; =0 (2.3)
and
Aa@jVk + Ajortba + Axgat)j = 0. (2.4)
Proof. From Equations (1.10) and (2.1), we have
Vg + V] b + Vi ginp; = 0. (2.5)

Multiplying (2.5), by Ap, and using (2.2), we get relation (2.3)
Pigjhre + Pjoripi + Proiypj = 0.
From Equations (1.11), (1.14) and (2.1), we have
V' Nadjtr + Ajokta + Akdathj] = 0. (2.6)
Multiplying (2.6) by Ax and using (2.2), we get relation (2.4).

Theorem (2.2): Under the decomposition (2.1), the tensor field R?jk, R;; and
vectors ¢;, 1y, satisfies the relations

AR = \iRji, — N\jRip = Pi¢¢y.. (2.7)
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Proof. With the help of Equations (1.5), (1.14) and (1.15), we have
Aol = AiRjk — AjRig. (2.8)
Multiplying (2.1) by A, and using relation (2.2), we get
ARy = Pigyion (2.9)
in view of (2.8) and (2.9), we get the required relation (2.7).

Theorem (2.3): Under the decomposition (2.1), the quantities )\, and V"
behave like the recurrent vector and tensor field.

The recurrent form of these quantities are given by
Aam = fmAas (2.10)
Vi = Vi, (2.11)

Proof. Differentiating (2.7), covariantly with respect to ™, and using (2.1)
and (2.7), we obtain

Aam Vi o0k = NimRji — Njm Rig- (2.12)
Multiplying (2.12) by A, and using (2.1) and (2.8), we get
/\a,m(/\iRjk — AjRik) = Aa(Ai,ijk — )\j,mRik)- (2.13)

Now, multiplying (2.13) by Ap, we have
Aam(NiRjk — NjRig) An = AaAn(Nim Rk — Njm Rig- (2.14)

Since the expression of right hand side of the above equation is symmetric in a
and h, therefore

)\a,mAh = )\h,m)\aa (215)
provided that NiRji — ARy # 0.

The vector field A\, being non-zero, we can have a proportional vector p,, such
that

Aam = fimAa. (2.16)
Further, differentiating (2,2) w.r. to ™ and using (2.16), we get
MV = Pim — i P; (2.17)

from the above equation, it is obvious that

Vi = AV, (2.18)
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Since A, is a non-zero recurrence vector field, we can get a proportional vector
field g, such that
Viim = ttm V"
which complete the proof.
Theorem (2.4): Under the decomposition (2.1), the vector field P;, ¢;, ¥

behave like recurrent vectors and their recurrent form are given respectively by

P = 24 P, (2.19)

and

(/\m - Nm)¢j¢k - ¢j,m¢k + ¢j¢k,m- (2'20)

Proof. Differentiating (2.2) covariantly w.r. to 2™, and using equation (2.2),
(2.10) and (2.11), we obtain the required result (2.19). Further, differentiating
equation (2.1) covariantly w.r. to 2™ and using equation (1.14), (2.1) and (2.11),
we get the required recurrent form (2.20).

Theorem (2.5): Under the decomposition (2.1), the curvature tensor and
holomorphically projective curvature tensor are equal if

e {(P,0) — Pio)") + Po(F{'F) — FF])} + 2Pag FYFl = 0. (2.21)

Proof. The equation (1.9), may be written in the form

1

where
1
ik = 7y (i) — Rjpd} + S = Sy + 25,5 Fy). (2.23)
Contracting indices h and k in (2.1), we obtain
Rij = Vi (2.24)
In view of equation (2.24), we have
Sij = F{o;h V. (2.25)
Making use of (2.24) and (2.25) in equation (2.22), we get

1 a a a
Dl = — bt (VIg) ~VIah) VIR F — FEFI) 20,0 PRV, (2:26)
In view of (2.23), it is clear that

h _ ph
Piji = R
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iff D = 0, which in view of equation (2.26) gives
ek { (Vo] = V]oi) + Vo (FYF} = Y FP)} + 26,00 FPFV] = 0. (2.27)
Multiplying (2.27) by A\; and using (2.2), we obtain the required condition (2.21).

Theorem (2.6): Under the decomposition (2.1), the scalar curvature R, satisfy
the relation

MR = g9 Pygjab. (2.28)
Proof. Contracting indices h and k in (2.1), we get
Rij = Vigju. (2.29)
Multiplying (2.29) by ¢ both sides, we get
97 Rij = g" Vg (2.30)
in view of Equation (1.4), the above equation reduces to
R = gV} (2.31)

Now multiplying (2.31) by A; and using (2.2), we get
MR = g" Pipjiby

which complete the proof of the theorem.
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