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Abstract

Takano [2] have studied decomposition of curvature tensor in a recurrent

space. Sinha and Singh [3] have been studied and defined decomposition of

recurrent curvature tensor field in a Finsler space. Singh and Negi studied

decomposition of recurrent curvature tensor field in a Käehlerian space. Negi

and Rawat [6] have studied decomposition of recurrent curvature tensor field

in Käehlerian space. Rawat and Silswal [11] studied and defined decomposi-

tion of recurrent curvature tensor fields in a Tachibana space. Further, Rawat

and Kunwar Singh [12] studied the decomposition of curvature tensor field in

Käehlerian recurrent space of first order.

In the present paper, we have studied the decomposition of curvature ten-

sor fields Rh
ijk in terms of two non-zero vectors and a tensor field in Einstein-

Käehlerian recurrent space of first order and several theorem have been estab-

lished and proved.

Keywords : Käehlerian space, Einstein space, Einstein-Käehlerian space, re-

current space, Curvature tensor, Projective curvature tensor.

1. Introduction

An n(= 2m) dimensional Käehlerian space Kn is a Riemannian space,

which admits a tensor field F h
i satisfying the conditions

F h
i F

j
h = −δji (1.1)

Fij = −Fji, (Fij = F a
i gaj) (1.2)
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and

F h
i,j = 0, (1.3)

where the (, ) followed by on index denotes the operation of covariant differen-

tiation with respect to the metric tensor gij of the Riemannian space.

The Riemannian curvature tensor Rh
ijk is given by

Rh
ijk = ∂i

{

h

j k

}

− ∂j

{

h

i k

}

+

{

h

i α

}{

α

j k

}

−
{

h

j α

}{

α

i k

}

,

The Ricci tensor and the scalar Curvature tensor are respectively given by

Rij = Ra
aij and R = gij Rij . (1.4)

It is well known that these tensors satisfies the following identities

Ra
ijk = Rjk,i −Rik,j , (1.5)

R,i = 2Ra
i,a, (1.6)

F a
i Raj = −RiaF

a
j , (1.7)

and

F a
i R

i
a = Ra

i F
i
a. (1.8)

The holomorphically projective curvature tensor P h
ijk is defined by

P h
ijk = Rh

ijk +
1

(n+ 2)
(Rikδ

h
j −Rjkδ

h
i + SikF

h
j − SjkS

h
i + 2SijF

h
k ), (1.9)

where Sij = F a
i Raj .

Let us suppose that a Käehlerian space is Einstein one, and then the Ricci

tensor satisfies

Rij =
R

n
gij , R,a = 0

from which, we obtain

Rij , a = 0, Sij,a = 0

and Sij =
R
n Fij .

The Bianchi identity for Einstein-Käehlerian space are given by

Rh
ijk +Rh

jki +Rh
kij = 0, (1.10)

and

Rh
ijk,a +Rh

ika,j +Rh
iaj,k. (1.11)

The Commutative formulae for the Curvature tensor fields are given as follows

T i
,jk − T i

,kj = T aRi
ajk, (1.12)
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T h
i,ml − T h

i,lm = T a
i R

h
aml − T h

a R
a
iml. (1.13)

A Einstein-Käehlerian space is said to be Einstein-Käehlerian recurrent space

of first order, if its curvature tensor field satisfy the condition

Rh
ijk,a = λaR

h
ijk (1.14)

where λa is a non-zero vector and is known as recurrence vector field.

The following relations follow immediately from equation (1.14),

Rij,a = λaRij (1.15)

and

R,a = λaR. (1.16)

1. Decomposition of Curvature Tensor Field R
h
ijk

We Consider the decomposition of recurrent curvature tensor field Rh
ijk in

the following form

Rh
ijk = V h

i φjψk (2.1)

where the non-zero tensor field V h
i and vector φj , ψk are such that

λhV
h
i = Pi. (2.2)

Theorem (2.1): Under the decomposition (2.1), the Bianchi identities for Rh
ijk

takes the forms

Piφjψk + Pjφkψi + Pkφiψj = 0 (2.3)

and

λaφjψk + λjφkψa + λkφaψj = 0. (2.4)

Proof. From Equations (1.10) and (2.1), we have

V h
i φjψk + V h

j φkψi + V h
k φiψj = 0. (2.5)

Multiplying (2.5), by λh, and using (2.2), we get relation (2.3)

Piφjψk + Pjφkψi + Pkφiψj = 0.

From Equations (1.11), (1.14) and (2.1), we have

V h
i [λaφjψk + λjφkψa + λkφaψj ] = 0. (2.6)

Multiplying (2.6) by λh and using (2.2), we get relation (2.4).

Theorem (2.2): Under the decomposition (2.1), the tensor field Rh
ijk, Rij and

vectors φj , ψk satisfies the relations

λaR
a
ijk = λiRjk − λjRik = Piφjψk. (2.7)
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Proof. With the help of Equations (1.5), (1.14) and (1.15), we have

λaR
a
ijk = λiRjk − λjRik. (2.8)

Multiplying (2.1) by λh, and using relation (2.2), we get

λhR
h
ijk = Piφjφk (2.9)

in view of (2.8) and (2.9), we get the required relation (2.7).

Theorem (2.3): Under the decomposition (2.1), the quantities λa and V h
i

behave like the recurrent vector and tensor field.

The recurrent form of these quantities are given by

λa,m = µmλa, (2.10)

V h
i,m = µmV

h
i . (2.11)

Proof. Differentiating (2.7), covariantly with respect to xm, and using (2.1)

and (2.7), we obtain

λa,mV
a
i φjψk = λi,mRjk − λj,mRik. (2.12)

Multiplying (2.12) by λa and using (2.1) and (2.8), we get

λa,m(λiRjk − λjRik) = λa(λi,mRjk − λj,mRik). (2.13)

Now, multiplying (2.13) by λh, we have

λa,m(λiRjk − λjRik)λh = λaλh(λi,mRjk − λj,mRik. (2.14)

Since the expression of right hand side of the above equation is symmetric in a

and h, therefore

λa,mλh = λh,mλa, (2.15)

provided that λiRjk − λjRik ̸= 0.

The vector field λa being non-zero, we can have a proportional vector µm such

that

λa,m = µmλa. (2.16)

Further, differentiating (2,2) w.r. to xm and using (2.16), we get

λhV
h
i,m = Pi,m − µmPi (2.17)

from the above equation, it is obvious that

λhV
h
i,m = λaV

a
i,m. (2.18)
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Since λa is a non-zero recurrence vector field, we can get a proportional vector

field µm such that

V h
i,m = µmV

h
i

which complete the proof.

Theorem (2.4): Under the decomposition (2.1), the vector field Pi, φj , ψk

behave like recurrent vectors and their recurrent form are given respectively by

Pi,m = 2µmPi (2.19)

and

(λm − µm)φjψk = φj,mψk + φjψk,m. (2.20)

Proof. Differentiating (2.2) covariantly w.r. to xm, and using equation (2.2),

(2.10) and (2.11), we obtain the required result (2.19). Further, differentiating

equation (2.1) covariantly w.r. to xm and using equation (1.14), (2.1) and (2.11),

we get the required recurrent form (2.20).

Theorem (2.5): Under the decomposition (2.1), the curvature tensor and

holomorphically projective curvature tensor are equal if

φkψl{(Piδ
h
j − Pjδ

h
i ) + Pa(F

a
i F

h
j − F a

j F
h
i )}+ 2PaφjψlF

a
i F

h
k = 0. (2.21)

Proof. The equation (1.9), may be written in the form

P h
ijk = Rh

ijk +Dh
ijk (2.22)

where

Dh
ijk =

1

n+ 2
(Rikδ

h
j −Rjkδ

h
i + SikF

h
j − SjkF

h
i + 2SijF

h
k ). (2.23)

Contracting indices h and k in (2.1), we obtain

Rij = V l
i φjψl. (2.24)

In view of equation (2.24), we have

Sij = F a
i φjψlV

l
a . (2.25)

Making use of (2.24) and (2.25) in equation (2.22), we get

Dh
ijk =

1

n+ 2
[φkψl{(V l

i δ
h
j −V

l
j δ

h
i )+V

l
a(F

a
i F

h
j −F

a
j F

h
i )}+2φjψlF

a
i F

h
k V

l
a ]. (2.26)

In view of (2.23), it is clear that

P h
ijk = Rh

ijk
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iff Dh
ijk = 0, which in view of equation (2.26) gives

[φkψl{(V l
i δ

h
j − V l

j δ
h
i ) + V l

a(F
a
i F

h
j − F a

j F
h
i )}+ 2φjψlF

a
i F

h
k V

l
a ] = 0. (2.27)

Multiplying (2.27) by λl and using (2.2), we obtain the required condition (2.21).

Theorem (2.6): Under the decomposition (2.1), the scalar curvature R, satisfy

the relation

λkR = gijPiφjψl. (2.28)

Proof. Contracting indices h and k in (2.1), we get

Rij = V l
i φjψl. (2.29)

Multiplying (2.29) by gij both sides, we get

gijRij = gijV l
i φjψl (2.30)

in view of Equation (1.4), the above equation reduces to

R = gijV l
i φjψl. (2.31)

Now multiplying (2.31) by λl and using (2.2), we get

λlR = gijPiφjψl

which complete the proof of the theorem.
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