Vol. 10 (2016), pp.41-48

https://doi.org/10.56424/jts.v10i01.10575

On Finsler Spaces Satisfying the Condition $L^{m+1}C = \gamma^m$

T. N. Pandey and Suraj Kumar Shukla

Department of Mathematics and Statistics,
DDU Gorakhpur University Gorakhpur-273009, India
E-mail: tnp1952@gmail.com, surajkumarshukla499@gmail.com
(Received: February 9, 2017)

Abstract

In the year 1979, M. Matsumoto has discussed non-Riemannian Finsler spaces with vanishing T-Tensor. In the paper, M. Matsumoto has shown that if a Finsler space M^n satisfy T-condition i.e. $T_{hijk} = 0$, Then for such a Finsler space the function L^2C^2 of M^n is a function of position only (i.e. $L^2C^2 = f(x)$), where L is fundamental function and C^2 is the square of length of torsion tensor C_i . In continuity of the above paper F. Ikeda in the year 1984, studied Finsler spaces L^2C^2 as a function of x in detail. In the year 1991, Ikeda considered Finsler spaces satisfying the condition L^2C^2 as to non-zero constant, which is a stronger condition. One of the author T. N. Pandey in the year 2012 studied Finsler spaces taken L^2C^2 equal to some known function of x and y i.e. $L^2C^2 = f(x) + f(y)$.

In the present paper we shall consider the combination of L and C differently and taking $L^{m+1}C = \lambda^m$, where γ is m^{th} root metric.

1. Introduction

M. Matsumoto in the paper, [9] studied non-Riemannian Finsler spaces with the vanishing T-tensor, which are said to satisfy the T-condition (by T-condition we mean a Finsler space whose T-tensor vanishes), then the function L^2C^2 over M^n is reduced to a function of the position only (i.e., $L^2C^2 = f(x)$) where L is the fundamental function and C is the length of torsion vector C_i .

He has also quoted that if the metric tensor g_{ij} has a special form as $g_{ij} = q_{ij}^{ls}$ then the function L^2C^2 becomes zero (i.e. $L^2C^2 = 0$). Because in this case the T-condition satisfies automatically and $C_i = 0$.

In the continuity of the above paper F.Ikeda in the year 1984, studies Finsler spaces, L^2C^2 is a function of x in detail and come out with some interesting result specially for two and three dimensional Finsler spaces. Actually Ikeda was examine the equivalence of T-condition with $L^2C^2 = f(x)$. In the year 1991, F. Ikeda consider Finsler spaces satisfying the condition L^2C^2 equals to non-zero constant, which is stronger condition, then the condition imposed by him in the paper 1984.

An example of such a Finsler spaces with a constant function L^2C^2 is a two dimensional Berwald space. One of the author (T. N. Pandey), in the year 2012 [2] studied Finsler spaces taken LC equal to some known function of x and y, i.e. LC = f(x) + g(x).

In the present paper, we shall consider combination of L and C differently and taking $L^{m+1}C = \gamma^m$, where γ is well known M^{th} root metric. For such a Finsler space if it is C-reducible it has been worked out under what condition T-Tensor vanishes. In the last section it has been worked out under what condition such a Finsler space $(L^{m+1}C = \gamma^m)$ is a Landsberg space or Berwald space.

2. T-Tensor of a Finsler space with $L^{m+1}C = \gamma^m$

Let l_i , h_{ij} and C_{ijk} denote the unit vector, angular metric tensor and the (h) hv-torsion tensor respectively.

The well-known T-Tensor T_{ijkh} ([7], # equation (28.20)) has been defined by

$$T_{ijkh} = LC_{ijk|h} + C_{ijk}l_h + C_{jkh}l_i + C_{khi}l_j + C_{hij}l_k.$$

$$(2.1)$$

and the torsion Tensor C_i is given by $C_i = g^{jk}C_{ijk}$, where the symbol $|_h$ denote v-covariant differentiation and g^{jk} denote reciprocal of g_{jk} . We are considering a F^n whose torsion tensor is such that

$$L^{m+1}C = \gamma^m, (2.2)$$

where $\gamma^m = a_{i_1 i_2 \dots i_m} y^{i_1} y^{i_2} \dots y^{i_m}$ is the m^{th} root metric.

Differentiating equation (2.2) with respect to y^h , we get

$$(m+1)L^{m}l_{h}C + L^{m+1}C_{;h} = ma_{hi_{2}i_{3}...i_{m}}y^{i_{2}}y^{i_{3}}...y^{i_{m}},$$

$$(m+1)Ll_{h}C + L^{2}C_{;h} = \frac{m}{L^{m-1}}a_{hi_{2}i_{3}...i_{m}}L^{m-1}l^{i_{2}}...l^{i_{m}}. \qquad (\because \frac{y^{i}}{L} = l^{i}).$$

$$(m+1)LCl_{h} + L^{2}C_{;h} = ma_{h} \qquad (2.3)$$

where $C_{;h} = \frac{\partial C}{\partial y^h}$ and $a_h = a_{hi_2i_3...i_m}l^{i_2}...l^{i_m}$.

Now,

$$T_{ijkh} = LC_{ijk|h} + C_{ijk}l_h + C_{jkh}l_i + C_{khi}l_j + C_{hij}l_k.$$

Contract with g^{jk} and summing with respect to j and k

$$T_{ih} = LC_i|_h + C_i l_h + C_h l_i + C_{hi}^j l_j + C_{ih}^k l_k,$$

$$C^i T_{ih} = LC_i|_h \cdot C^i + C^2 l_h.$$
(2.4)

Now, differentiating the equation $C^2 = g^{ij}C_iC_i$ with respect to y^h

$$2CC_{;h} = g^{ij} \frac{\partial C_i}{\partial y^h} C_j + g^{ij} \frac{\partial C_j}{\partial y^h} C_i,$$
$$C_{;h} = \frac{C^i C_{i|h}}{C}.$$

From (2.3),

$$(m+1)Ll_hC + L^2 \frac{C^i C_i|_h}{C} = ma_h,$$

 $LC^i C_i|_h = C \left[\frac{a_h}{L} m - (m+1)l_hC \right].$ (2.5)

In the virtue of equation (2.4) and equation (2.5), we obtain

$$C^{i}T_{ih} = C\left[m\frac{a_{h}}{L} - (m+1)l_{h}C\right] + C^{2}l_{h},$$

$$C^{i}T_{ih} = mC\left(\frac{a_{h}}{L} - Cl_{h}\right)$$
(2.6)

Conversely, let

$$\begin{split} C^i T_{ih} &= mC \left(\frac{a_h}{L} - C l_h\right), \\ L C^i C_i|_h + C^2 l_h &= mC \left(\frac{a_h}{L} - C l_h\right), \\ L C_{;h} + (m+1)C l_h &= m \left(\frac{a_h}{L}\right), \quad \text{since} \quad C^i C_i|_h = C C_{;h} \\ L^2 C_{;h} + (m+1)C L l_h &= m a_h. \end{split}$$

Multiplying both side by L^{m-1} , we get

$$(L^{m+1}C)_{;h} = ma_h L^{m-1}.$$

Multiplying both side by y^h and using Euler's theorem, we get

$$L^{m+1}C = a_h L^m l^h = a_{hi_2 i_3 \dots i_m} y^{i_2} y^{i_3} \dots y^{i_m} y^h,$$

$$L^{m+1}C = \gamma^m.$$

Thus, we have

Theorem (2.1). For a Finsler space (M^n, L) of dimension n, if torsion Tensor C is such as $L^{m+1}C = \gamma^m$. Then following relation $C^iT_{ih} = mC(\frac{a_h}{L} - Cl_h)$ holds good.

Next, for a two dimensional Finsler space the T-Tensor ([7], # equation (28.3))

$$T_{hijk} = I_{:2}m_h m_i m_j m_k, (2.7)$$

where $I_{;2} = L \frac{\partial I}{\partial y^i} m^i$, also $LC_{ijk} = Im_i m_j m_k$ and LC = I ([7],# equation (28.3)).

Writing LC = I in equation (2.2) and differentiating with respect to y^i , we have

$$(L^m I)_{;i} = \gamma_{;i}^m$$

$$mIl_i + I_{;2}m_i = ma_i$$
 since $\left(L\frac{\partial I}{\partial v^i} = I_{;2}m_i\right)$.

Contracting both sides by m^i and we have,

$$I_{:2} = mm^i a_i$$
.

From (2.5), we have

$$T_{hijk} = ma_r m^r m_h m_i m_j m_k. (2.8)$$

Corollary (2.1). For a two dimensional Finsler space if $L^{m+1}C = \gamma^m$ and a_i is parallel to l_i , then $T_{hijk} = 0$.

Next, for a C-Reducible Finsler space the T-Tensor [7] can be written as,

$$T_{hijk} = \frac{LC^*}{(n-1)^2} \pi_{hijk} h_{hi} h_{jk}, \qquad (2.9)$$

where $C^* = g^{ij}C_i|_j$ and π_{ijk} represent sum of cyclic permutation in the indices h, i, j, k.

Contracting equation (2.9) by g^{jk} , we get

$$T_{hi} = \frac{LC^*}{(n-1)} h_{hi}.$$

Using equation (2.4)

$$C^{i}T_{ih} = C^{i}\frac{L}{n-1}C^{*}h_{hi} = LC^{*}\frac{C_{h}}{n-1} = mC(\frac{a_{h}}{L} - Cl_{h}), \qquad (2.10)$$

$$a_{h} = \frac{L}{m}\left[\frac{LC^{*}C_{h}}{C(n-1)} + mCl_{h}\right],$$

$$C^h a_h = \frac{L}{m} \left[\frac{LCC^*}{n-1} \right].$$

Corollary (2.2). For a C-Reducible Finsler space (M^n, L) with $L^{m+1}C = \gamma^m$ and a_i parallel to l_i , then

$$T_{hijk} = 0.$$

3. Landsberg space and Berwald spaces satisfying the condition L^{m+1} $C = \gamma^m$

Let us consider a Finsler space M^n , where C is such that

$$L^{m+1}C = \gamma^m.$$

Differentiating above equation with respect to y^i , we get

$$L^{m+1}C_{:i} + (m+1)L^mCl_i = m\gamma^{m-1}\gamma_i, (3.1)$$

where $C_{;i} = \frac{\partial C}{\partial y^i}$ and $\gamma_i = \frac{\partial \gamma}{\partial y^i}$. Differentiating equation (3.1) with respect to y^j , we get

$$(m+1)L^{m}l_{j}C_{;i} + L^{m+1}C_{;i;j} + m(m+1)CL^{m-1}l_{i}l_{j} + (m+1)L^{m}C_{;j}l_{i} + (m+1)CL^{m-1}h_{ij} = m(m-1)\gamma^{m-1}\gamma_{i}\gamma_{j} + m\gamma^{m-1}\gamma_{ij}.$$
(3.2)

Using $h_{ij} = g_{ij} - l_i l_j$, we have

$$g_{ij} = \frac{1}{(m+1)C} \left[\frac{m\gamma^{m-2}}{L^{m-1}} \left\{ \gamma \gamma_{ij} + (m-1)\gamma_i \gamma_j \right\} - \left\{ (m+1)L(C_{;i}l_j + C_{;j}l_i) + (m^2 - 1)Cl_i l_j + L^2 \frac{\partial C_{;i}}{y^j} \right\} \right].$$
(3.3)

Again differentiating equation (3.2) with respect to y^k , we get

$$C_{ijk} = \frac{1}{2(m+1)CL^{m-1}} \left[m\gamma^m \gamma_{ijk} + m(m-1)\gamma^{m-2} (\pi_{ijk}\gamma_i\gamma_{jk}) + m(m-1)(m-2)\gamma^{m-3}\gamma_i\gamma_j\gamma_k - L^{m+1}C_{;i;j;k} - (m+1)L^m (\pi_{ijk}l_iC_{;j;k}) - (m+1)mL^{m-1} (\pi_{ijk}C_{;i}l_jl_k) - (m+1)L^{m-1} (\pi_{ijk}C_{;i}h_{jk}) - (m-1)(m+1)L^{m-2}C(\pi_{ijk}l_ih_{jk}) - m(m+1)(m-1)CL^{m-2}l_il_jl_k \right].$$
(3.4)

Since

$$\gamma^m = a_{i_1 i_2 i_3 \dots i_m}(x) y^{i_1} y^{i_2} \dots y^{i_m}.$$

Differentiating above with respect to y^i and y^j and using obtained value in (3.4), then (3.4) becomes

$$2(m+1)CL^{m-1} \left[\frac{1}{m(m-1)(m-2)L^{m-1}} \frac{1}{m(m-1)(m-2)L^{m-1}} \frac{1}{m(m+1)L^{m-1}} \frac{1}{m(m+1)L^{m-1}} \frac{1}{m(m+1)L^{m-1}} \frac{1}{m(m+1)L^{m-1}} \frac{1}{m(m+1)L^{m-2}C_{|h}} \frac{1}{m(m+1)L^{m-2}C_{|h}} \frac{1}{m(m+1)L^{m-2}C_{|h}} \frac{1}{m(m+1)L^{m-2}C_{|h}} \frac{1}{m(m+1)L^{m-2}C_{|h}} \frac{1}{m(m+1)L^{m-2}C_{|h}} \frac{1}{m(m+1)L^{m-2}C_{|h}} \frac{1}{m(m+1)L^{m-1}} \frac{1}{m(m+1)L^$$

Contracting equation (3.5) by y^h , we get

$$P_{ijk} = C_{ijk|h} y^h$$

$$\begin{split} y^h C_{ijk|h} = & \frac{1}{2(m+1)CL^{m-1}} \bigg[m(m-1)(m-2)L^{m-3} a_{ijk|0} - L^{m+1} C_{;i;j;k|0} \\ & - (m+1)L^m (\pi_{ijk} l_i C_{;j;k|0}) - m(m+1)L^{m-1} (\pi_{ijk} C_{;i|0} l_j l_k) \\ & - (m+1)L^{m-1} (\pi_{ijk} C_{;i|0} h_{jk}) - (m-1)(m+1)L^{m-2} C_{|0} (\pi_{ijk} l_i h_{jk}) \\ & - m(m-1)(m+1)L^{m-2} C_{|0} l_i l_j l_k \bigg] + \frac{1}{2(m+1)} \bigg(\frac{1}{CL^{m-1}} \bigg)_{|h} \\ & \bigg[m(m-1)(m-2)L^{m-3} a_{ijk} - L^{m+1} C_{;i;j;k} - (m+1)L^m (\pi_{ijk} l_i C_{;j;k}) \\ & - m(m+1)L^{m-1} (\pi_{ijk} C_{;i} l_j l_k) - (m+1)L^{m-1} (\pi_{ijk} C_{;i} h_{jk}) \\ & - (m-1)(m+1)L^{m-2} C (\pi_{ijk} l_i h_{jk}) \end{split}$$

$$-m(m-1)(m+1)CL^{m-2}l_{i}l_{j}l_{k}$$
(3.6)

where P_{ijk} is the (V) hv-torsion tensor. The symbol $|_h$ denotes the h-covarient differentiation and the index '0' means contraction by y^h .

If we put $C_{ijk|h} = 0$ and $P_{ijk} = 0$, respectively, then we obtain

$$\frac{1}{2(m+1)CL^{m-1}} \left[m(m-1)(m-2)L^{m-3}a_{ijk|h} - L^{m+1}C_{;i;j;k|h} - (m+1)L^{m}(\pi_{ijk}l_{i}C_{;j;k|h}) - m(m+1)L^{m-1}(\pi_{ijk}C_{;i|h}l_{j}l_{k}) - (m+1)L^{m-1}(\pi_{ijk}C_{;i|h}h_{jk}) - (m-1)(m+1)L^{m-2}C_{|h}(\pi_{ijk}l_{i}h_{jk}) - m(m-1)(m+1)L^{m-2}C_{|h}l_{i}l_{j}l_{k} \right] + \frac{1}{2(m+1)} \left(\frac{1}{CL^{m-1}} \right)_{|h}$$

$$\left[m(m-1)(m-2)L^{m-3}a_{ijk} - L^{m+1}C_{;i;j;k} - (m+1)L^{m}(\pi_{ijk}l_{i}C_{;j;k}) - m(m+1)L^{m-1}(\pi_{ijk}C_{;i}l_{j}l_{k}) - (m+1)L^{m-1}(\pi_{ijk}C_{;i}h_{jk}) - (m-1)(m+1)L^{m-2}C(\pi_{ijk}l_{i}h_{jk}) \right] = 0.$$
(3.7)

and

$$\frac{1}{2(m+1)CL^{m-1}} \left[m(m-1)(m-2)L^{m-3}a_{ijk|0} - L^{m+1}C_{;i;j;k|0} - (m+1)L^{m}(\pi_{ijk}l_{i}C_{;j;k|0}) - m(m+1)L^{m-1}(\pi_{ijk}C_{;i|0}l_{j}l_{k}) - (m+1)L^{m-1}(\pi_{ijk}C_{;i|0}h_{jk}) - (m-1)(m+1)L^{m-2}C_{|0}(\pi_{ijk}l_{i}h_{jk}) - m(m-1)(m+1)L^{m-2}C_{|0}l_{i}l_{j}l_{k} \right] + \frac{1}{2(m+1)} \left(\frac{1}{CL^{m-1}} \right)_{|h}$$

$$\left[m(m-1)(m-2)L^{m-3}a_{ijk} - L^{m+1}C_{;i;j;k} - (m+1)L^{m}(\pi_{ijk}l_{i}C_{;j;k}) - m(m+1)L^{m-1}(\pi_{ijk}C_{;i}l_{j}l_{k}) - (m+1)L^{m-1}(\pi_{ijk}C_{;i}h_{jk}) - (m-1)(m+1)L^{m-2}C(\pi_{ijk}l_{i}h_{jk}) \right] = 0.$$
(3.8)

Therefore, we have

Theorem (3.1). If torsion scalar C of $F^n = (M^n, L)$ satisfies the condition $L^{m+1}C = \gamma^m$, then necessary and sufficient condition for M^n to be a Berwald space is that the equation (3.7) holds good.

Theorem (3.2). If torsion scalar C of $F^n = (M^n, L)$ satisfies the condition $L^{m+1}C = \gamma^m$, then necessary and sufficient condition for M^n to be a Landsberg space is that the equation (3.8) holds good.

References

- [1] Srivastava, L. K. : On Finsler spaces with unified main scalar (2C) is not of the form , Global journal of multidisciplinary studies, .
- [2] Pandey, T. N., Chaubey, V. K. and Mishra, Arunima : On Finsler spaces with unified main scalar (LC) of the form , International J. Math. Combin, .
- [3] Ikeda, F.: On Finsler spaces satisfying the condition L2C2 = f(x), Analele stintifice, .
- [4] Asanov, G. S.: New examples of S3-like Finsler spaces, Rep. on Math. Phys. .
- [5] Asanov, G. S. and Kirnasov, E. G. : On Finsler spaces satisfying T-condition, Aequ. Math. Univ. of Waterloo, .
- [6] Ikeda, F.: On the tensor Tijkl of Finsler spaces, Tensor, N. S..
- [7] Matsumoto, M.: Conditions of Finsler Geometry and Special Finsler Spaces, Kaiseisha Press, Saikawa, Otsu, Japan, .
- [8] Matsumoto, M. and Numata, S.: On semi C-reducible Finsler spaces with constant coefficients and C2-like Finsler spaces, Tensor, N. S., .
- [9] Matsumoto, M. and Shibata, C. : On semi-C-reducibility, T-tensor=0 and S4-likeness of Finsler spaces, J. Math. Kyoto Univ. .
- [10] Szabo, Z. I.: Positive definite Finsler spaces satisfying the T-condition are Riemannin, Tensor, N.S.,.
- [11] Watanabe, S. and Ikeda, F.: On some properties of Finsler spaces based on the indicatrices, Publ. Math. Debrecen, .