Vol. 10 (2016), pp.35-40

https://doi.org/10.56424/jts.v10i01.10576

# Å Study of CR-Structures and $F_{\lambda}(2\nu+3,4)-$ HSU-Structures Satisfying $F^{2\nu+3}+\lambda^r\,F^4=0$

## Sahadat Ali, Mobin Ahmad\* and Bhupendra Nath Pathak\*\*

Department of Mathematics, SRMGPC, Lucknow-227105, India \*Department of Mathematics, Integral University, Lucknow-226026, India \*\*Department of Mathematics, CEST, Lucknow-226301, India E-mail: sdalilko@rediffmail.com, mobinahmad@rediffmail.com, drbhupendra1980@gmail.com

(Received: September 11, 2016)

## Abstract

CR-structure and F structures satisfying certain equations have been discussed by different authors ([1], [2], [3], [4], [5], [6], [8], [9]). In this paper, we consider CR-structures and  $F_{\lambda}(2\nu+3,4)$ -Hsu-structure satisfying  $F^{2\nu+3} + \lambda^r F^4 = 0$  and obtain certain results. Also, we discuss the integrability condition for  $F_{\lambda}(2\nu+3,4)$ -Hsu structure.

#### 1. Introduction

Let M be an n-dimensional differentiable manifold of class  $C^{\infty}$ . Suppose there exists on M a non-zero tensor field F of type (1, 1) and of class  $C^{\infty}$ satisfying

$$F^{2\nu+3} + \lambda^r F^4 = 0, \tag{1.1}$$

where  $\nu$  is a fixed positive integer greater than or equal to 1, and r is any positive integer,  $\lambda$  a non-zero complex number. The rank of F is constant everywhere and equal to r.

Let us define the operators on M as follows

$$l = -\frac{F^{2\nu+1}}{\lambda^r}$$
 and  $m = I + \frac{F^{2\nu+1}}{\lambda^r}$ , (1.2)

where I denotes the identity operator on M, then it is easy to show that

$$l^2 = l,$$
  $m^2 = m,$   $l + m = I,$   $lm = ml = 0.$  (1.3)

Hence the operators l and m, when applied to the tangent space of M are complementary projection operators. Let us call such a structure on M as  $F_{\lambda}(2\nu+3,4)$ -Hsu structure [9] of rank r.

If  $D_l$  and  $D_m$  are complementary distributions corresponding to operators l and m respectively, then we can easily show that  $\frac{F^{\nu-\frac{1}{2}}}{\lambda^{r/2}}$  acts on  $D_l$  as an almost complex structure operator and  $D_m$  as a null operator.

The Nijenhuis tensor N(X,Y) of F satisfying equation (1.1) in M is given by

$$N(X,Y) = [FX, FY] - F[FX,Y] - F[X,FY] + F^{2}[X,Y].$$
 (1.4)

A necessary and sufficient condition for the  $F_{\lambda}(2\nu+3,4)$ -Hsu structure to be integrable is that, N(X,Y)=0 for any two vector fields X and Y on M. For the vector fields X and Y on M, their Lie bracket [X,Y] is defined by

$$[X,Y] = XY - YX. \tag{1.5}$$

### 2. CR-structure

Let M be a differtiable manifold and  $T_C(M)$  be its complexified tangent bundle. A CR-Structure on M is a complex sub-bundle H of  $T_C(M)$  such that  $H_P \cap \tilde{H}_P = 0$  and H is involutive, that is for complex vector fields X and Y in H, [X,Y] is in H. In this case M is a CR-Submanifold. Here  $\tilde{H}_P$  is complex conjugate of  $H_P$ .

Let  $F_{\lambda}(2\nu+3,4)$ —Hsu structure be integrable structure satisfying equation (1.1) of rank r=2m on M. We define complex subbundle H of  $T_C(M)$  by

$$H_P = \{X - \sqrt{-1}FX; \ X \in \chi(D_l)\},$$
 (2.1)

where  $\chi(D_l)$  is the  $F(D_m)$  module of all differentiable sections of  $D_l$ , then

$$R_e(H) = D_l$$
 and  $H_P \cap \tilde{H}_P = 0$ .

**Theorem 2.1.** If P and Q are two elements of H, then the following relation holds

$$[P,Q] = [X,Y] - [FX,FY] - \sqrt{(-1)}(-1)([X,FY] + [FX,Y]). \tag{2.2}$$

**Proof.** Let us define

$$P = X - \sqrt{(-1)}(-1)FX \quad \text{and} \quad Q = Y - \sqrt{(-1)}(-1)FY.$$

Then by direct calculation and simplification, we get

$$\begin{split} [P,Q] &= [X - \sqrt{(-1)}(-1)FX, Y - \sqrt{(-1)}(-1)FY] \\ &= [X,Y] - \sqrt{(-1)}(-1)[X,FY] - \sqrt{(-1)}(-1)[FX,Y] - [FX,FY] \\ &= [X,Y] - [FX,FY] - \sqrt{(-1)}(-1)([X,FY] + [FX,Y]). \end{split}$$

**Theorem 2.2.** If  $F_{\lambda}(2\nu + 3, 4)$ —Hsu structure satisfying equation (1.1) is integrable, then we have

$$-\frac{F^{2\nu-2}}{\lambda^r}(F[FX, FY] + F^2[X, Y]) = l([FX, Y] + [X, FY]). \tag{2.3}$$

**Proof.** Since N(X,Y)=0, then from equation (1.4), we have

$$[FX, FY] + F^{2}[X, Y] = F[X, FY] + F[FX, Y].$$
 (2.4)

Operating by  $-\frac{F^{2\nu-2}}{\lambda^r}$ , we get

$$-\frac{F^{2\nu-2}}{\lambda^r}([FX, FY] + F^2[X, Y]) = -\frac{F^{2\nu-2}}{\lambda^r}(F[X, FY] + [FX, Y])$$

$$= -\frac{F^{2\nu-1}}{\lambda^r}([FX, Y] + [X, FY]). \tag{2.5}$$

Making use of equation (1.2), above equation (2.5) takes the form

$$-\frac{F^{2\nu-2}}{\lambda^r}(F[FX, FY] + F^2[X, Y]) = l([FX, Y] + [X, FY])$$

which proves the theorem.

**Theorem 2.3.** The following identities hold in a  $F_{\lambda}(2\nu + 3, 4)$ -Hsu structure manifold M

$$mN(X,Y) = 0, (2.6)$$

$$mN\left(\frac{F^{2\nu-2}}{\lambda^r}X,Y\right) = m\left[\frac{F^{2\nu-1}}{\lambda^r}X,FY\right]. \tag{2.7}$$

**Proof.** The proof of above theorem is straight forward.

**Theorem 2.4.** In a  $(F_{\lambda}(2\nu + 3, 4)$ -Hsu structure manifold M, for any two vector fields X and Y, the following conditions are equivalent:

(i) 
$$mN(X,Y) = 0,$$
  
(ii)  $m[FX,FY] = 0,$   
(iii)  $mN\left(\frac{F^{2\nu}}{\lambda^r}X,FY\right) = 0,$   
(iv)  $mN\left(\frac{F^{2\nu-1}}{\lambda^r}X,Y\right) = 0,$   
(v)  $mN\left(\frac{F^{2\nu-2}}{\lambda^r}lX,FY\right) = 0.$  (2.8)

**Proof.** The proof of equation (2.8) follows easily by virtue of equations (1.1), (1.2), (1.4) and (2.3).

**Theorem 2.5.** If  $\frac{F^{2\nu-1}}{\lambda^r}$  acts on  $D_l$  as an almost complex structure, then

$$m\left[\frac{F^{2\nu}}{\lambda^r}lX, FY\right] = m[-FX, FY] = 0.$$
 (2.9)

**Proof.** We have

$$\begin{split} m\bigg[\frac{F^{2\nu}}{\lambda^r}lX,FY\bigg] &= m\bigg[\bigg(\frac{F^{2\nu-1}}{\lambda^r}\bigg)FlX,FY\bigg] \\ &= m[-lFlX,FY] = m[-FX,FY] = 0. \end{split}$$

**Theorem 2.6.** For any  $X, Y \in \chi(D_l)$ , we get

$$l([X, FY] + [FX, Y]) = [X, FY] + [FX, Y].$$
(2.10)

**Proof.** Since [X, FY] and  $[FX, Y] \in \chi(D_l)$ , and Fl = lF; Fm = mF = 0, then making use of equation (1.5), we have

$$\begin{split} l([X, FY] + [FX, Y]) &= l\{X.FY - FY.X + FX.Y - Y.FX\} \\ &= X.FY - FY.X + FX.Y - Y.FX \\ &= [X, FY] + [FX, Y]. \end{split}$$

**Theorem 2.7.** The integrable  $F_{\lambda}(2\nu+3,4)$ —Hsu structure satisfying equation (1.1) on M defines a CR-structure H on it such that  $R_eH = D_l$ .

**Proof.** In view of the fact that [X, FY] and  $[FX, Y] \in \chi(D_l)$ , and on using equations (2.2), (2.4) and theorem (2.6), we get

$$\begin{array}{ll} l[P,Q] &= l[X,Y] - l[FX,FY] - \sqrt{(-1)}(-1)l([X,FY] + [FX,Y]) \\ &= [X,Y] - [FX,FY] - \sqrt{(-1)}(-1)([X,FY] + [FX,Y]) \\ &= [P,Q]. \end{array}$$

Hence  $[P,Q] \in \chi(D_l)$ . Thus,  $F_{\lambda}(2\nu+3,4)$ -Hsu structure satisfying equation (1.1) on M defines a CR-Structure.

**Definition 2.1.** Let  $\bar{k}$  be the complementary distribution of  $R_eH$  to (M). We define a morphism of vector bundles  $F: T(M) \to T(M)$ , given by F(X) = 0 for all  $X \in \chi(\bar{k})$ , such that

$$FX = \frac{1}{2}\sqrt{-1}(-1)(P - \tilde{P}),\tag{2.11}$$

where  $P = X + \sqrt{-1}(-1)Y \in \chi(H_P)$  and  $\tilde{P}$  is complex conjugate of P.

**Corollary 2.1.** If P = X + iY and  $\tilde{P} = X - iY$  belong to  $H_P$  and  $F(X) = \frac{1}{2}\sqrt{-1}$ ,  $F(Y) = \frac{1}{2}(P + \tilde{P})$  and  $F(-Y) = -\frac{1}{2}(P + \tilde{P})$ , then F(X) = -Y,  $F^2(X) = -X$  and F(-Y) = -X.

**Theorem 2.8.** If M has a CR-structure H, then  $F^{2\nu+3} + \lambda^r F^4 = 0$  and consequently  $F_{\lambda}(2\nu + 3, 4)$ -Hsu structure is defined on M such that the distribution  $D_l$  and  $D_m$  coincide with  $R_e(H)$  and  $\bar{k}$  respectively.

**Proof.** Let M has a CR-structure. Then operating equation F(X) = -Y by  $(F^{2\nu} + \lambda^r F)$ , we get

$$(F^{2\nu} + \lambda^r F)F(X) = (F^{2\nu} + \lambda^r F)(-Y).$$

On making use of corollary (2.1), the above equation becomes

$$\begin{split} (F^{2\nu+3} + \lambda^r F^4)(X) &= (F^{2\nu+1} + \lambda^r F^2) F^2(X) \\ &= (F^{2\nu+1} + \lambda^r F^2)(-X) \\ &= -(F^{2\nu-1} + \lambda^r) F^2(X) \\ &= -(F^{2\nu-1} + \lambda^r)(-X) \\ &= (F^{2\nu-1} + \lambda^r)(X). \end{split}$$

We continue simplifying in same manner and obtain

$$(F^{2\nu+3} + \lambda^r F^4) X = 0,$$

which is indeed

$$F^{2\nu+3}(X) + \lambda^r F^4(X) = 0.$$

## References

- [1] Das, L. S. : On CR-structures and F(2K+1,1)-structure satisfying  $F^{2K+1}+F=0$ , India, 22 (2004), 1-7.
- [2] Das, L. S., Nikic, J. and Nivas, R.: Distributions parallelism and geodesic in  $F(a_1, a_2, \ldots, a_n)$ —structure Lagrangian manifolds, Differential Geometry Dynamical Systems, Romania, 7 (2005), 82-89.
- [3] Das, L. S., Nivas, R. and Singh, A.: On CR-structures and F-Structures  $F^{4n} + F^{4n-1} + \dots + F^2 + F = 0$ , Tensor (N.S.), 70 (2008), 255-260.
- [4] Demetropoulou-Psomopoulou, D. and Andreou, F. Gouli : On necessary and sufficient conditions for an n-dimensional manifold to admit a tensor field  $f(\neq 0)$  of type (1, 1) satisfying  $f^{2\nu+3}+f=0$ , Tensor (N. S.), 42 (1985), 252-257.
- [5] Goldberg, S. I. and Yano, K.: On normal globally framed f-manifolds. Tohoku Math., I, 22 (1970), 362-370.
- [6] Goldberg, S. I.: On existence of manifold with an f-structure, Tensor (N.S.), 26 (1972), 323-329.
- [7] Yano, K. and Ishihara, S.: Tangent and Cotangent Bundles, Differential geometry, Marcel Dekker, Inc., New York, (1973).
- [8] Yano. K.: On structure defined by a tensor field f of type,  $f^3 + f = 0$ , Tensor (N.S.), 14 (1963), 99-109.
- [9] Upadhyay, M. D. and Gupta, V. C. : Integrability conditions of a structure  $f_{\lambda}$  satisfying  $f^3 + \lambda^2 f = 0$ , Publication Mathematics, 24(3-4) (1977), 249-255.