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Abstract

We study the Bochner pseudosymmetric , Weyl pseudosymmetric and holo-

morphic projective pseudosymetric conditions for Khalerian manifold and we

show that are not essential in dimension greater than 4. For a 4-dimensional,

many interesting relations between the various pseudosymmetry conditions of

Kählerian manifolds are determined.
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1. Introduction

Let M be a Kählerian manifold. Thus, M is a connected N(= 2n)-

dimensional differentiable manifold endowed with an almost Hermitian (g, J)

structure, which is formed by a Riemannian metric g and a (1, 1)-tensor field J

( an almost complexe structure ) such that

J2 = −Id, g(JX, JY ) = g(X,Y ), ∇J = 0

for all X,Y ∈ X(M), ∇ is the Levi-Civita connetction corresponding to g and

X(M) be the Lie algebra of smooth vector fields on M . We denote by S, S and

r the Ricci operator, the Ricci curvature (0, 2)-tensor and the scalar curvature

of (MN , g, J), respectively. R(U, V ) and U ∧ V are define by

R(U, V )Z = [∇U ,∇V ]Z −∇[U,V ]Z
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(U ∧ V )Z = g(V,Z)U − g(U,Z)V

where U, V, Z ∈ X(M).

The operators R(U, V ) and U ∧ V will be treated as derivations of the tensor

algebra on M in the usual sense by assuming that they commute with contrac-

tion and vanish on any function on M . The (0, 6)-tensors fields R.R and the

Tachibana tensor Q(g,R) are define by

(R.R)(X1, . . . , Xk;U, V ) = (R(U, V ).R)(X1, . . . , Xk)

= −R(R(U, V )X1, . . . , Xk)− · · ·

· · · −R(X1, . . . ,R(U, V )Xk).

Q(g.R)(X1, . . . , Xk;U, V ) =
(

(U ∧ V ).R
)

(X1, . . . , Xk)

= −R((U ∧ V )X1, . . . , Xk)− · · ·

· · · −R(X1, . . . , (U ∧ V )Xk).

A Kählerian manifold (M, g) is said to be semisymmetric if R(U, V ).R = 0.

A Kählerian manifold (M, g) is said to be pseudosymmetric, in the sense of

R.Deszcz, if R(U, V ).R = f Q(g,R) with f is a real function on the set UR =

{x ∈ M |R− r
n(n−1)G ̸= 0 at x} whereG is a (0, 4)-tensor define byG(X,Y, Z,W )

= g((X ∧ Y )Z,W ).

It is clear that any semisymmetric Kählerian manifold is pseudosymmetric (for

f = 0).

F. Defever, R. Deszcz and L. Verstraelen proved (on 1997) that in the class

of Kählerian manifolds, the usual pseudosymmetry conditions are not essen-

tial(dimension great than four). For dimension 4, Olszak (on 2003) gave an ex-

ample of non semisymmetric pseudosymmetric Kählerian manifold. In ([1]) and

([10]) is proved that for a 4-dimensional pseudosymmetric non semisymmetric

Kählerian manifold M , the Ricci tensor vanishes on the set {p ∈ M, f(p) ̸= 0}.

We will used freqquently the following proposition.

Proposition 1.1. Let T be (0, 4)-tensor, on a Kählerian manifold M , satisfying

∀X,Y, Z,W ∈ X(M) T (X,Y, Z,W ) = −T (Y,X,Z,W ),(1.1)

and

∀p ∈ M, ∀{ei}1≤i≤N orthonormal basis of TpM, ∀x, y ∈ TpM(1.2)
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N
∑

i=1

T (ei, x, y, ei) = 0,

In any point p ∈ M such that (R.T )p = f(p)(Q(g, T ))p and f(p) ̸= 0, we have

∀x, y, z, w, u, v ∈ TpM ∀{ei}1≤i≤N orthonormal basis of TpM,

(3−N)T (u, y, z, w) = T (z, y, u, w) + T (w, y, z, u) + T (Jy, Ju, z, w)

+ T (Jz, y, Ju, w) + T (Jw, y, z, Ju)

+

N
∑

i=1

(

g(u, z)T (y, ei, ei, w) + g(Ju, y)T (ei, Jei, z, w)(1.3)

− g(Ju, z)T (y, ei, Jei, w) + g(Ju,w)T (ei, y, z, Jei)
)

Proof. Knowing that R(Ju, Jv) = R(u, v) and from (R.T )p = f(p)(Q(g, T ))p,

we have

Q(g, T )(x, y, z, w; Ju, Jv) =
1

f(p)

(

R(Ju, Jv).T
)

(x, y, z, w)

=
1

f(p)

(

R(u, v).T
)

(x, y, z, w)(1.4)

= Q(g, T )(x, y, z, w;u, v)

so

N
∑

i=1

Q(g, T )(ei, y, z, w;u, ei) =

N
∑

i=1

Q(g, T )(ei, y, z, w; Ju, Jei)(1.5)

by using (1.1) and (1.2), in (1.5) we obtain

(3−N)T (u, y, z, w) = T (z, y, u, w) + T (w, y, z, u) + T (Jy, Ju, z, w)

+ T (Jz, y, Ju, w) + T (Jw, y, z, Ju)

+

N
∑

i=1

(

g(u, z)T (y, ei, ei, w) + g(Ju, y)T (ei, Jei, z, w)

− g(Ju, z)T (y, ei, Jei, w) + g(Ju,w)T (ei, y, z, Jei)
)

2. Bochner Tensor on Kählerian Manifold

Let (MN , g, J) a Kählerian manifold of dimension N = 2n. The holomor-

phic Bochner curvature operator B is defined for all X,Y ∈ X(M) by ([3],[7])
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B(X,Y ) = R(X,Y )−
1

N + 4

(

X ∧g (SY ) + (SX) ∧g Y + (JX) ∧g (SJY )

+ (SJX) ∧g (JY )− 2g(JX, Y )SJ − 2g(SJX, Y )J
)

+
r

(N + 4)(N + 2)

(

X ∧g Y + (JX) ∧g (JY )− 2g(JX, Y )J
)

.

Recall that the Bochner curvature (0, 4)-tensor,B(X,Y, Z,W ) = g(B(X,Y )

Z,W ), has the same algebraic properties as the usual curvature tensor. More-

over, for this tensor, we have

B(X,Y ) = −B(Y,X) , B(JX, JY ) = B(X,Y ) , B(X,Y )J = JB(X,Y )

B(JX, Y ) + B(X, JY ) = 0 , B(X,Y, Z,W ) = B(Z,W,X, Y )

trace{Z → B(Z,X)Y } = trace{Z → B(JZ,X)Y } = 0

2.1. Bochner pseudosymetric Kählerian manifold. A Kählerian manifold

(M,J, g) is said to be

• Bochner semisymmetric if R(U, V ).B = 0.

• Bochner pseudosymmetric if R(U, V ).B = f (U ∧ V ).B

with f is a real function defined uniquely at every point at which R.B ̸= 0

It is clear that any Bochner semisymmetric Kählerian manifold is Bochner pseu-

dosymmetric (for f = 0). In other hand, every pseudosymmetric Kählerian

manifold is Bochner pseudosymmetric, the converse is not true in general.

Theorem 2.1. Every Bochner pseudosymmetric Kählerian manifold (M, g, J),

dimM > 4, is Bochner semisymmetric.

Proof. Suppose that M is a Kählerian manifold of dimension N = 2n satisfying

R.B = fQ(g,B) with f ∈ C∞(M).

Suppose that p is a point in M for which (R.B)p ̸= 0. We will derive a

contradiction. It is clear that f(p) ̸= 0. We can applying the proposition (1.1)

to B, so from (1.3) and the properties of the tensor B, we obtain

(N − 4)B(u, y, z, w) = 0

and since N > 4 then, Bp = 0. It is easy to see that (R.B)p = 0, which

contradicts our initial assumption. This proves that R.B = 0

Remark 2.1. The 4-dimensional case was treated by Z.Olszak in ([10]).
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3. Weyl Tensor on Kählerian Manifold

Let (MN , g, J) a Kählerian manifold of dimension N = 2n. The Weyl

coformal curvature operator C is defined for all X,Y ∈ X(M) by ([9])

C(X,Y ) = R(X,Y )−
1

N − 2

(

X ∧g (SY ) + (SX) ∧g Y
)

+
r

(N − 1)(N − 2)

(

X ∧g Y
)

.

Notice that this tensor has the following properties

C(X,Y ) = −C(Y,X), C(X,Y, Z,W ) = C(Z,W,X, Y ),

C(JX, JY, Z,W ) = C(X,Y, JZ, JW ),

tr{Z 7→ C(Z,X)Y } = 0,
∑

i

C(X, ei, ei,W )} = 0

3.1. Weyl pseudosymetric Kählerian manifold. A Kählerian manifold (M,

J, g) is said to be

• Weyl semisymmetric if R(U, V ).C = 0.

• Weyl pseudosymmetric if R(U, V ).C = f (U ∧ V ).C

with f is a real function defined uniquely at every point at which R.C ̸= 0.

It is clear that any Weyl semisymmetric Kählerian manifold is Weyl pseudo-

symmetric (for f = 0). In other hand, every pseudosymmetric Kählerian mani-

fold is Weyl pseudosymmetric, the converse is not true in general.

Theorem 3.1. Let (M, g, J) be a Weyl pseudosymmetric Kählriann manifold.

• (a): If dimM = 4, M non Weyl semisymmetric and S ̸= 0, then r = 0

and M is not pseudosymmetric.

• (b): If dimM = 4, M non Weyl semisymmetric and S = 0, then M is

pseudosymmetric.

• (c): If dimM > 4, then M is Weyl semisymmetric.

Proof. Suppose that M is a Kählerian manifold of dimension N = 2n satisfying

R.C = fQ(g, C) with f ∈ C∞(M) .

Suppose that p is a point in M for which (R.C)p ̸= 0 this implies f(p) ̸= 0.
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By applying the proposition (1.1) to C, and using the properties of the

tensor C we find,

(3−N)C(u, y, z, w) = C(z, y, u, w) + C(w, y, z, u) + C(Jy, Ju, z, w)

+ C(Jz, y, Ju, w) + C(Jw, y, z, Ju)

+

N
∑

i=1

(

g(Ju, y)C(ei, Jei, z, w)− g(Ju, z)C(y, ei, Jei, w)

+ g(Ju,w)C(ei, y, z, Jei)
)

.

contracting y and u after having replaced y by Jy and using again the properties

of the tensor C we obtain,

N
∑

i=1

(

2(2−N)C(ei, Jei, z, w)
)

=
N
∑

i=1

(

C(z, Jei, ei, w) + C(w, Jei, z, ei)

− C(z, ei, Jei, w) + C(ei, w, z, Jei)
)

.

knowing that C(x, y, z, w) = g(C(x, y)z, w) we can check that

(N − 4)S(z, Jw) +
r

N − 1
g(z, Jw) = 0.

• If N = 4 and S ̸= 0,then r = 0 and M is not pseudosymmetric.

• If N = 4 and S = 0, then C = R and M is pseudosymmetric.

• If N > 4, then S(z, Jw) = − r
(N−1)(N−4)g(z, Jw). This implies R.S = 0.

Using this fact in the expression of the tensor C, we obtain R.C = 0

which contradict (R.C)p ̸= 0. So we can conclude that M is Weyl

semisymmetric.

Remark 3.1. In this theorem, the result in the case (a) was gotten indepen-

dently by Z. Olszak ([10]).

4. Holomorphic Projective Tensor on Kählerian Manifold

Let (MN , g, J) a Kählerian manifold of dimension N = 2n. The holomor-

phic projective operator P is defined for all X,Y ∈ X(M) by ([8])

P(X,Y ) = R(X,Y )−
1

N + 2

(

X ∧S Y + JX ∧S JY − 2S(JX, Y )J
)

Notice that this tensor has the following properties

P(X,Y ) = −P(Y,X), P(JX, JY ) = P(X,Y ), tr{Z 7→ P(Z,X)Y } = 0,
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∑

i

P (X, ei, ei,W )} =
1

N + 2

(

NS(X,Y )− rg(X,Y )
)

=
1

N + 2
S0(X,Y ).

4.1. Holomorphic projective pseudosymetric Kählerian manifold. A

Kählerian manifold (M,J, g) is said to be

• holomorphic projective semisymmetric if R(U, V ).P = 0.

• holomorphic projective pseudosymmetric if R(U, V ).P = f (U ∧ V ).P

with f is a real function defined uniquely at every point at which R.P ̸= 0

It is clear that any holomorphic projective semisymmetric Kählerian manifold

is holomorphic projective . In other hand, every pseudosymmetric Kählerian

manifold is holomorphic projective pseudosymmetric, the converse is not true

in general.

Theorem 4.1. Let (M, g, J) be a holomorphic projective pseudosymmetric

Kählerian manifold.

• (a): If dimM = 4, M non holomorphic projective semisymmetric and

r ̸= 0, then S = r
4g and M is not pseudosymmetric .

• (b): If dimM = 4, M non holomorphic projective semisymmetric and

r = 0, then M is pseudosymmetric .

• (c): If dimM > 4, then M is holomorphic projective semisymmetric.

Proof. Suppose thatM is a holomorphic projective pseudosymmetric Kählerian

manifold of dimension N = 2n i.e. we have R.P = fQ(g, P ) with f ∈ C∞(M).

Suppose that p is a point in M for which (R.P )p ̸= 0 i.e f(p) ̸= 0.

Using the proposition (1.1) for P and the properties of the tensor P to find,

(4−N)P (u, y, z, w) =P (z, y, u, w) + P (w, y, z, u) + P (Jz, y, Ju, w)

+ P (Jw, y, z, Ju) +
1

N + 2

(

g(u, z)S0(y, w) + 2g(Ju,

y)S0(z, Jw) + g(Ju, z)S0(y, Jw)
)

.

Now, contracting u and w and using again the properties of the tensor P to

obtain,

P (z, y, ei, ei) + P (Jz, y, Jei, ei) +
4

N + 2
S0(y, z) = 0,

knowing that P (x, y, z, w) = g(P(x, y)z, w) we can check that

S0(y, z) = 0.
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i.e.,

S(y, z) =
r

N
g(y, z)

that is, the manifold is Einstein. The last equality turns the expression of the

tensor P into

P(X,Y ) = R(X,Y )−
r

N(N + 2)
RH(X,Y ),

where RH(X,Y ) = X ∧g Y + (JX) ∧g (JY )− 2g(JX, Y )J then

R.P = R.R

since R.RH = 0 in view of the equality ∇RH = 0.

Knowing that for dimM > 4, R.R = 0, so R.P = 0 which contradict (R.P )p ̸=
0, then M is holomorphic projective semisymmetric.

For dim M = 4, we have S = r
4g This gives

P(X,Y ) = R(X,Y )−
r

24
RH(X,Y ).

If r = 0 then P = R and M is pseudosymmetric.

If r ̸= 0 we have

Q(g.P ) = Q(g.R−
r

24
RH) = Q(g.R)−

r

24
Q(g.RH),

since Q(g.RH) ̸= 0 in view of Q(g.J) ̸= 0 then Q(g.P ) ̸= Q(g.R) and M is not

pseudosymmetric.

Example 4.1. ([9]) Let (xα, yα, z, t) denote the Cartesian coordinates in R
2m+2

,m ≥ 1.Latin indices take on values from 1 to 2m + 2. Greek indices will run

from 1 to m and α′ = α+m for any α ∈ {1, ...,m}.
Assume that M = N × (A,B) ⊂ R

2m+2 where N is an open connected subset of

R2m+1 et (A,B) is an open interval and B > A > 0. Suppose that h : (A,B) →
R is a smooth function which non-zero at any t ∈ (A,B).

Let (ei) be the frame of vector fields on M defined by

eα = 1
t

∂
∂xα , eα′ = 1

t (
∂

∂yα + 2xα ∂
∂z ) , e2m+1 =

1
t2h

∂
∂z , e2m+2 = th ∂

∂t

and let (θi) be the dual frame of differential 1-forms,

θα = tdxα , θα
′

= tdyα , θ2m+1 = t2h(−2
∑

λ x
λdyλ + dz) , θ2m+2 = 1

thdt

Knowing that the metric g given by g =
∑

θi ⊗ θi and the almost structure J

on M by assuming

Jeα = eα′ , Jeα′ = −eα , Je2m+1 = e2m+2 , Je2m+2 = −e2m+1

Thus, (M, g, J) becomes a Kählerian manifold.

For dimension 4 i.e m = 1 we have,
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• For any function h, M is Bochner pseudosymmetric with structure func-

tion f(t) = −2h(h+ th′).

• If h(t) =
√

a+bt2

t3
M is Weyl pseudosymmetric non pseudosymmetric with

structure function f(t) = 2(2a+b2)
t6

and r = 0

• If h(t) =
√

a+bt6

t3
M is holomorphic projective pseudosymmetric and non

pseudosymmetric with structure function f(t) = 2(2a−bt6)
t6

with S = 6bg

and r = 24b.

• If h(t) = a
t3

M is Ricci flat and it is pseudosymmetric, Bochner pseu-

dosymmetric, Weyl pseudosymmetric and holomorphic projective pseu-

dosymmetric with the same structure function f(t) = 4a2

t6
.
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