Vol. 9 (2015), pp.53-57 https://doi.oarg/10.56424/jts.v9i01.10566

Additive Analogue of Certain Arithmetical Functions

Shikha Yadav and Surendra Yadav

Department of Mathematics & Astronomy, University of Lucknow, Lucknow-226007, U.P., India E-mail: shiksha123mailbox@rediffmail.com, ssyp_p@hotmail.com (Received: March 15, 2015)

Abstract

J. Sandor and E. Egri [4] have defined an arithmetic function related to Euler minimum function which has been defined by J. Sandor [3]. We discuss some particular cases of this arithmetic function for some certain arithmetical functions.

Key words and Phrases : Prime Numbers, Arithmetical functions. **2000 Mathematics Subject Classification :** 11A25.

1. Introduction

J. Sandor [2] have introduced a function which is defined as

$$F_f^A(n) = \min\{k\epsilon A : n/f(k)\},\tag{1.1}$$

where $A \subset N$, and $f: N \to N$ be an arithmetic function.

Now, J. Sandor [3], for $f(k) = \phi(k)$, Euler totient function and A = N, Euler minimum function has introduced, which is defined as

$$E(n) = \min\{k\epsilon N : n/\phi(k)\}. \tag{1.2}$$

J. Sandor [1], have studied the particular case of (1.1) for $f(k) = \phi^*(k)$, unitary totient function and called as unitary totient minimum function defined as

$$E^*(n) = \min\{k \ge 1 : n/\phi^*(k)\}. \tag{1.3}$$

Recently an arithmetic function related to Euler minimum function have been introduced in J. Sandor and E. Egri [4] defined as

$$H_{\phi}(n) = \min\{k \ge 1 : \phi(n)/\phi(k)\},$$
 (1.4)

and more generally,

$$H_g(n) = \min\{k \ge 1 : g(n)/g(k)\},$$
 (1.5)

for a given arithmetic function $g: N \to N$. In this paper we study the arithmetic function given in (1.5) for $g(n) = \phi^*(n)$, and g(n) = R(n), product of divisors of n, where unitary totient function $\phi^*(n)$ is defined as

$$\phi^*(n) = \begin{cases} (p_1^{\alpha_1} - 1)(p_2^{\alpha_2} - 1)....(p_r^{\alpha_r} - 1) &, n = \prod_{i=1}^r p_i^{\alpha_i} \\ 1 &, n = 1 \end{cases}$$
(1.6)

and product of divisor function R(n) is defined as

$$R(n) = d_1.d_2....d_r, (1.7)$$

where $d_1, d_2, ..., d_r$ are divisors of n. Also,

$$R(n) = (n)^{\frac{d(n)}{2}},\tag{1.8}$$

where d(n) denotes number of divisor of n.

In analogy with (1.5), we can define

$$H_{\phi^*}(n) = \min\{k \ge 1 : \phi^*(n)/\phi^*(k)\},\tag{1.9}$$

and

$$H_R(n) = \min\{k \ge 1 : R(n)/R(k)\}.$$
 (1.10)

We prove some important results related with (1.9) and (1.10) in section 2.

2. Important Results

Theorem 2.1. (a)
$$H_{\phi^*}(p^{\alpha}) = \begin{cases} 1 & , & p = 2 \text{ with } \alpha = 1 \\ p^{\alpha} & , & p = 2 \text{ with } \alpha > 1 \\ p^{\alpha} & , & p \geq 3 \text{ with } \alpha \geq 1 \end{cases}$$
, (b) $H_{\phi^*}(2p^{\alpha}) = \begin{cases} 2^{\alpha+1} & , & p = 2, \text{with } \alpha > 0 \\ p^{\alpha} & , & p \geq 3 \text{ with } \alpha \geq 1 \end{cases}$, (c) If n is odd then $H_{\phi^*}(2n) = H_{\phi^*}(n)$.

(b)
$$H_{\phi^*}(2p^{\alpha}) = \begin{cases} 2^{\alpha+1} &, p = 2, \text{ with } \alpha > 0 \\ p^{\alpha} &, p \ge 3 \text{ with } \alpha \ge 1 \end{cases}$$

Proof.(a) Using (1.9), It is clear that $H_{\phi^*}(n) \leq n$ as $\phi^*(n)/\phi^*(n)$.

Let $\phi^*(p^{\alpha})/\phi^*(k)$ then using (1.6), we have

$$(p^{\alpha} - 1) = \phi^*(p^{\alpha}) \le \phi^*(k) \le k - 1$$
 for $k \ge 2$

so,

$$p^{\alpha} \leq k$$
.

This implies that

$$H_{\phi^*}(p^{\alpha}) \geq p^{\alpha}$$
.

Now, for $p^{\alpha} = 2$ it is clear that $H_{\phi^*}(p^{\alpha}) = 1$.

For $p=2\,,$ with $\alpha>1$ and $p\geq 3,$ with $\alpha\geq 1\,,$ $H_{\phi^*}(p^{\alpha})=p^{\alpha}.$

If n is odd then

$$\phi^*(2n) = \phi^*(n),$$

so (c) follows. This implies also (b).

Theorem 2.2.

- (a) $\sqrt{n} \le H_{\phi^*}(n) \le n \text{ for } n \ge 6,$
- (b) $H_{\phi^*}(n) = H_{\phi^*}(m)$ if $\phi^*(n) = \phi^*(m)$.

Proof. (a) Using (1.9), $H_{\phi^*}(n) \le n$ as $\phi^*(n)/\phi^*(n)$, and $H_{\phi^*}(n) \ge \phi^*(n)$, $n \ge 1$.

If $\phi^*(n)/\phi^*(k)$, then

$$\phi^*(n) < \phi^*(k) < k-1 \text{ for } k > 2.$$

Since, $\phi(n) > \sqrt{n}$ for $n \ge 6$ and $\phi(n) \le \phi^*(n)$, therefore,

$$\phi^*(n) > \sqrt{n}$$
 for $n \ge 6$.

So (a) is proved.

(b)

$$H_{\phi^*}(n) = \min\{k \ge 1 : \phi^*(n)/\phi^*(k)\}$$

= \text{min}\{k \ge 1 : \phi^*(m)/\phi^*(k)\}\)
= \text{H}_{\phi^*}(m),

if $\phi^*(n) = \phi^*(m)$.

Theorem 2.3. If $H_{\phi^*}(m)/H_{\phi^*}(n)$, then $[\phi^*(m), \phi^*(n)]/\phi(H_{\phi^*}(n))$, where [] dentoes L.C.M.

Proof. Let $x = H_{\phi^*}(m)$ and $y = H_{\phi^*}(n)$. Thus using (1.6), $\phi^*(m)/\phi^*(x)$ and $\phi^*(n)/\phi^*(y)$.

Now it is given that x/y so

$$\phi^*(x)/\phi^*(y)$$
,

this implies that

$$\phi^*(m)/\phi^*(x)/\phi^*(y),$$

giving

$$\phi^*(m)/\phi^*(y)$$
.

Hence

$$[\phi^*(m), \phi^*(n)]/\phi^*(y).$$

Theorem 2.4. If $H_{\phi^*}(m)/H_{\phi^*}(n)$, then

$$\phi^*(m)/(\phi^*(H_{\phi^*}(m)), \phi^*(H_{\phi^*}(n)).$$

Proof. Let $H_{\phi^*}(m) = x$ and $H_{\phi^*}(n) = y$, then it is given that x/y, this implies that

$$\phi^*(x)/\phi^*(y),$$

but

$$\phi^*(m)/\phi^*(x)/\phi^*(y),$$

so,

$$\phi^*(m)/\phi^*(y)$$
.

Thus

$$\phi^*(m)/(\phi^*(x),\phi^*(y)).$$

Theorem 2.5. If $H\phi^*(m)/H\phi^*(n)$, then

$$\phi^*(m) \le |\phi^*(H_{\phi^*}(n)) - \phi^*(H_{\phi^*}(m))|.$$

Proof. Since, $(a, b) \leq |b - a|$ for $a \neq b$, therefore, by theorem 2.4,

$$\phi^*(m) \le (\phi^*(x), \phi^*(y)) \le |\phi^*(H_{\phi^*}(n)) - \phi^*(H_{\phi^*}(m))|.$$

Theorem 2.6. (a) $H_R(n) = n$

- (a) $H_R(n) = n$ $\forall n \ge 1,$ (b) $H_R(2n) = 2.H_R(n)$ $\forall n \ge 1,$ (c) $H_R(n^2) = n.H_R(n)$ $\forall n \ge 1,$
- (d) $H_R(n) = H_R(m)$ if R(n) = R(m).

Proof. Using (1.10), clearly $H_R(n) \leq n$ as R(n)/R(n). On the other hand, since k/R(k) therefore, $R(n) \leq k$ as $n \leq R(n)$, thus $n \leq k$. This gives $H_R(n) \geq n$.

Hence $H_R(n) = n \ \forall n \geq 1$. Since, $H_R(2n) = 2n$ (using (a)) therefore, $H_R(2n) = 2.H_R(n)$. Hence (b) is proved. Using (a) we get, $H_R(n^2) = n^2 =$ $n.H_R(n)$. Hence (c) is proved.

Now (d) is followed by (1.10) as

$$H_R(n) = \min\{k \ge 1 : R(n)/R(k)\}\$$

= $\min\{k \ge 1 : R(m)/R(k)\}\$
= $H_R(m)$.

Hence (d) is proved.

Theorem 2.7. If R(m)/R(n), then $(R(m), R(n)) = H_R(R(m))$, where () denotes g.c.d of R(m) and R(n).

Proof. Since R(m)/R(n) therefore, (R(m), R(n)) = R(m), using theorem 2.6(a), we get $H_R(R(m)) = R(m)$.

Hence $(R(m), R(n)) = H_R(R(m))$.

Theorem 2.8. If R(m)/R(n), then $[R(m), R(n)] = H_R(R(n))$, where [] denotes L.C.M. of R(m) and R(n).

Proof. Since, R(m)/R(n) therefore, [R(m), R(n)] = R(n), using theorem 2.6(a), we get

$$H_R(R(n)) = R(n) = [R(m), R(n)].$$

Hence theorem is proved.

Theorem 2.9. If $H_R(m)/H_R(n)$, then $[R(m), R(n)]/R(H_R(n))$.

Proof. Let $x = H_R(m)$ and $y = H_R(n)$, using (1.10), R(m)/R(x) and R(n)/R(y). On the other hand if x/y then R(x)/R(y). So, using theorem 2.6(a) R(m)/R(n)/R(y) this implies R(m)/R(y). But R(n)/R(y) too. So, [R(m), R(n)]/R(y). Hence $[R(m), R(n)]/R(H_R(n))$.

Theorem 2.10. If R(m)/R(n), then $H_R(R(m)) \leq |R(n) - R(m)|$.

Proof. Using theorem 2.7, if R(m)/R(n) then, $(R(m), R(n)) = H_R(R(m))$. Since, $(a,b) \leq |b-a|$, therefore, $(R(m), R(n)) = H_R(R(m)) \leq |R(n) - R(m)|$.

References

- [1] Sandor, J.: The unitary totient minimum and maximum functions, Studia univ. "Babes Bolyai" Mathematics, Volume L, Number 2, June (2005).
- [2] Sandor, J.: On Certain generalization of Smarandache function, Notes Number Th. Discr. Math., 5 no. 2 (1999), 41-51.
- $[3] \ \ Sandor, \ J.: The \ Euler \ minimum \ and \ maximum \ functions, \ RGMIA \ 8 \ no. \ 1, (2005), \ article 1.$
- [4] Sandor, J. and Egri, E.: Arithmetical functions in algebra, geometry and analysis, Advanced studies in contemporary Mathematics, 14 No. 2 (2007), 163-213.