Vol. 9 (2015), pp.77-81 https://doi.org/10.56424/jts.v9i01.10563

Prolongation of Tensor Fields and G-Structures in Tangent Bundles of Second Order

Sahadat Ali

Department of Mathematics, SRMGPC, Lucknow-227105, India E-mail: sdalilko@rediffmail.com (Received: July 10, 2015)

Introduction

Tangent and cotangent bundles have been defined and studied by Yano, Ishihara, Patterson and others. Duggal gives the notion of GF-structure, which plays an important role in the differentiable manifold [1]. R. Nivas and Ali have studied the existence of GF-structure and generalized contact structure on the tangent bundle and some interesting results have been obtained for such structures [2]. Prolongation of tensor fields, almost complex and almost product structures have been defined and studied by Yano, Ishihara [3] and others whereas Das [4] and Morimoto [5] have studied the prolongation of F-structure and G-structures respectively to the tangent bundles. In the present paper problems of prolongation in tangent bundle of second order and few results on GF, $f_a(3,-1)$ and generalized contact structures have been discussed.

1. Preliminary

Let M^n be an n-dimensional differentiable manifold of class C^{∞} and F be a tensor field of type (1,1) satisfying the condition

$$F^2 = a^2 I$$

where $a(\neq 0)$ is any real or complex number, then the structure $\{F\}$ is called GF-structure in M^n [1].

If F satisfying the equation

$$F^3 - a^2 F = 0$$

then $\{F\}$ is called $f_a(3,-1)$ -structure. If there exists a vector field U and a 1-form ω in M^n such that

78 Sahadat Ali

$$F^2 = a^2 I + U \otimes \omega$$

where FU=0, $\omega oF=0$ and $\omega(U)=-a^2$ then the structure $\{F,U,\omega,a\}$ is called generalized contact structure on M^n .

If $T_p(M^n)$ denotes the tangent space of M^n at $p \in M^n$. Then

$$T(M^n) = \bigcup_{p \in M^n} (M^n)$$

is called the tangent bundle of the manifold M^n .

Let M^n be an n- dimensional differentiable manifold and R the real line. We introduce an equivalence relation \sim in the set of all differentiable mapping $F:R\to M^n$. Let $r\geq 1$ be a fixed integer. If two mappings $F:R\to M^n$ and $G:R\to M^n$ satisfy the conditions

$$F^{h}(0) = G^{h}(0), \frac{dF^{h}(0)}{dt} = \frac{dG^{h}(0)}{dt}, \dots \frac{d^{r}F(0)}{dt^{r}} = \frac{d^{r}G(0)}{dt^{r}},$$

the mappings F and G being represented respectively by $x^h = F^h(t)$ and $x^h = G^h(t)$ where $t \in R$ with respect to local coordinates (x^h) in a coordinate neighbourhood (U, x^h) containing the point P = F(0) = G(0), then the mapping F is equivalent to G and written as $F \sim G$. Each equivalence class determined by the equivalence relation \sim is called an r-jet of M^n and denoted by $j_p^r(F)$, if this class contains a mapping $F: R \to M^n$ such that F(0) = P. The point P is called the target of the r-jet $j_p^r(F)$. The set of all r-jets of M^n is called the tangent bundle of order r and denoted by $T_r(M^n)$ [3].

2. Prolongation of tensor field and G-structures to the tangent bundle

Let M^n be an n-dimensional differentiable manifold and G a Lie subgroup of GL(n,R). A G-subbundle $P(M,\pi^*,G)$ of the frame bundle $F(M^n)$ over M^n is called G-structure on M^n . That is, a G-structure on M^n is a reduction of the structure group GL(n,R) of the tangent bundle $T(M^n)$ to the subgroup G. The tangent bundle $T_2(M^n)$ of order 2 admits a $T_2(G)$ - structure with respect to adapted 3n-frames $\left\{X_{(i)}^{II}, X_{(i)}^{I}, X_{(i)}^{0}\right\}$ in each $\pi^{-1}(U)$, $U \in u$, where $\left\{X_{(i)}\right\}$ are n-frames adapted to the G-structure P in U. The $T_2(G)$ -structure thus introduced in $T_2(M^n)$ is called prolongation of the G-structure P on M^n to $T_2(M^n)$ and denoted by \tilde{P} . The theorem by Yano and Ishihara [3] suggests

"The prolongation \tilde{P} of a G-structure P in M^n to $T_2(M^n)$ is integrable if and only if the G-structure P is integrable."

Let G be a Lie-subgroup of GL(n,R) and a tensor \dot{F} of type (1,1) in \mathbb{R}^n which is left invariant by G. An n-dimensional manifold M^n is assumed to admit a G-structure P. Also the theorem by Yano and Ishihara [3] which states that

"Let T be a tensor field in R^n invariant by a Lie subgroup G of GL(n,R) and P a G-structure on an n-dimensional manifold M^n . Then, if T is the tensor field induced in M^n from (\dot{T},P) , the tensor field \tilde{T} induced in the tangent bundle $T_2(M^n)$ of order 2 from (\dot{T}^{II},\tilde{P}) is the second lift T^{II} of T to $T_2(M^n)$, where \dot{T}^{II} is the second lift of \dot{T} to $T_2(R^n)$ and \tilde{P} the prolongation of G-structure P to $T_2(M^n)$."

3. Prolongation of G-structures defined by tensor fields to the tangent bundle of second order

In this section, I will discuss three different classical G-structures defined by tensor fields:

(I) G = GL(n,C). Let \dot{F} be a tensor field of type (1,1) in R^{2n} such that $\dot{F}^2 = a^2I$ and G = GL(n,C) denote the group of all elements of GL(2n,R) which leave \dot{F} invariant. Then the second lift \dot{F}^{II} of \dot{F} to $T_2(R^{2n})$ is a tensor field of type (1,1) satisfying $(\dot{F}^{II})^2 = a^2I$ and the tangent group $T_2(G)$ leaves \dot{F}^{II} invariant. Thus

$$T_2(G) \subset GL(3n, C)$$
.

Using the above expression along with the earlier mentioned theorems of Yano and Ishihara [3], we have

Theorem 3.1. If M^n admits a GF- structure P determined by a tensor field F of type (1,1) such that $F^2 = a^2I$, then on the tangent bundle $T_2(M^n)$ of order 2 the prolongation \tilde{P} of P is a GF-structure which is defined by the second lift F^{II} of F to $T_2(M^n)$. When and only when the GF-structure P is integrable, the prolongation \tilde{P} of P to $T_2(M^n)$ is also integrable.

(II) $G = GL(r, C) \times GL(m, R)$. Let \dot{F} be a tensor of type (1, 1) and of rank r in R^n (n = 2r + m) such that $\dot{F}^3 - a^2 \dot{F} = 0$. If we denote by G the group of all elements of GL(n, R), which leave \dot{F} invariant, then we obtain

$$G = GL(r, C) \times GL(m, R) \subset GL(2n, R).$$

80 Sahadat Ali

Thus the second lift F^{II} of F to $T_2(\mathbb{R}^n)$ satisfies

$$(F^{II})^3 - a^2 F^{II} = 0$$

and is of rank 3r. Hence, we have

$$T_2(G) = GL(3r, C) \times GL(2m, R) \subset GL(3n, R).$$

Using the above relation and again utilizing the theorems of Yano and Ishihara [3], we have

Theorem 3.2. If M^n admits a $f_a(3,-1)$ — structure P defined by a tensor field F of type (1,1) and of rank r everywhere such that $F^3 - a^2F = 0$, then on $T_2(M^n)$ the prolongation \tilde{P} of P admits the similar structure defined by the second lift F^{II} of F to $T_2(M^n)$, where F^{II} is of rank 3r. When and only when the $f_a(3,-1)$ —structure P is integrable in M^n , the prolongation \tilde{P} of P to $T_2(M^n)$ is also integrable.

(III) $G = GL(n, C) \times I$. Let \dot{F} be a tensor field of type (1, 1) and of rank 2n, \dot{v} a vector field and $\dot{\eta}$ a covector field in R^{2n+1} such that

$$\dot{F}^2 = a^2 I + \dot{v} \otimes \dot{\eta}$$

$$\dot{F}\dot{v} = 0, \qquad \dot{\eta} \circ \dot{F} = 0, \qquad \dot{\eta}(\dot{v}) = -a^2.$$

Thus, if we denote by G the group of all elements of GL(2n+1,R) which leave \dot{F} , \dot{v} and $\dot{\eta}$ invariant, then we have

$$G = GL(n, C) \times I \subset GL(2n + 1, R)$$

where I denotes the trivial group.

If we put

$$\dot{J} = \dot{f}^{II} + \frac{1}{a} \left\{ \dot{v}^0 \otimes \dot{\eta}^0 + \dot{v}^{II} \otimes \dot{\eta}^{II} \right\}$$
$$\dot{U} = \dot{v}^I, \qquad \dot{\omega} = \dot{\eta}^I.$$

We can easily obtain that $(\dot{J}, \dot{U}, \dot{\omega}, a)$ is generalized contact structure in $T_2(R^{2n+1})$. Therefore $T_2(G)$ leaves $\dot{J}, \dot{U}, \dot{\omega}$ invariant.

Thus we obtain

$$T_2(G) \subset GL(3n+1,C) \times I \subset GL(6n+3,R).$$

Thus we have

Theorem 3.3. If a manifold M^n of dimensions (2n+1) admits generalized almost contact structure P defined by (F, U, ω, a) , where $F \in \mathfrak{F}^1_1(M^n)$, $U \in$

 $\mathfrak{F}_0^1(M^n)$ and $\omega \in \mathfrak{F}_1^0(M^n)$, then on $T_2(M^n)$ the prolongation \tilde{P} of P is the similar structure defined by $(\tilde{J}, \tilde{U}, \tilde{\omega}, a)$, where

$$\tilde{J} = F^{II} + \frac{1}{a} \left\{ U^0 \otimes \omega^0 + U^{II} \otimes \omega^{II} \right\}$$
$$\tilde{U} = U^I, \qquad \tilde{\omega} = \omega^I.$$

REFERENCES

- [1] Duggal, K. L.: On Differentiable Structure Defined by Algebraic Equations I. Nijenhuis tensor, Tensor N. S., 22 (1971), 227-242.
- [2] Nivas, R. and Ali, S.: On Certain Structures in the Tangent Bundle, Rivista di Matematica Universita Parma, Italy, 6 no. 3 (2002), 205-217.
- [3] Yano, K. and Ishihara, S.: Tangent and Cotangent Bundles, Marcel Dekker, Inc., New York (1973).
- [4] Das, L. S.: Prolongation of F-structure to the Tangent Bundle of Order 2, International Journal of Math and Mathematical Sciences, U.S.A., 16 no. 1 (1993), 201-204.
- [5] Morimoto, A.: Prolongation of G-structures to Tangent Bundles, Nagoya Math. J., 32 (1968), 67-108.