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Abstract

J. Sandor and E. Egri [4] have defined an arithmetic function related to
Euler minimum function which has been defined by J. Sandor [3]. We discuss
some particular cases of this arithmetic function for some certain arithmetical
functions.
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1. Introduction

J. Sandor [2] have introduced a function which is defined as
F{(n) = min{keA : n/f(k)}, (1.1)

where A C N, and f: N — N be an arithmetic function.
Now, J. Sandor [3], for f(k) = ¢(k),Euler totient function and A = N,
Euler minimum function has introduced, which is defined as

E(n) = min{keN : n/¢(k)}. (1.2)

J. Sandor [1], have studied the particular case of (1.1) for f(k) = ¢*(k),
unitary totient function and called as unitary totient minimum function defined
as

E*(n) =min{k > 1:n/¢"(k)}. (1.3)

Recently an arithmetic function related to Euler minimum function have
been introduced in J. Sandor and E. Egri [4] defined as

Hy(n) = minfk > 1: (n)/6(k)}. (1.4)
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and more generally,

Hy(n) = min{k > 1: g(n)/g(k)}, (1.5)

for a given arithmetic function g : N — N. In this paper we study the arithmetic
function given in (1.5) for g(n) = ¢*(n), and g(n) = R(n), product of divisors
of n, where unitary totient function ¢*(n) is defined as

T
P —1)(ps? —1)...(pf—1) , n= l:[lpiai

¢"(n) = i (1.6)
1 , n=1
and product of divisor function R(n) is defined as
R(n) = dy.ds....d,, (1.7)
where dy,ds ..., d, are divisors of n. Also,
R(n) = (n)"", (1.8)
where d(n) denotes number of divisor of n.
In analogy with (1.5), we can define
Hye (n) = min{l > 1: 6" (n)/6" ()}, (1.9)
and
Hpr(n) =min{k > 1: R(n)/R(k)}. (1.10)

We prove some important results related with (1.9) and (1.10) in section 2.
2. Important Results

1 , p=2 with a=1
Theorem 2.1. (a) Hy«(p®) =4 p* , p=2 with a>1 ,
p* , p>3 with a>1

ay , p=2,witha>0
(b)  He(2p )_{ p* , p>3 witha>1"
(c) Ifnisodd then Hy«(2n) = Hy(n).

Proof.(a) Using (1.9), It is clear that Hy-(n) < n as ¢*(n)/¢*(n).
Let ¢*(p®)/¢* (k) then using (1.6), we have
(0" —1) = ¢"(p) < P'(K) <k —1 for k>2

2a+1

S0,
p* <k.
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This implies that
Hy-(p®) = p*.
Now, for p® = 2 it is clear that Hy-(p®) = 1.

For p =2, with @ > 1 and p > 3, with a > 1, Hy-(p®) = p°.
If n is odd then

¢*(2n) = ¢*(n),

so (c) follows. This implies also (b).
Theorem 2.2.
(a) v/n < Hg(n) <nfor n>6,
(b)  Hgr(n) = Hy=(m) if ¢*(n) = ¢*(m).
Proof. (a) Using (1.9), Hyg«(n) < nas ¢*(n)/¢*(n), and Hy(n) > ¢*(n),n >
: If ¢*(n)/¢*(k), then

¢*(n) <¢* (k) <k—1 for k>2.
Since, ¢(n) > y/n for n > 6 and ¢(n) < ¢*(n),therefore,

¢*(n) > +/n for n > 6.

So (a) is proved.

(b)

Hy-(n) min{k > 1: ¢*(n)/¢"(k)}

— minfk > 1: ¢ (m)/¢" ()}

= Hg(m),
if ¢*(n) = 6*(m).
Theorem 2.3. If Hy«(m)/Hg+(n), then [¢*(m),d*(n)]/¢(Hg+(n)), where [ ]
dentoes L.C.M.
Proof. Let © = Hy«(m) and y = Hy(n). Thus using (1.6), ¢*(m)/¢*(x) and
¢*(n)/d" (y)-

Now it is given that x/y so
o™ (z)/¢" (),

this implies that
¢"(m)/¢"(x)/ 6" (y),
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giving
¢ (m)/ 9" (y)-
Hence
[6%(m), " (n)]/ 9" (v)-
Theorem 2.4. If Hy-(m)/Hgy«(n), then

¢"(m)/(¢"(Hy=(m)), ¢" (Hgr(n)).

Proof. Let Hy«(m) = x and Hy-(n) = y, then it is given that x/y, this implies
that

¢*(z)/¢" (),
but
¢*(m)/¢*(x)/ " (),
¢*(m)/ 9" (y).
Thus

¢ (m)/(¢" (), ¢" ().
Theorem 2.5. If H¢*(m)/He*(n), then
¢*(m) < [¢"(Hg+(n)) — ¢" (Hg+ (m))].
Proof. Since, (a,b) < |b— a| for a # b, therefore, by theorem 2.4,
¢*(m) < (¢"(2), " (y)) < |¢"(Hy(n)) — ¢"(Hg-(m))]-

Theorem 2.6. (a) Hp(n)=n Vn > 1,
(b) Hgr(2n) =2.Hg(n) Vn > 1,
(¢c) Hgr(n?) =n.Hg(n) Vn > 1,
(d) Hg(n) = Hgr(m) if R(n) = R(m).

Proof. Using (1.10), clearly Hr(n) < n as R(n)/R(n).On the other hand, since
k/R(k) therefore, R(n) < k as n < R(n), thus n< k.This gives Hr(n) > n.

Hence Hr(n) = n Vn > 1.Since, Hr(2n) = 2n (using (a)) therefore,
Hg(2n) = 2.Hg(n). Hence (b) is proved. Using (a) we get, Hp(n?) = n? =
n.Hgr(n). Hence (c) is proved.

Now (d) is followed by (1.10) as
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Hp(n) = min{k>1:R(n)/R(k)}
= min{k >1: R(m)/R(k)}

Hence (d) is proved.

Theorem 2.7. If R(m)/R(n) , then (R(m),R(n)) = Hr(R(m)), where ()
denotes g.c.d of R(m) and R(n).

Proof. Since R(m)/R(n) therefore, (R(m),R(n)) = R(m), using theorem
2.6(a), we get Hr(R(m)) = R(m).
Hence (R(m), R(n)) = Hr(R(m)).

Theorem 2.8. If R(m)/R(n), then [R(m), R(n)] = Hr(R(n)), where [ | denotes
L.C.M. of R(m)and R(n).

Proof. Since, R(m)/R(n) therefore, [R(m),R(n)] = R(n), using theorem
2.6(a), we get
Hr(R(n)) = R(n) = [R(m), R(n)].

Hence theorem is proved.
Theorem 2.9. If Hr(m)/Hg(n), then [R(m), R(n)]/R(Hg(n)).

Proof. Let z = Hr(m) and y = Hgr(n), using (1.10), R(m)/R(z)and R(n)/R(y).
On the other hand if z/y then R(x)/R(y). So, using theorem 2.6(a) R(m)/R(n)/
R(y) this implies R(m)/R(y). But R(n)/R(y) too. So, [R(m),R(n)]/R(y).
Hence [R(m), R(n)]/R(Hg(n)).

Theorem 2.10. If R(m)/R(n), then Hr(R(m)) < |R(n) — R(m)].

Proof. Using theorem 2.7, if R(m)/R( )the , (R(m), R(n)) = Hr(R(m)).Since,
(a,6) < |b— al,therefore, (R(m), R(n)) = Hp(R(m)) < |R(n) — R(m)|.
REFERENCES

[1] Sandor, J. : The unitary totient minimum and maximum functions, Studia univ. ”Babes
Bolyai” Mathematics, Volume L, Number 2, June (2005).

[2] Sandor, J. : On Certain generalization of Smarandache function, Notes Number Th. Discr.
Math., 5 no. 2 (1999), 41-51.

[3] Sandor, J. : The Euler minimum and maximum functions, RGMIA 8 no. 1,(2005), articlel.

[4] Sandor, J. and Egri, E. : Arithmetical functions in algebra, geometry and analysis, Ad-
vanced studies in contemporary Mathematics, 14 No. 2 (2007), 163-213.





