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Abstract

We study the Bochner pseudosymmetric , Weyl pseudosymmetric and holo-
morphic projective pseudosymetric conditions for Khalerian manifold and we
show that are not essential in dimension greater than 4. For a 4-dimensional,
many interesting relations between the various pseudosymmetry conditions of
Kahlerian manifolds are determined.
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1. Introduction

Let M be a Kahlerian manifold. Thus, M is a connected N(= 2n)-
dimensional differentiable manifold endowed with an almost Hermitian (g, J)
structure, which is formed by a Riemannian metric g and a (1, 1)-tensor field J
( an almost complexe structure ) such that

J*=—-Id, ¢g(JX,JY)=g(X,Y), VJ=0

for all X,Y € X(M), V is the Levi-Civita connetction corresponding to g and
X(M) be the Lie algebra of smooth vector fields on M. We denote by S, S and
r the Ricci operator, the Ricci curvature (0,2)-tensor and the scalar curvature
of (MN,g,.J), respectively. R(U,V) and U AV are define by

R(WU,V)Z = [Vu,Vv]Z = Vv Z
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where U, V, Z € X(M).
The operators R(U,V) and U AV will be treated as derivations of the tensor
algebra on M in the usual sense by assuming that they commute with contrac-

tion and vanish on any function on M. The (0, 6)-tensors fields R.R and the
Tachibana tensor (g, R) are define by

(R.R)(X1,...,Xu;U, V) = (R(U,V).R)(X1,...,Xz)
= —R(R(U,V)X1,..., X)) — -
= R(X, . R(U V) Xg).

Qg-R)(X1,....,Xis U, V)= (UAV).R)(X1,...,Xp)
= —R((UAV)X1,..., Xp) =
—R(Xl,,(U/\V)Xk)

A Kahlerian manifold (M, g) is said to be semisymmetric if R(U,V).R = 0.

A Kéhlerian manifold (M, g) is said to be pseudosymmetric, in the sense of
R.Deszcz, if R(U,V).R = fQ(g, R) with f is a real function on the set Ur =
{r e M| R—im=yG # 0at x} where G is a (0, 4)-tensor define by G(X,Y, Z, W)
=g(XAY)Z,W).

It is clear that any semisymmetric Kéahlerian manifold is pseudosymmetric (for
f=0).

F. Defever, R. Deszcz and L. Verstraelen proved (on 1997) that in the class
of Kéhlerian manifolds, the usual pseudosymmetry conditions are not essen-
tial(dimension great than four). For dimension 4, Olszak (on 2003) gave an ex-
ample of non semisymmetric pseudosymmetric Kéhlerian manifold. In ([1]) and

([10]) is proved that for a 4-dimensional pseudosymmetric non semisymmetric
Kaéhlerian manifold M, the Ricci tensor vanishes on the set {p € M, f(p) # 0}.

We will used freqquently the following proposition.
Proposition 1.1. Let T be (0, 4)-tensor, on a Kéhlerian manifold M, satisfying
(1.1) VXY, Z, W € X(M) T(X,Y,ZW)=-T(Y,X,Z,W),
and

(1.2) Vp € M,¥{e;}1<i<n orthonormal basis of T,M,Vz,y € T,M
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Z T(eia z,Y, ei) =0,

In any point p € M such that (R.T), = f(p)(Q(g,T)), and f(p) # 0, we have
Va,y, z,w,u,v € TyM Y{e; }1<i<n orthonormal basis of T,,M,

B—N)T(u,y,z,w) =T(z,y,u,w) + T(w,y, z,u) + T(Jy, Ju, z,w)
+T(Jz y, Ju,w) + T'(Jw,y, z, Ju)

(13> +Z ( yaelaeza ) +g(JU,y)T(€i,J€Z',Z,UJ)
— g(Ju, 2)T(y, ei, Jei, w) + g(Ju, w)T(ei,y, 2, Jei) )

Proof. Knowing that R(Ju, Jv) = R(u,v) and from (R.T), = f(p)(Q(9,T))p,
we have

Qg, T)(z,y, z,w; Ju, Jv) = f(lp)(R(Ju,Jv).T)(x,y,z,w)
1
(1.4) m R(u T)(x,y,z,w)
=Q(9,T)(z,y, 2, w;u,v)

so
N N

(1.5) ZQ(g,T)(ei,y, Z,w;u, e;) = ZQ(g,T)(ei,y, z,w; Ju, Je;)
i=1 i=1

by using (1.1) and (1.2), in (1.5) we obtain
B—=N)T'(u,y,z,w) =T(z,y,u,w) +T(w,y, z,u) + T(Jy, Ju, z,w)
+T(Jz,y, Ju,w) +T(Jw,y, z, Ju)
+Z< yaelaeh )—l—g(Ju,y)T(ei,Jei,z,w)
- g(JU, Z)T(ya €is Jei7 w) + g(Ju, w)T(eia Y, z, Jel))

2. Bochner Tensor on Kahlerian Manifold

Let (MY, g,J) a Kihlerian manifold of dimension N = 2n. The holomor-
phic Bochner curvature operator B is defined for all X,Y € X(M) by ([3],[7])
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BX,Y) = R(X,Y)- N1+4<X Ay (SY) + (SX) A Y + (JX) A, (STY)

+ (STX) Ay (JY) — 29(JX,Y)SJ — 29(SJX, Y)J)

T NI TY (X AgY + (JX) g (JY) = 2(JX,Y)T ).

Recall that the Bochner curvature (0,4)-tensor,B(X,Y, Z, W) = g(B(X,Y)

Z,W), has the same algebraic properties as the usual curvature tensor. More-

over, for this tensor, we have
B(X,Y)=-B(Y,X) , B(JX,JY)=B(X,Y) , B(X,Y)J=JB(X,Y)
B(JX,Y)+B(X,JY)=0 , B(X,Y,ZW)=B(Z W, X,Y)
trace{Z — B(Z, XY} = trace{Z — B(JZ,X)Y} =0
2.1. Bochner pseudosymetric Kihlerian manifold. A Kéahlerian manifold

(M, J,g) is said to be

e Bochner semisymmetric if R(U,V).B = 0.
e Bochner pseudosymmetric if R(U,V).B=f(UAV).B

with f is a real function defined uniquely at every point at which R.B # 0
It is clear that any Bochner semisymmetric Kahlerian manifold is Bochner pseu-
dosymmetric (for f = 0). In other hand, every pseudosymmetric Kéhlerian
manifold is Bochner pseudosymmetric, the converse is not true in general.

Theorem 2.1. Every Bochner pseudosymmetric Kéhlerian manifold (M, g, J),
dimM > 4, is Bochner semisymmetric.

Proof. Suppose that M is a Kédhlerian manifold of dimension N = 2n satisfying
R.B = fQ(g,B) with f € C*(M).

Suppose that p is a point in M for which (R.B), # 0. We will derive a
contradiction. It is clear that f(p) # 0. We can applying the proposition (1.1)
to B, so from (1.3) and the properties of the tensor B, we obtain

(N —4)B(u,y,z,w) =0

and since N > 4 then, B, = 0. It is easy to see that (R.B), = 0, which
contradicts our initial assumption. This proves that R.B =0

Remark 2.1. The 4-dimensional case was treated by Z.Olszak in ([10]).
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3. Weyl Tensor on Kihlerian Manifold

Let (M¥, g,J) a Kihlerian manifold of dimension N = 2n. The Weyl
coformal curvature operator C is defined for all X,Y € X(M) by ([9])

C(X,Y) = R(X,Y)—ﬁ(X/\g (SY) + (SX) /\9Y>

L) (X2 ).

Notice that this tensor has the following properties

C(X7Y):_C(KX)7 C(X,KZ,W):C(Z,I/V,X,Y),
C(IX,JY,Z,W) = C(X,Y, JZ, JW),

tr{Z—C(Z,X)Y}=0, Y C(X,e;,e;,W)}=0

3.1. Weyl pseudosymetric Kihlerian manifold. A Kéhlerian manifold (M,
J, g) is said to be

e Weyl semisymmetric if R(U,V).C = 0.
e Weyl pseudosymmetric if R(U,V).C = f(UAV).C

with f is a real function defined uniquely at every point at which R.C' # 0.

It is clear that any Weyl semisymmetric Kahlerian manifold is Weyl pseudo-
symmetric (for f = 0). In other hand, every pseudosymmetric Kahlerian mani-
fold is Weyl pseudosymmetric, the converse is not true in general.

Theorem 3.1. Let (M, g,J) be a Weyl pseudosymmetric K&hlriann manifold.

e (a): If dim M = 4, M non Weyl semisymmetric and S # 0, then r» = 0
and M is not pseudosymmetric.

e (b): If dim M = 4, M non Weyl semisymmetric and S = 0, then M is
pseudosymmetric.

e (¢): If dim M > 4, then M is Weyl semisymmetric.

Proof. Suppose that M is a Kahlerian manifold of dimension N = 2n satisfying
R.C = fQ(g,C) with f € C>®(M) .
Suppose that p is a point in M for which (R.C), # 0 this implies f(p) # 0.
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By applying the proposition (1.1) to C, and using the properties of the
tensor C' we find,

(3—N)C(u,y,z,w) = C(z,y,u,w) + C(w,y, z,u) + C(Jy, Ju, z,w)
+C(Jz,y, Ju,w) + C(Jw,y, z, Ju)

N
+ Z (g(Ju,y)C’(ei, Jei, z,w) — g(Ju, 2)C(y, e;, Je;, w)
=1

+ g(J’LL, w)C(ei7 Y, z, Jel)) .

contracting y and u after having replaced y by Jy and using again the properties
of the tensor C' we obtain,

N
(2(2 — N)C(e;, Jei,z,w)) = Z (C(z, Jei, ei,w) + C(w, Je;, 2, €;)
=1 i=1

7

- C(Zv ei, Jej, U}) + C(eia w, z, Jel)) :
knowing that C(z,y, z,w) = g(C(x,y)z,w) we can check that

(N — 4)S(z, Jw) +

Nr_ 1g(z,Jw) =0.

o If N=4and S # 0,then r = 0 and M is not pseudosymmetric.

o If N=4and § =0, then C = R and M is pseudosymmetric.

o If N >4, then S(z, Jw) = —mg(z, Jw). This implies R.S = 0.
Using this fact in the expression of the tensor C, we obtain R.C' = 0
which contradict (R.C'), # 0. So we can conclude that M is Weyl
semisymmetric.

Remark 3.1. In this theorem, the result in the case (a) was gotten indepen-
dently by Z. Olszak ([10]).

4. Holomorphic Projective Tensor on Kahlerian Manifold
Let (M",g,J) a Kéhlerian manifold of dimension N = 2n. The holomor-
phic projective operator P is defined for all X,Y € X(M) by ([8])

1
PX.Y)=R(X.Y) - 55 (X AsY +JX Ag JY — 25(JX, Y)J)

Notice that this tensor has the following properties

P(X,Y)=—PY,X), PUJX,JY)=PX,)Y), tr{Z—PZX)Y}=0,
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1

S P(X,er e W)} = 15 (NS(X,Y) = rg(X,Y)) = L

N +2

X,Y).
N +2 SO(:)

4.1. Holomorphic projective pseudosymetric Kéahlerian manifold. A
Kéhlerian manifold (M, J, g) is said to be

e holomorphic projective semisymmetric if R(U,V').P = 0.
e holomorphic projective pseudosymmetric if R(U,V).P = f (U AV).P

with f is a real function defined uniquely at every point at which R.P # 0

It is clear that any holomorphic projective semisymmetric Kéhlerian manifold
is holomorphic projective . In other hand, every pseudosymmetric Kéahlerian
manifold is holomorphic projective pseudosymmetric, the converse is not true
in general.

Theorem 4.1. Let (M,g,J) be a holomorphic projective pseudosymmetric
Kéhlerian manifold.

e (a): If dim M = 4, M non holomorphic projective semisymmetric and
r # 0, then S = 7g and M is not pseudosymmetric .

e (b): If dim M = 4, M non holomorphic projective semisymmetric and
r = 0, then M is pseudosymmetric .

e (c): If dim M > 4, then M is holomorphic projective semisymmetric.

Proof. Suppose that M is a holomorphic projective pseudosymmetric Kéhlerian
manifold of dimension N = 2n i.e. we have R.P = fQ(g, P) with f € C*(M).
Suppose that p is a point in M for which (R.P), # 0 i.e f(p) # 0.

Using the proposition (1.1) for P and the properties of the tensor P to find,
(4 - N)P(u,y,z,w) =P(z,y,u,w) + P(w,y, z,u) + P(Jz,y, Ju,w)

1
P —_— 2
+ P(Jw,y, 2, Ju) + 55 (90 2)So(y, w) + 29( T,

y)So(z, Jw) + g(Ju, 2)So(y, Jw)).

Now, contracting u and w and using again the properties of the tensor P to
obtain,

P(Z7y7 eiaei) + P(‘]Zvya Jeiaei) + SO(y7 Z) = 07

N+2
knowing that P(x,y, z,w) = g(P(x,y)z, w) we can check that

SO(y7 Z) =0.
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i.e.,
r
S(y7 Z) = Ng(y7 Z)
that is, the manifold is Einstein. The last equality turns the expression of the

tensor P into
r

— _ H
where R*(X,Y) = X Ay Y + (JX) Ay (JY) —2g(JX,Y)J then
R.P=R.R

since R.R™ = 0 in view of the equality VR™ = 0.

Knowing that for dim M > 4, R.R =0, so R.P = 0 which contradict (R.P), #
0, then M is holomorphic projective semisymmetric.

For dim M = 4, we have S = 7g This gives
P(X,Y)=R(X,Y) - iRH(X, Y).

If r =0 then P = R and M is pseudosymmetric.
If r # 0 we have

Q(9.P) = Q(g9.R — ﬂRH) =Q(g9.R) - ﬁQ(g-RH),

since Q(g.R™) # 0 in view of Q(g.J) # 0 then Q(g.P) # Q(g.R) and M is not
pseudosymmetric.

Example 4.1. ([9]) Let (2%, 9%, z,t) denote the Cartesian coordinates in R*m+2
,m > 1.Latin indices take on values from 1 to 2m + 2. Greek indices will run
from 1 to m and o/ = a+m for any « € {1,...,m}.

Assume that M = N x (A, B) C R?*"*2 where N is an open connected subset of
R*"+1 et (A, B) is an open interval and B > A > 0. Suppose that h : (A, B) —
R is a smooth function which non-zero at any ¢ € (A, B).

Let (e;) be the frame of vector fields on M defined by

ea=12% | ew= %(% +22°2) | eomi1 = g, €omy2 = th:

and let (#%) be the dual frame of differential 1-forms,

0% = tdz™ |, 0% =tdy® , 02"+ = 2h(—2 > xAdy)‘ +dz) , 072 = Lat
Knowing that the metric g given by g = >~ 6" ® 6" and the almost structure .J
on M by assuming

Jeqg = ey, Jeq = —eq , Jeamy1 = eamya, Jeamia = —€am41

Thus, (M, g,J) becomes a Kéhlerian manifold.
For dimension 4 i.e m = 1 we have,



(1]

2]
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e For any function h, M is Bochner pseudosymmetric with structure func-
tion f(t) = —2h(h + th').
o Ifh(t) = 7“’:'31”52 M is Weyl pseudosymmetric non pseudosymmetric with

2
structure function f(t) = 220tY) and r =0

6
o If h(t) = 7”%1’“5 M is holomorphic projective pseudosymmetric and non

pseudosymmetric with structure function f(t) = 2(2‘37?“3) with S = 6bg
and r = 24b.
o If h(t) = # M is Ricci flat and it is pseudosymmetric, Bochner pseu-

dosymmetric, Weyl pseudosymmetric and holomorphic projective pseu-

dosymmetric with the same structure function f(t) = %2 .
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